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The studies on quantum dots and rings containing 4�6 electrons reveal that the shapes of the systems have
great impact on the spin transitions of the ground states. For five-electron case, the different shapes lead to the
different transition processes in quantum dots and rings. For six-electron case, the ring confinement forbids the
spin transition, which really exists in dot confinement. The investigations on the angular momentum transitions
in magnetic fields show that the sensibility of the transitions to the size of the system depends remarkably on
the particle number. The four-electron case is almost size insensitive but the five-electron case has obvious size
dependence. It is also found that the behaviors of the few-electron entanglement in quantum dots and rings are
quite different. The entanglement entropies in quantum dots increase with the increase in the magnetic field but
exhibit Aharonov-Bohm oscillation patterns in narrow rings. The studies of the shape, size, and particle number
effects are important for understanding the liquid-to-crystal transitions, and may be helpful for the manipula-
tion of electronic states in quantum dots and rings.
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I. INTRODUCTION

The electronic structure of two-dimensional quantum dots
�QDs� has been a topic extensively studied in recent years
due to the great application potential of QDs in future quan-
tum electronics, spintronics, and quantum information de-
vices. The specific spin states of electrons and their manipu-
lations by magnetic and electric fields have been proposed
for basic qubit schemes1,2 for future quantum computation.
The particle number in QDs can be reduced precisely down
to a few electrons with highly controllable confinements, in-
teractions, and external fields. Even the Zeeman splitting of
electrons in magnetic fields can be precisely controlled in
recent experiments.3,4 Benefiting from the developments of
manufacturing and experimental techniques, the quantum
dots with different size and shape can be fabricated, and
exhibit various characters. Especially the ones with ringlike
geometry, namely quantum rings �QRs� �Refs. 5–7�, have
shown unique electronic and optical properties. The ringlike
geometry also makes the system suitable to investigate the
Aharonov-Bohm effect of the threading magnetic flux.8,9

Within the accurate manipulation of the electronic states
in future applications, the understanding of the size and
shape effects of QDs and QRs are important. Previous inves-
tigations have revealed that changing the size of the dots and
rings can lead to the transitions of the electronic states, and
the spin configurations of the systems. With the decrease in
the confinement, the electrons transform from delocalized
states with short-range liquidlike correlation to the localized
ones with crystal-like correlation.10–12 The spin of the ground
state and the electronic structures of low-lying states of both
one-dimensional �1D� and two-dimensional quantum rings
within the liquid-to-crystal transitions were also studied by
theoretical and numerical methods.13,14 The magnetic fields
can also lead to the transitions of electronic states in QDs
and QRs. For the two-dimensional parabolic QDs with rota-
tional symmetry, the crystal-like states have no broken sym-
metry in charge density so they are also referred to as rotat-
ing Wigner molecules �RWMs�.15–17 The trial wave functions

for RWMs were proposed based on the ideas of localized
Hartree-Fock orbits15,18 or composite fermion
crystallization.19–21 The few-electron spectra of QDs and
QRs with spins have also been understood with the idea of
rotational-vibrational states.22–24

For the system with small particle number, the exact di-
agonalization �ED� �Refs. 25–27� of the many-body Hamil-
tonian with exact interactions and the full consideration of
the spin degree of freedom is feasible, and it can give accu-
rate information of the wave functions. The spin configura-
tions of the ground state26 and the structures of excitation
spectra27 of few-electron QDs around some filling factors
have been analyzed in depth. In this work, we employ the
ED method to extend the previous studies of the ground-state
transitions of both QDs and QRs to five- and six-electron
systems, and also investigate the angular momentum transi-
tions in magnetic fields. We will mainly focus on the size and
shape effects of the systems with different particle numbers
to understand their behaviors in the liquid-to-crystal transi-
tions.

