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We describe how a local nonequilibrium nuclear polarization can be generated and detected by electrical
means in a semiconductor quantum point contact device. We show that measurements of the nuclear-spin-
relaxation rate will provide clear signatures of the interaction mechanism underlying the “0.7” conductance
anomaly. Our analysis illustrates how nuclear-magnetic-resonance methods, which are used extensively to
study strongly correlated electron phases in bulk materials, can be made to play a similarly important role in
nanoscale devices.
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I. INTRODUCTION

The confinement of electrons to nanoscale regions in
semiconductor devices leads to the formation of low-
dimensional quantum systems, which are highly susceptible
to quantum fluctuations. Electron-electron interactions can
then have dramatic effects. Indeed, experimental studies of
nanoscale semiconductor devices have uncovered evidence
of many very interesting strong-correlation phenomena—
including the Kondo1 effect, spin-charge separation,2 and the
“0.7 effect.”3

The 0.7 effect refers to a series of anomalous features that
are observed in the conductance of quantum point contact
�QPC� devices.3,4 The anomalous conductance features ob-
served are believed to arise from electron-electron interac-
tions in the quasi-one-dimensional �1D� geometry of the
QPC, but the question of how interactions lead to these con-
ductance anomalies is hotly debated. Many theoretical mod-
els have been proposed to account for the observations:
including spontaneous spin polarization,5–8 the Kondo
effect,4,9,10 and the spin-incoherent Luttinger liquid.11 These
theories make similar predictions for the conductance, the
property that is usually measured, precluding a conclusive
experimental distinction between them.

In this paper, we show that the nature of the electronic
state responsible for the 0.7 effect can be uncovered through
a variant of nuclear-magnetic resonance �NMR�. NMR is a
very powerful tool that is widely used to study strongly cor-
related electronic phases in bulk materials. The very small
active volume in a QPC would make it extremely difficult to
perform a conventional NMR measurement, owing to the
small number of nuclei coupled to the electrons. Here we
describe how NMR can be performed on a QPC by generat-
ing and detecting a local nonequilibrium nuclear-spin polar-
ization. We then turn to discuss the nuclear-spin-relaxation
rate in the vicinity of the 0.7 effect. We show that different
interaction mechanisms that can lead to similar features in
conductance have very different effects on the nuclear-spin-
relaxation rate. We identify clear experimental signatures
which distinguish between different proposed scenarios for
the 0.7 effect. Our work shows how electrical manipulation
of local nuclear-spin polarization opens the possibility of
performing NMR in nanoscale electronic systems.

II. GENERATING AND DETECTING NUCLEAR SPIN
POLARIZATION

The local NMR scheme that we propose relies on the
possibility to generate a nonequilibrium nuclear-spin polar-
ization in the vicinity of a QPC. This can be achieved in
various ways using purely electrical means. Current-induced
breakdown of the �=2 /3 fractional quantum Hall state12 has
been used to create large local nuclear polarizations in
QPCs.13 Alternatively, a nonequilibrium nuclear polarization
can be achieved by the selective backscattering of the spin-
polarized edge states of the �=2 quantum Hall state;14–16 this
creates a region in which the edge states are out of spin
equilibrium and their relaxation leads to a local dynamic
nuclear-spin polarization. Simple gate geometries can be en-
visaged for which this nonequilibrium spin polarization is
placed at the center of a second point contact. In both these
methods the dynamic nuclear polarization is generated at
nonzero magnetic field, so its use in probing electron sys-
tems at low field would require a field sweep that is shorter
than the nuclear-spin equilibration time.17 A recent proposal
has shown that, through spin-orbit coupling, it is possible to
generate a local dynamic nuclear-spin polarization in a bi-
ased quantum wire at zero magnetic field.18

The presence of nuclear polarization in the vicinity of the
QPC can be detected by its effect on the two-terminal con-
ductance. The effect arises from the Overhauser shift of the
electronic Zeeman energy from hyperfine contact interac-
tions. For GaAs devices, even a small change in the nuclear
polarization can shift the Zeeman energy by a substantial
fraction of kBT, leading to a sizeable change in conductance
of the QPC. To illustrate the sensitivity of this resistive de-
tection scheme, we model the device by a quasi-1D wire
with Hamiltonian

