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We present a theory of the intrinsic lattice thermal conductivity in Si/Ge-based and GaAs/AlAs quantum
well superlattices using an exact iterative solution of the inelastic phonon Boltzmann equation. An adiabatic
bond charge model is employed to accurately represent the phonon dispersions and the empirical anharmonic
force constants are introduced yielding the measured values for bulk thermal conductivities. We show that the
kinematic constraints of the superlattice decrease the phonon-phonon scattering, resulting in higher intrinsic
lattice thermal conductivities than those calculated from constant relaxation-time approximations and simple
model phonon dispersions. The role of mini-umklapp processes, produced as a result of zone-folding in
superlattices, is also addressed. Finally, we find larger calculated intrinsic lattice thermal conductivities of
GaAs/AlAs superlattices than those predicted from a relaxation-time approach, implying that interface scatter-
ing plays a more important role than previously documented. These findings are consistent with experimental
measurements for short-period GaAs/AlAs structures.
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I. INTRODUCTION

The thermal transport properties of semiconductor nano-
structures have attracted considerable interest in recent
years.1 This is due in part to the changes in the measured
lattice thermal conductivity in these structures compared to
their bulk constituents,2–7 which makes them potentially use-
ful materials for thermoelectrics,8,9 and other applications in-
volving microelectronic devices and circuits.1 A dramatic ex-
ample of this phenomenon occurs in quantum well
superlattices �SLs�, where order-of-magnitude decreases
have been observed in the thermal conductivity along the
growth axis of Si/Ge,2 GaAs/AlAs,3,4 and Bi2Te3 /Sb2Te3
structures.5

The significant drop in the lattice thermal conductivity in
SLs, �SL, results primarily from two mechanisms. The first
involves phonon scattering by imperfections at the SL
interfaces.10 This extrinsic mechanism depends on sample
quality: a greater roughness at each interface leads to a
greater number of scattered phonons and a lowering of �SL.
The second mechanism is intrinsic. To understand it, we first
look at the bulk material.

Above a few tens of degrees Kelvin, the lattice thermal
conductivity of high quality bulk semiconductors is deter-
mined primarily by phonon-phonon scattering, which arises
due to the anharmonicity of the interatomic potential.11,12

Unlike phonon scattering by defects, impurities, or bound-
aries, anharmonic phonon-phonon scattering is an intrinsic
resistive process that limits the maximum achievable lattice
thermal conductivity at each temperature. In a SL structure,
the intrinsic part of the thermal conductivity, �SL

�i� , is changed
compared to its bulk counterpart because of the periodic
variation of the two constituent atoms. This variation modi-
fies the phonon dispersions. One consequence of this is that
the average group velocity of the acoustic modes is reduced,
thereby acting to lower �SL

�i� . Calculations based on the con-
stant relaxation-time approximation �CRTA� and simple
model lattice dynamics have predicted order-of-magnitude
reductions in �SL

�i� for Si/Ge structures based on this

effect.13,14 Another consequence was highlighted in recent
calculations of �SL

�i� for Si/Ge-based SLs.15 This work imple-
mented an exact solution of the phonon Boltzmann equation
to show that the kinematic constraints of energy and momen-
tum conservation for three-phonon scattering become more
restrictive in SLs, and this acts to raise �SL

�i� . A competition
between these two effects exists, which varies with the
masses of the constituent materials and the period of the SL.

The calculations in Ref. 15 used a Keating model16 to
describe the harmonic and anharmonic interatomic forces.
The Keating model does not accurately describe the flat
transverse-acoustic phonon branches that characterize most
diamond and zinc-blende semiconductors, which are the con-
stituent materials of many SLs. Since the kinematic con-
straints are completely determined by the phonon dispersions
�see Eq. �1��, it is of interest to calculate �SL

�i� using accurate
descriptions of the SL phonon dispersions.