The correlation in many-particle states are interesting is-
sues in condensed-matter theory and are especially important
for the understanding of quantum phase transitions28 in mul-
tiparticle systems. The studies of entanglement, which means
nonlocal correlation among particles, are meaningful to fu-
ture quantum information and quantum computation devices.
The essential role of the entanglement in strong correlation
system such as fractional quantum Hall system has been dis-
cussed. Especially the entanglement properties of the Laugh-
lin wave functions were studied in detail.29 In large QDs and
QRs, the electronic states are strongly correlated. However,
the quantitative studies of the entanglement in few-electron
QDs and QRs are still limited. So in this work, we focus on
the size and shape effect of dots and rings on the entangle-
ment properties of different spin states in magnetic fields.

The remainder of the paper is organized as follows. In
Sec. II, we explain the model Hamiltonian of the two-
dimensional few-electron QDs and QRs, and introduce the
formula of the von Neumann entropy, which is used for mea-
suring the entanglement between identical particles. The
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shape effect on the spin transitions of five-electron and six-
electron QDs and QRs, the characters of the angular momen-
tum transitions of four-electron and five-electron states, and
their entanglement properties, are discussed in Sec. III, fol-
lowed by a summary in Sec. IV.

II. MODEL AND FORMULA

The Hamiltonian of a N-electron parabolic quantum dot
or quantum ring in a perpendicular magnetic field without
the Zeeman splitting is written as

H = �
i=1

N � 1

2m
�P̂i + eA� �2 +

1

2
me

��0
2�ri − R0�2�

+ �
i�j

e2

4��0�r�r�i − r� j�
. �1�

The first and second parts of Eq. �1� are the single-particle
and interaction energies of the electrons, respectively. �0 is

the characteristic frequency of the radial confinement. A� is
the vector potential of the magnetic field. me

� and �r are the
effective mass and relative static dielectric constant, which
are 0.067me and 12.4 for GaAs, respectively. R0 is the mean
radius of the ring. For parabolic quantum dots, R0 is set to
zero and the radius of the dot is defined as R
= �2� /me

��0�1 / 2, which is just �2 times of characteristic
length l= �� /me

��0�1 / 2 of QDs.
The general form of the single-particle eigenstates of Eq.

�1� is

�nm�r�� = Rnm�r��exp�im�� , �2�

where n=0,1 ,2. . . and m=0, �1, �2. . . are the radial and
the orbital angular momentum quantum numbers, respec-
tively. The radial part Rnm�r�� can be obtained by the series-
expansion method.30,31 Then we can use the obtained single-
particle eigenstates to construct the antisymmetric many-
particle bases of the Hamiltonian. In the second quantization
scheme, the Hamiltonian 	Eq. �1�
 can be written as

H = �
�
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†a� +
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2 �
�
��
�

g��
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† a
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e2

4�	�r�1 − r�2�
�
�r�2����r�1� ,

where a�
†�a�� is the creation �annihilation� operator of the

single-particle state �� and 	� is its energy. � represents the
set of the radial quantum number n and orbital angular mo-
mentum quantum number m. Then Eq. �3� can be diagonal-
ized in the space spanned by the many-particle bases to ob-
tain the energies EL,S and the corresponding wave functions
� of the few-electron states. Without spin-orbit coupling, the
total angular momentum L, total spin S, and its z component
Sz are good quantum numbers. Of course, the states with
same L and S but different Sz are degenerate due to the ab-
sence of the Zeeman splitting. So we can set Sz to the allow-

able smallest value without losing generality. It is worth-
while to point out that the series-expansion method is
applicable not only to the parabolic confinement but also to
other confinement forms, for which analytic single-particle
bases cannot be obtained. In our calculations, the single-
particle bases are not restricted in the lowest Landau level;
we can then achieve exact few-electron states within the
whole range of the magnetic field.