H = �
s,k,�

��s +
�2k2

2m
+

�

2
g�BB�ĉnk�

† ĉnk� + As�
i

I�i · S��Ri� ,

�1�

where �s���y�s+1 /2� are the edges of the in-plane sub-
bands �we assume that the out-of-plane subband spacing ��z

is very large� and �=� are the spin polarizations. I�i is the
spin of nucleus i at location Ri, which is coupled to the
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electronic spin density S��r� via the hyperfine contact interac-
tion. The net electron Zeeman energy, with Overhauser shift,
is therefore

Ze � g�BB + Asnnuc�Iz� , �2�

where nnuc is the nuclear density. We neglect the nuclear
Zeeman energy, assuming it to be small compared to elec-
tronic energy scales. For quantitative estimates we choose
parameters for typical GaAs QPCs.19

The linear conductance of the quasi-1D wire is

G��,Z� =
e2

h
�
s,�

f��s + �Ze/2� , �3�

where f�z��	e�z−��/kBT+1
−1, T is the temperature, and � is
the chemical potential. Owing to the importance of electro-
static forces, a fixed gate voltage, V, on the QPC fixes the 1D
electron density in the channel, n=c�V−V0� /e �where c is
the capacitance per unit length and V0 the pinch-off voltage�.
Thus, the sensitivity of G to small changes in nuclear polar-
ization 	hence Ze �2�
 at fixed gate voltage can best be ex-
pressed by the derivative of G with respect to Ze at fixed
particle density, n.

Figure 1 shows ��G
�Ze

�n over a range of temperatures as a
function of G �which eliminates device-specific properties�.
The conductance is most sensitive to changes in Ze when G
is away from a quantized value. The conductance changes by
�0.01e2 /h when Ze changes by �kBT /10: for GaAs at T
=50 mK, this corresponds to a change in the fractional
nuclear polarization of 	Iz / �2I�
0.3%.

By monitoring the rate of change of the two-terminal con-
ductance, the nuclear-spin-relaxation rate, T1

−1, for nuclei in
the QPC may be measured. Nuclear-spin relaxation is domi-
nated by coupling to the electrons and is determined by their
low-frequency spin dynamics via21

T1
−1�R� =

As
2

2�2�
−





dt�S+�R,t�S−�R,0�� , �4�

where the angled brackets denote thermal and quantum av-
erages. Since there are many nuclei per electron �of the order
of 106� the gradual nuclear depolarization leads to a smooth
evolution of G over the time scale T1; this time is much
longer than electronic time scales �see below� so many elec-
trons pass through the QPC and contribute to the measure-
ment of G.

We shall calculate the nuclear-spin-relaxation rate for an
electron gas on the first conductance riser, 0�G�2e2 /h,22

where experiments show the appearance of the anomalous
conductance features of the 0.7 effect.3 We first calculate the
nuclear–spin-relaxation rate for a noninteracting electron gas
before turning to consider the effects of electron-electron in-
teractions within several simple theoretical models of the 0.7
effect.

III. NONINTERACTING 1D ELECTRON GAS

We consider a noninteracting electron gas described by
Eq. �1�. Restricting attention to the lowest subband �s=0�
and focusing on nuclei at the center of the quantum wire, we
find from Eq. �4�

T1
−1 = �0�

�Ze�/2


 f���	1 − f���

��2 + �Ze/2�2

d� , �5�

where

�0 �
2
As

2m

�3wy
2wz

2 �6�

is a characteristic rate and wywz is the root-mean-square
transverse area of the lowest subband. For a typical GaAs
QPC,19 �0
0.5 Hz. The value of �0 is very sensitive to the
value of wywz. Our main results, below, concern the depen-
dence of T1

−1 on gate voltage and temperature and are inde-
pendent of this overall scale.