In this paper, we develop a theoretical approach to calcu-
late the intrinsic lattice thermal conductivity of SLs. This
approach combines an exact solution of the inelastic phonon
Boltzmann equation with accurate descriptions of the phonon
dispersions obtained from an adiabatic bond charge
model.17,18 We use this model to assess how �SL

�i� depends on
accurate representations of the phonon dispersion as well as
the mass ratio of the constituent atoms. In addition, we in-
vestigate the significance of the additional three-phonon um-
klapp processes �“mini-umklapp” processes� that were pro-
posed to occur in SLs by Ren and Dow.19 Finally, we also
calculate �SL

�i� as a function of temperature for short-period
GaAs/AlAs SLs and compare our results with measured val-
ues. This procedure allows us to indirectly evaluate the ex-
trinsic contribution to the lattice thermal conductivity, �SL

�e�.
We focus on the temperature range around room tempera-

ture where three-phonon scattering is the dominant scattering
process. In Sec. II, we develop the theory of the intrinsic
lattice thermal conductivity of SLs. Section III describes the
adiabatic bond charge model used to calculate the SL phonon
dispersions and the central potential model used to represent
the anharmonic interatomic forces. In Sec. IV the calculated
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intrinsic lattice thermal conductivities of Si/Ge-based and
GaAs/AlAs SLs are presented and discussed. Section V
gives a summary and conclusions.

II. THEORY OF INTRINSIC LATTICE THERMAL
CONDUCTIVITY

We develop here a Boltzmann transport theory for the
intrinsic lattice thermal conductivity of a perfect, defect-free
SL, �SL

�i� . Around room temperature, the vibrating lattice at-
oms sample the anharmonicity of the interatomic potential
causing phonons to scatter from one another and producing
intrinsic thermal resistance. The most significant processes
involve three phonons.11,12 These processes are constrained
to satisfy conservation of energy and quasimomentum,11,12

� j�q� � � j’�q�� = � j��q��, q � q� = q� + K , �1�

where j is the SL phonon branch index, q is the phonon wave
vector, � j�q� is the phonon frequency, and K is a reciprocal-
lattice vector that is zero for normal processes and nonzero
for umklapp processes. We refer to Eq. �1� as the kinematic
constraints, which restrict the phase space of phonons that
can participate in scattering events.

A small temperature gradient, �T, is taken to perturb the
phonon distribution function n�=n0�+n1�, where � is a
short-hand for �q , j�, n0��n0���� is the equilibrium �Bose�
phonon distribution function, and the nonequilibrium part,
n1�, produces the thermal current. The linearized phonon
Boltzmann equation is11,12

v� · �T
�n0�

�T
= �

����
�W�����

+ ���� − ��� − ���

+
1

2
W�����

− ���� + ��� − ���� , �2�

where v� is the phonon velocity in mode �, and ��

=n1� / �n0��n0�+1��. The presence of ��� and ��� conveys
the inelastic nature of the phonon-phonon scattering. Re-
placement of the right-hand side of Eq. �2� by −n1� /�, where
� is an adjustable constant scattering time, gives the com-
monly used CRTA.11–14 The sums on the right-hand side of
Eq. �2� are over the phase space of allowed three-phonon
processes determined by the kinematic constraints �Eq. �1��.

The three-phonon-scattering rates, W�����
� , determined

from Fermi’s golden rule, are

W�����
� =

�	

4N

�n0� + 1��n0�� + 1/2 � 1/2�n0��

��������


	����,��,���	2���� � ��’ − ���� . �3�

Here, N is the number of SL unit cells and the delta function
ensures energy conservation. The phonon frequencies, 
���,
are determined by diagonalizing the dynamical matrix,
whose construction will be discussed in the next section. The
three-phonon-scattering matrix elements, ���� ,�� ,���,
which measure the strength of each scattering event, are

��j,q; j�,q�; j�,q�� = �
�

�
����

�
����

�
��

����0�,����,�����


eiq�·R�’eiq�·R�’’
e�

j �q�e��’
j� �q��e��’’

j� �q��
�M�M��M��

.

�4�

Here, R� is a lattice vector in the �th SL unit cell, � specifies
an atom in this cell whose mass is M�, and , �, and � are
Cartesian components. ����0� ,���� ,����� is the third or-
der anharmonic force constant for the indicated triplet of
atoms, and the es are phonon eigenvectors.

We have solved exactly the phonon Boltzmann equation
�Eq. �2�� for the nonequilibrium distribution functions 
���
employing an iterative approach, which is described in detail
in Refs. 20–23. These are used to calculate the phonon
thermal-conductivity tensor, ��, which relates an applied
temperature gradient in the � direction to the resulting heat
current per unit area in the  direction through Fourier’s law:
J=−�����T /�x�. Here, �� can be expressed as

�� = �
�

C�v�v�����, �5�

where C�=kB���� /kBT�2n0��n0�+1� is the contribution per
mode �q , j� to the specific heat and the scattering times, ���,
are directly related to ��.20–23

The only inputs to this Boltzmann transport approach are
the harmonic and anharmonic interatomic force constants
�IFCs�. The harmonic IFCs are needed to calculate the pho-
non frequencies and eigenvectors while the anharmonic IFCs
are required for the evaluation of the three-phonon matrix
elements in Eq. �4�. Determination of these IFCs is discussed
in the next section.

III. HARMONIC AND ANHARMONIC INTERATOMIC
FORCE CONSTANTS FOR SLs

We use an adiabatic bond charge �ABC� model17,18 to
calculate the SL phonon dispersions. The ABC model has
been shown to provide excellent fits to experimental disper-
sion curves for a large number of semiconductors using a
small number of fit parameters �four for diamond structure
and six for zinc-blende structure�. In the ABC model, point
bond charges �bc�, placed between each pair of ions, move
adiabatically to model the bonding electrons. There are four
main interactions: �a� the central potential interaction be-
tween each ion and its four nearest-neighbor ions �ion-ion�,
�b� the central potential interaction between each ion and its
four nearest-neighbor bond charges �ion-bc�, �c� the bond-
bending interaction between pairs of bond charges and their
shared ion �bc-bc�, and �d� the Coulomb interaction between
all ions, between ions and bond charges, and between all
bond charges. The first three interactions are short-range; the
last is long-range. In zinc-blende materials, for �b� cation-bc
and anion-bc interactions are taken to be distinct, as are �c�
bc-cation-bc and bc-anion-bc interactions. Also, a direct cen-
tral potential interaction is included between bond charges.18

We consider a SL based on a diamond structure and lattice
constant, . The SL axis is oriented along the �001� direction.
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A coordinate system is chosen with x and y axes along �110�
and �1̄10� directions �rotated by 45° from the cubic �100� and
�010� directions�, and z axis along �001�. In this coordinate
system, the atoms in each plane perpendicular to the �001�
direction reside on square lattices of side h1=a /�2 and the
x-y coordinates of the atoms repeat every four planes along
the �001� direction. We consider SL unit cells containing 2N
atoms and 4N bond charges, with N being even. Thus, the
unit cell for a 2
2 Si/Ge �001� SL contains silicon atoms at
locations, �0,0,0� and �h1 /2,0 ,a /4� followed by germanium
atoms at �h1 /2,−h1 /2,a /2� and �0,−h1 /2,3a /4� with the
eight bond charges placed midway between pairs of atoms.
The SL unit cell is rectangular with dimension h1
h1
a,
twice the size of an fcc unit cell. The corresponding first
Brillouin zone is also rectangular with dimension 2	 /h1

2	 /h1
2	 /a.

The SL dynamical matrix has size 18N
18N and can be
written as17

D�����,q� = D�
�SR�����,q� + D�

�C�����,q� , �6�

where the short-range �SR� part is

D�
�SR�����,q� = �

��

��
�SR��0�,�����


exp
− iq · �x�0�� − x�������� , �7�

and ��
�SR��0� ,����� contains the combination of harmonic

IFCs defined in �a�, �b�, and �c� above. The Coulombic part
of the dynamical matrix, D�

�C����� ,q�, is evaluated using the
Ewald transformation.24 A brief discussion of these IFCs is
included in the Appendix. More detailed descriptions of the
ABC model can be found in Refs. 17 and 18.