In Fig. 2�a� we show the conductance G and relaxation
rate T1

−1 as a function of electron density �controlled by gate
voltage� for a small Zeeman energy �Ze�kBT�. There is a
maximum in T1

−1 close to the midpoint of the conductance
riser. Increasing the electronic Zeeman energy to Ze�kBT
	Fig. 2�b�
 leads to the emergence of a plateau at G=e2 /h;
this is accompanied by a suppression of the peak in T1

−1.
It is instructive to compare these results with the conven-

tional Korringa expression for the nuclear-spin-relaxation
rate of a metal, T1

−1��↑�↓T, where �↑,↓ are the densities of
states for the two spin species at the Fermi level. The Kor-
ringa expression applies when kBT��, which for the quan-
tum wire implies that G
2e2 /h. In this regime, we do find
that T1

−1� �1 /n2�T, consistent with the Korringa expression;
increasing the Zeeman energy leads to a small increase in
T1

−1, consistent with an expected increase in �↑�↓ at fixed n.
However, the Korringa expression does not account for the
most dramatic signatures in T1

−1. These occur on the conduc-
tance riser, 0�G�2e2 /h, where kBT��. In this regime, we
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FIG. 1. �Color online� The sensitivity of the QPC device to
small changes in the nuclear polarization at fixed gate voltage is
conveniently represented by �dG

dZe
�n. This is plotted as a function of

the conductance �which varies with gate voltage� for a noninteract-
ing electron gas with subband spacing ��y and Ze=0.03��y.
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find that T1
−1 increases more slowly than linear in T. An in-

crease in the Zeeman energy leads to a dramatic decrease in
the height of the peak in T1

−1; at the same time, the position
of the maximum shifts to lie in the regime e2 /h�G
�2e2 /h where both spin species are occupied 	compare
Figs. 2�a� and 2�b�
.

IV. EXCHANGE-ENHANCED SPIN SPLITTING

The importance of exchange-enhanced spin splitting was
recognized by Thomas et al.3 and has been explored theoreti-
cally by various authors.5 Reilly and co-workers6,7 provided
a simple phenomenological theory that can successfully re-
produce many features of the 0.7 effect. The electron gas is
assumed to experience a density-dependent exchange split-
ting, leading to an effective Zeeman energy,

Zeff = Ze + �n , �7�

where � is a phenomenological parameter. �We note that a
linear dependence of exchange energy on n is expected for
Coulomb interactions, with ��e2 /�. However, this model6,7

overlooks the possible collapse of the spin splitting at larger
densities, as found in some microscopic models.8� Treating
the system as a noninteracting gas with this exchange-
enhanced Zeeman splitting leads to the results shown in Fig.
2�c�, where � has been chosen to give conductance features
similar to those of the 0.7 effect.6 Comparing the results for
T1

−1 with those for noninteracting electrons at the same bare
Zeeman energy, Fig. 2�a�, one sees that the main effect of
exchange is a strong suppression of the peak in T1

−1. This is
consistent with the result discussed above that increasing the
Zeeman energy leads to a suppression of T1

−1. However, the
exchange enhancement of the Zeeman energy leads to a

qualitatively new feature: there are now two peaks in T1
−1 as

a function of density. At very small densities exchange inter-
actions are negligible and T1

−1 rises as for the noninteracting
gas with small Zeeman energy, Fig. 2�a�; at higher densities
the increase in exchange splitting at first causes a reduction
in T1, leading to a second peak similar to that for a large
Zeeman energy, Fig. 2�b�. The observation of a double-peak
structure in T1

−1 as a function of density �gate voltage� is a
clear signature of a density-dependent exchange-enhanced
spin splitting.

V. “KONDO” MODEL

Within the “Kondo” model for the 0.7 effect,4,9 one of the
electrons is assumed to become trapped in a quasi-bound
state and to behave as a spin-1/2 “impurity” exchange
coupled to the rest of the electron gas.9,10 This exchange
coupling, JK, leads to a low energy scale, the Kondo tem-
perature, kBTK��Fe−1/JK���F� 	���F� is the density of states at
the Fermi level
. For Ze�kBTK, which is the regime that we
shall consider here, the conductance for the QPC shows an
interesting temperature dependence, with a crossover from
G�2e2 /h for T�TK to G
2e2 /h for T�TK.4,9