In the ABC model, the bond charge masses are taken to
vanish, leading to a renormalized dynamical matrix for the
ions,

D�ren� = D�ion-ion� − D�ion-bc�†�D�bc-bc��−1D�ion-bc�, �8�

where the Ds are the ion-ion, ion-bc, and bc-bc parts of the
dynamical matrix in Eq. �6�. The phonon frequencies � j�q�
and eigenvectors êj�q� are determined by diagonalizing the
6N
6N eigenvalue equation,

�
��,�

1

�M�M��

D�
�ren�����,q�e����q� = �2�q�e��q� . �9�

For the anharmonic IFCs appearing in Eq. �4�, we take
only nearest-neighbor central potential third-order anhar-
monic interactions between ions. This introduces only one
additional parameter, �ion-ion� , which appears in Eq. �A6�. The
anharmonic IFCs are chosen by requiring that the calculated
room-temperature lattice thermal conductivity for the bulk
material of either constituent of the SL must match the cor-
responding measured lattice thermal conductivity. We choose
for �ion-ion� the values −43.8, −36.0, and −29.6 for Si, Ge, and
GaAs in units of eV /Å3. This gives calculated room-
temperature lattice thermal conductivities of 160.4, 68.9, and
45.9 W/m-K, respectively, in good agreement with the cor-

responding measured values in Refs. 25–27. For AlAs, the
thermal conductivity is not well characterized so we take
�ion-ion� to be the same as that for GaAs.

IV. RESULTS AND DISCUSSION

We first consider the calculated lattice thermal conductiv-
ity of Si/Ge-based short-period SLs. All results are scaled
with reference to a hypothetical template material whose har-
monic and anharmonic IFCs, as well as the atomic masses,
are taken to be the geometric averages of those for bulk Si
and Ge: Mt=�MSiMGe with MGe=72.64 and MSi=28.09. The
SL is then generated by modifying the constituent atomic
masses, M1 and M2, along the �001� SL axis. These masses
are chosen so that M1 �M2� increases to fMt �decreases to
Mt / f� with f �1, in such a way that their geometric mean
remains equal to the template mass: �M1M2=Mt.

We first investigate the dependence of �SL
�i� of Si/Ge-based

short-period SLs on the mass ratio of the constituent atoms,
M1 /M2. Figure 1 displays the calculated �SL

�i� , scaled by that
of the template material, �t

�i�, as a function of M1 /M2, for
1
1, 2
2, and 4
4 period SLs. The dashed lines show the
results for the CRTA while the solid lines are those obtained
from the full iterative approach. For the CRTA, �SL

�i� de-
creases with increasing mass ratio for all SL periods. As
M1 /M2 increases, the heat-carrying acoustic branches be-
come flatter, which results in a lowering of the average group
velocity and frequencies in these branches, and a consequent
lowering of �SL

�i� . This effect becomes more pronounced with
increasing SL periods. The thin vertical line highlights this
behavior for the Si/Ge SL �where M1=MGe and M2=MSi�.

The full calculations �solid lines� exhibit more modest
decreases in �SL

�i� than the CRTA. This behavior reflects the
decrease in the phase space for three-phonon scattering that

0.1
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FIG. 1. Calculated intrinsic lattice thermal conductivity �SL
�i� of

1
1, 2
2, and 4
4 Si/Ge-based SLs as a function of the mass
ratio of constituent atoms, M1 /M2. The dashed lines are for the
CRTA while the solid lines are obtained from the full calculation.
The thin vertical line indicates the Ge/Si mass ratio.
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occurs for increasing M1 /M2. The three-phonon phase space
is dictated by the kinematic constraints in Eq. �1�. The flat-
tening of the acoustic branches that occurs with increasing
M1 /M2 makes these constraints more difficult to satisfy. The
corresponding reduction in the three-phonon-scattering rates
produces increased scattering times, ��, in Eq. �5� and hence
larger �SL

�i� compared to the CRTA case. It is interesting that
�SL

�i� /�t
�i� for the 2
2 and 4
4 SLs saturate for large mass

ratios at values significantly larger than the order-of-
magnitude reductions in �SL

�i� , which have been predicted to
occur from calculations based on the CRTA and simple mod-
els for the phonon dispersions.13,14

For the 1
1 SL the effect of the phase-space reduction is
strong enough to raise �SL

�i� above the template value. This
can be understood as follows. The 1
1 SL along the �001�
direction is, in fact, just a zinc-blende structure with Si and
Ge being the basis atoms. It has been pointed out
previously15 that three-phonon scattering in zinc-blende ma-
terials is reduced with increasing M1 /M2 because of the in-
creased gap between acoustic and optic modes that freezes
out triplet scattering channels involving acoustic-optic pho-
non combinations.28 This reduced scattering causes the ob-
served increase in �SL

�i� above the template value for the 1

1 SL.

Table I lists the ratio �SL
�i� /�t

�i� for the Si/Ge case �M1
=MGe and M2=MSi� for different N
N SLs using both the
CRTA �first row� and full iterative �second row� calculations.
Note the higher values of �SL

�i� /�t
�i� for the full solution over

the CRTA for all cases. Also, the magnitude of the reduction
in �SL

�i� /�t
�i� decreases with increasing SL period, suggestive

of the formation of a minimum, as has been observed
experimentally.29 CPU time and memory constraints have
precluded our consideration of larger period SLs to verify
this behavior.

To further illustrate the interplay between the flattening of
the SL dispersions and the three-phonon scattering that oc-
curs with increasing M1 /M2, we plot in Fig. 2 the log of the
square of the three-phonon matrix elements, 	�	2, for a 4

4 Si/Ge-based SL versus the number of energy and
momentum-conserving scattering events obtained from our
three-phonon phase-space search algorithm for a typical den-
sity of q points in the SL Brillouin zone. The solid line is for
the template case, M1=M2=Mt, the crosses are for a slightly
larger value, M1 /M2=1.001, the dotted line is for M1 /M2
=1.1, and the open squares are for the Si/Ge case M1 /M2
=2.58. Consider first the template case, which exhibits a
clearly separated two-peak structure. The smaller right peak
corresponds to events that provide a contribution to the
three-phonon-scattering rates in Eq. �3�, whereas the large
left peak corresponds to the mini-umklapp processes that are
unique to the SL.19 These mini-umklapp events are many

orders of magnitude smaller than the right peak and conse-
quently contribute nothing to the scattering rates. For this
template case �M1=M2=Mt�, the SL is equivalent to a bulk
lattice with diamond structure and so the scattering strength
of the mini-umklapp processes must vanish in order that the
bulk thermal conductivity, �t

�i�, is recovered. This is observed
in Fig. 2. Increasing the mass ratio from 1 to 1.001, causes
the mini-umklapp peak to shift well to the right as these
events now begin to contribute to the scattering rates. Further
increase of the mass ratio to 1.1 produces the single strong
right peak �dotted line in Fig. 2�. The absolute number of
scattering events that contribute to �SL

�i� is now significantly
larger than in the M1 /M2=1 case. However, there is only a
very small decrease in �SL

�i� because of the overall decreased
magnitudes of 	�	2, which manifest themselves as a shift to
the left of the contributing peak. As the SL period is in-
creased, the proportion of the total scattering events that are
mini-umklapp processes increases rapidly. However the be-
havior remains, as discussed above.