This crossover should be accompanied by dramatic
changes in the nuclear-spin-relaxation rate. The nuclear-spin
relaxation in the QPC is dominated by the fluctuations of the
impurity spin.23 The fastest rate is for those nuclei located
close to the impurity, which are coupled to the impurity spin
with an energy scale Ad�As / �wxwywz�, where wxwywz is the
mean volume of the impurity. Relating Eq. �4� to the impu-
rity dynamical susceptibility, we can make use of known
results in limiting cases. For T�TK, the coupling of the im-
purity spin to the electron gas is relatively weak. Using the
results of Ref. 24 we find
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FIG. 2. �Color online� Conductance �top panels� and nuclear-spin-relaxation rate �bottom panels� for a quasi-1D electron gas on the first
conductance riser. �a� Noninteracting electron gas with small Zeeman energy, Ze=0.001��y. �b� Noninteracting electron gas with larger
Zeeman energy, Ze=0.05��y. �c� Electron gas with exchange-enhanced spin splitting 	Eq. �7�
 with Ze=0.001��y and �=0.1��y /n0. The
electron density n is in units of n0��m�y /
h. A typical quantum wire has subband spacing ��y =20 K �Ref. 20�, for which the illustrated
temperatures are T=40, 100, 200, and 400 mK.
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T1
−1 = 2

Ad
2S�S + 1�

3
��kBT�	JK���F�
2 , �8�

where S=1 /2 for the spin-1/2 impurity.25 For T�TK, the
Kondo singlet is well formed and the system behaves as a
local Fermi liquid. From Ref. 26, one then recovers a Kor-
ringa law for the nuclear-spin-relaxation rate with

T1
−1 =

2
�kBT�Ad
2

��gs�B�4 �imp
2 , �9�

where �imp is the static Kondo impurity susceptibility, which
is a universal function of T /TK and tends to a constant as
T→0.27 The nuclear-spin-relaxation rate is a nonmonotonic
function of T, passing through a maximum at T�TK with a
maximum rate of order

�Kondo 

Ad

2

�kBTK
=

As
2

�kBTK�wxwywz�2 . �10�

This nonmonotonic temperature dependence of T1
−1 is char-

acteristic of the Kondo physics. It is qualitatively distinct
from the case of noninteracting electrons or electrons with
exchange-enhanced Zeeman energy, for which T1

−1 increases
monotonically with T.

VI. SPIN-INCOHERENT LUTTINGER LIQUID

Finally, we consider the possibility that the electron sys-
tem in the QPC behaves as a strongly interacting 1D wire.
Strong repulsive interactions lead to pronounced local
charge-density wave order and a suppression of the exchange
interaction energy scale JLL, with JLL��F.11

At low temperatures T�JLL��F the system should be-
have as a Luttinger liquid. Nevertheless, since it is coupled
to Fermi liquid leads the conductance is G=2e2 /h and is
insensitive to the electron-electron interactions.28 Applying
the general approach of bosonization to the spin susceptibil-

ity of the repulsive 1D electron gas leads to the prediction29

that as T→0, T1
−1�TK�, with K��1 for repulsive interac-

tions. Thus, the nuclear-spin-relaxation rate is sensitive to the
formation of a Luttinger liquid.

As temperature is increased, the 1D electron gas enters
the regime of the “spin-incoherent” Luttinger liquid,11,30

JLL�kBT��F. The conductance is then expected11 to be G

e2 /h. The spin-incoherent Luttinger liquid is characterized
by an enhanced nuclear-spin-relaxation rate. This arises from
the existence of low-energy spin-flip excitations, of band-
width JLL, which decouple from the electronic motion. Treat-
ing the spin-flip excitations as a spin chain with lattice con-
stant 1 /n and exchange energy JLL, one finds for kBT�JLL

T1
−1 � �SILL �

IAs
2n2

�wy
2wz

2JLL

. �11�

Since JLL��F, the relaxation rate �11� is parametrically en-
hanced as compared to that for the noninteracting electron
gas �5�. In the spin-incoherent Luttinger liquid regime T1

−1 is
expected to be large and weakly temperature dependent.

In summary, we have shown how NMR methods can be
used to explore novel electronic phenomena in nanoscale
semiconductor devices and that measurements of 1 /T1 can
discriminate between different theoretical models of the 0.7
effect. We hope that this work will stimulate both experimen-
tal studies of nuclear-spin relaxation in QPCs, and theoretical
investigations of nuclear-spin relaxation within in more de-
tailed models of the 0.7 effect.
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