As the mass ratio is increased further from 1.1 to 2.58
�open squares�, the number of scattering events is strongly
suppressed while the peak location is only slightly reduced.
This suppression reflects the decreased three-phonon phase
space for the SL with increasing M1 /M2, which, as discussed
above, acts to raise �SL

�i� .
In a previous calculation,15 we investigated the behavior

of �SL
�i� /�t

�i� using a Keating model for the phonon dispersions
and anharmonic forces.16 This model includes only central
and bond-bending interactions between nearest-neighbor
ions. The qualitative behavior obtained was similar to that
discussed above. However, to assess the importance of accu-
rately representing the phonon dispersions, we now compare
directly �SL

�i� /�t
�i� obtained from the ABC model and the Keat-

ing model. Figure 3 shows the calculated phonon dispersions

TABLE I. Comparison of the calculated �SL
�i� /�t

�i� from the CRTA
and full approach for 1
1, 2
2, 4
4, and 8
8 Si/Ge SLs.

1
1 2
2 4
4 8
8

CRTA 0.63 0.42 0.19 0.14

Full solution 1.42 0.59 0.30 0.20
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FIG. 2. The log of the square of the three-phonon matrix ele-
ments, 	�	2, scaled by the maximum value found for all events,
	�max	2, for a 4
4 Si/Ge-based SL versus the number of energy
and momentum-conserving scattering events. The solid line is for
M1=M2, the crosses are for M1=1.001M2, the dotted line is for
M1=1.1M2, and open squares are for M1=MGe and M2=MSi.

A. WARD AND D. A. BROIDO PHYSICAL REVIEW B 77, 245328 �2008�

245328-4



for the two models for bulk Si compared with the experimen-
tal data.30 It is evident that the TA branches and the optic
branches are represented more accurately using the ABC
model. In particular, the Keating model significantly overes-
timates the TA phonon frequencies for large wave vectors.

As noted above, increasing the mass ratio for the SL flat-
tens the acoustic phonon dispersions, lowering the average
group velocity. Since the Keating model has less dispersive
acoustic phonon branches, increasing M1 /M2 produces an
unrealistically strong reduction in �SL

�i� . In contrast, for the
ABC model, the bulk TA branches are already flat over a
significant fraction of the Brillouin zone. The effect on TA
branch flattening from increasing M1 /M2 is therefore less
pronounced, leading to higher overall values of �SL

�i� /�t
�i� for

the ABC model compared to those obtained from the Keating
model. This behavior is illustrated in Fig. 4.

For real SL structures the lattice thermal conductivity,
�SL, is determined primarily by a combination of the part due
to intrinsic �three-phonon� scattering, �SL

�i� , as described
above, and by the part due to extrinsic phonon scattering
from the SL interfaces, �SL

�e�. Direct calculations of �SL
�e� are

typically hindered by lack of information about the sample-
dependent interface quality. The accurate calculations pre-
sented here allow us to investigate the relative strength of
�SL

�i� and �SL
�e�. It is reasonable to expect that for short-period

SLs, the interface scattering will be quite strong as mono-
layer fluctuations represent a significant fraction of the SL
period. Recently calculations of �SL

�i� have been performed for
GaAs/AlAs SLs within the CRTA using a rigid-ion model,31

which accurately represents the phonon dispersions. That
work found roughly a threefold reduction in the room tem-
perature �SL

�i� of 3
3 SLs compared to bulk GaAs and it
concluded that this number represented an upper bound if the
phonon lifetime is reduced by the mini-umklapp scattering,
as suggested by Ren and Dow.19 The measured room-
temperature lattice thermal conductivity, �SL, for 3
3
GaAs/AlAs SLs was found to be reduced by a factor of about
seven compared to bulk GaAs.4 Assuming that Matheissen’s
rule holds: 1 /�SL1 /�SL

�i� +1 /�SL
�e�, the CRTA results from

Ref. 31 suggest that the intrinsic and extrinsic contributions
are about the same. This result is surprising because, as
pointed out above, we expect the extrinsic contribution to
dominate the behavior of �SL.

We have calculated �SL
�i� for N
N GaAs/AlAs SLs �Ref.

32� using the approach presented here. We find that the pho-
non lifetimes are in fact increased compared to bulk GaAs.
As for the Si/Ge case, this occurs because the enhancement
resulting from the reduced three-phonon phase space out-
weighs the decrease from the added mini-umklapp scatter-
ing. Our calculated room temperature �SL

�i� for 1
1, 2
2,
and 3
3 SLs are: 36.8, 27.4, and 26.6 W/m-K, respectively.
Thus, for the 3
3 SL we find a reduction of 1.7, about half
of that found in Ref. 32. From Matheissen’s rule, this gives a
reduction due to extrinsic phonon scattering that is roughly
three times larger than that due to intrinsic scattering, a result
that is qualitatively consistent with our expectations.

Figure 5 highlights the contrast between the results from
our full calculation and the CRTA results. The dotted,
dashed, and solid lines in Fig. 5 show our calculated �SL

�i� for
1
1, 2
2, and 3
3 SLs, respectively, as a function of
temperature. The CRTA results at 100, 200, and 300 K for
2
2 and 3
3 SLs �Ref. 31� are labeled by the solid tri-
angles and open squares. Also shown are the measured lat-
tice thermal conductivities of bulk GaAs �Ref. 27� �solid
circles�, and the 1
1 �plusses�, 2
2 �crosses�, and 3
3
�open triangles� GaAs/AlAs SLs.4 There are several points to
notice. First, the temperature dependence of the calculated
SL thermal conductivities is quite similar to that for bulk
GaAs. This is true because the GaAs samples are high qual-
ity so that three-phonon scattering is dominant. Conversely,
the GaAs/AlAs SLs show a significantly different depen-
dence on the temperature.

Second, the calculated �SL
�i� values obtained from our ap-

proach show only a modest reduction compared to those of
bulk GaAs by factors of 1.2 for 1
1 SLs, and 1.7 for 2
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2 and 3
3 SLs over the full temperature range. On the
other hand, the experimental values from Ref. 4 are signifi-
cantly lower than the bulk GaAs values. This fact combined
with the different measured temperature dependence sug-
gests that the dominant scattering mechanism in these SLs is
extrinsic and provided by interface scattering of phonons.
This is consistent with the rough interfaces expected for
short-period SLs and with the results of molecular-dynamics
simulations.33

In contrast with the above finding, the CRTA results show
that the intrinsic and extrinsic scattering mechanisms are ap-
proximately of equal importance at room temperature, as dis-
cussed above. This stark difference highlights the importance
of using the rigorous approach presented in our manuscript
in obtaining quantitatively and qualitatively significant re-
sults.

V. SUMMARY AND CONCLUSIONS

Using an accurate description of phonon dispersions and
an empirical model for anharmonic scattering, the intrinsic
lattice thermal conductivity, �SL

�i� , of Si/Ge-based and GaAs/
AlAs SLs has been calculated in an exact solution of the
Boltzmann transport equation for phonons. Decreases in �SL

�i�

occurred with increasing mass ratio of the constituent atoms
and increasing SL periods. However, for both SL systems
considered, the decreases in �SL

�i� are not as large as observed
using constant relaxation-time approximations and simple
phonon-dispersion models. This is explained by the decrease
in the phase space for three-phonon scattering and the inclu-
sion of accurate descriptions of the heat carrying acoustic
branches. The approach presented here has been used to in-
directly extract the extrinsic contribution, �SL

�e�, to the thermal
conductivity of GaAs/AlAs SLs. A more significant role for

interface scattering is found than predicted from a constant
relaxation-time approach31 in accordance with physical ex-
pectations.

We note finally that for a given material system and su-
perlattice structure, the extrinsic contribution to the thermal
conductivity of SLs can vary widely from sample to sample
while the intrinsic contribution is fixed. The accurate ap-
proach developed here can then provide a useful baseline
from which the significance of phonon interface scattering
and hence SL quality can be evaluated. With continuing im-
provements in materials fabrication technology, SL interface
quality will likely improve, making it even more important
to have an accurate theoretical approach to calculate �SL

�i� .
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APPENDIX: THE ABCM FOR [001] Si/Ge
AND GaAs/AlAs SLs

For direct central potential interactions between two basis
particles, the harmonic force constants are

�� = −
XX�

r0
2 ��� −

��

r0
� − ��

��

r0
, �A1�

where r0 is the equilibrium distance between the two par-
ticles, X is the th component of this distance, and �� and
�� are the first and second derivatives of the central potential
evaluated at the equilibrium distance. The ion-bc force con-
stants arising from the bond-bending interaction16,17 is

��
�bb��ion �,bc i� = −

�k
���

a2 �
j�i

Xj�Xi� + Xj�� , �A2�

where a is the lattice constant and �k
��� is the Keating IFC

that measures the strength of the bc-ion-bc bond-bending
forces with central ion labeled by �=1, 2. In the transformed
coordinate system of the SL, the ion 1-bc force-constant ma-
trix describing the direct interaction between ion 1 at �0,0,0�
and bc 5 at �h1 /4,0 ,a /8�, using Eq. �A1�, is obtained as

�i−bc��1,�5� = − �1 + �1 0 �2�1

0 1 − �1 0

�2�1 0 1
� ,

1 = 1
3�i−bc��1� + 2

3�i−bc��1� /r0 + 1
2�k

�1�,

�1 = 1
3�i−bc��1� − 1

3�i−bc
�1� /r0 − 1

2�k
�1�. �A3�

Force constant matrices for ion 1, interacting with its other
three nearest-neighbor bc, are obtained in a similar manner.
The form of the ion-ion matrices is the same with force con-
stants � and �� replacing 1 and �1. For the bond-bending

10

100

100 200

T
h

e
rm

a
l
C

o
n

d
u

c
ti
v
it
y

(W
/m

-K
)

Temperature (K)

200

300

FIG. 5. �SL
�i� for 1
1 �dotted line�, 2
2 �dashed line�, and 3


3 �solid line� GaAs/AlAs SLs as a function of temperature com-
pared to the CRTA results for 2
2 �solid triangles� and 3
3 �open
squares� SLs, and to measured lattice thermal conductivities of bulk
GaAs �solid circles�, as well as measurements for 1
1 �plusses�,
2
2 �crosses�, and 3
3 �open triangles� GaAs/AlAs SLs �Ref. 4�.
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interaction with central ion �=1, the force constants for bc i
and bc j are16,17

��
�bb��i, j� = −

�k
���

a2 XjXi�. �A4�

The IFC matrix between bc 5 and bc 6 �at �−h1 /4,0 ,a /8�� is

�bc−bc��5,�6� = − ��1 + �1 0 �2�1

0 �1 − �1 0

− �2�1 0 �1
� ,

�1 = �1 = �k
�1�/4 + �1�/2, �1 = − �1 = �k

�1�/4,

�1� = − �2� = ��k
�2� − �k

�1��/8. �A5�

In Si/Ge-based SLs, the atoms have equal charge so 1=2
�, etc. Also, we take the geometric average of the har-
monic IFCs defined for each bulk material: =�SiGe. For
the GaAs/AlAs SLs, we take separately the geometric aver-
age of the cation IFCs and anion IFCs: 1=�GaAl, 2
=As, etc.

For evaluation of Ewald transformations required to de-
termine the Coulomb force constants, sums over direct and
reciprocal-lattice shells are calculated where the number of
shells taken must be sufficient to achieve convergent results.
We find that the number of required shells increases with SL
period. For example, for a 2
2 Si/Ge SL, seven shells are
sufficient while for an 8
8 superlattice, 14 shells are re-
quired.

The nearest-neighbor anharmonic central ion-ion force
constants are obtained from34

��� = − �XX�X�

r0
3 ��� − 3

��

r0
+ 3

��

r0
2 �

+
1

r0
2��� −

��

r0
��X��� + X��� + X����� .

�A6�

Here, �� and �� are known from the ABC model while �� is
chosen so that the calculated room-temperature lattice ther-
mal conductivity of each bulk material considered matches
the corresponding measured values.
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