In this paper, we also investigate the behaviors of en-
tanglement of the few-electron states. The “correlation en-
tropy” �Refs. 32 and 33� has been suggested to be the corre-
lation measure. We employ the von Neumann entropy34 to
quantify the nonlocal correlation, namely entanglement
among particles. Although it is still an open problem on how
to quantify all the entanglement properties of an identical-
particle state, the von Neumann entropy can indeed give the
entanglement information between one particle and another
part of the system. In the following discussions, we employ a
modified form of the von Neumann entropy as29

Sent = − tr	� f ln � f
 − ln N , �4�

where N is the particle number of the system and � f is the
single-particle reduced density matrix

��

f = ���a�

†a
��
 . �5�

With such modification, the entropy, due to the indistinguish-
ability of the particles, is subtracted. The lower limit values
of entropies for the system with different particle numbers
are all equal to zero, which corresponds to the unentangled
states. Here, the term “unentangled states” means that the
states can be expressed as a single Slater determinant.

III. RESULTS AND DISCUSSIONS

For convenience, we define the ratio 
=W /R0 to describe
the shape of quantum rings, where R0 and W are the mean
radius and the width of the ring. For a parabolic confinement,
the width of the ring13 is defined as W= �2� /me

��0�1 / 2. Then
the smaller 
 is, the narrower the ring becomes. It should be
pointed out that the definition of W here is actually the same
as the R defined above but slightly differ from the definition
of mean width in some other literatures.35

A. Spin transition of the ground state

In the spin transitions of few-electron quantum dots and
rings, the shape effects are important. In Fig. 1 we show the
shape and size dependences of the energy differences be-
tween the four lowest states in five-electron quantum dots
and rings. The spin transition in two-dimensional quantum
rings is demonstrated by our studies, as shown in Fig. 1. For
quantum rings with small radii, the ground state is L=1, S
=0.5. With the increase of the radius, the angular momentum
of the ground state will change to zero, namely the ground
state will become the one with L=0, S=0.5. If the radius
increases further, the spin transition will take place, the
ground state will become the one with L=0, S=2.5. For the
two-dimensional rings with different shapes, the patterns of
the spin transitions are different. As shown in Fig. 1, with the
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increase of 
, the region where the state L=0, S=0.5 be-
comes the ground state is reduced. Previous study on the 1D
quantum rings has suggested the similar spin transition of the
five-electron ground state and has also convinced the angular
momentum transition in the subspace with certain total spin,
with the increasing radius. It has given an understanding to
the spin rules of large 1D rings within the multispin-
exchange model.14

Unlike the two-step transition of the ground state in quan-
tum rings, the spin and angular momentum transitions are
simultaneous in the quantum dot, namely the ground state
changes from L=1, S=0.5 to L=0, S=2.5 directly. The
state L=0, S=0.5 in quantum dots has higher energy all
along. It means that the energy of the fully-polarized five-
electron state is lowered more quickly in quantum dots than
that in quantum rings. The reason for such difference lies in
the following fact: The radial distribution of the wave func-
tion in the quantum dot changes dramatically when the ra-
dius increases. On the contrary, the change is smaller in
quantum rings, especially in narrow ones, because of the
strong radial confinement. So for quantum dots, the fully-
polarized state can easily lower its interaction energy by oc-
cupying the single-particle orbits with higher radial quantum
numbers, as well as the angular momentum quantum num-
bers, when the radius changes. However, for narrow quantum
rings, such decrease of the energy can be achieved almost
only by occupying the higher angle orbits.

In Fig. 2 we show the spin transitions of the quantum dots
with different particle numbers. For three-electron case, there
is the transition of the ground state from L=1, S=0.5 to L
=0, S=1.5 with the increase of the radius. For four-electron
case, there is no spin transition caused by the change of the
dot’s size. For three-electron and four-electron cases, the
situations in quantum rings are similar to that in dots. The
situation of the five-electron case has been discussed above.

For six-electron quantum dots, we find the interesting re-
sult that there is similar spin transition as that of the five-

electron case, namely �L ,S�= �0,0�→ �0,2� vs �1,0.5�
→ �0,2.5�. On the contrary, there is no such correspondence
between six-electron and five-electron quantum rings. For
the six-electron rings with 
=1.0, the energy of the state S
=0 is lower than that of the state S=2, even when the radius
is larger than 200 nm. Such difference originates from the
characters of the spatial distributions of the electrons in
quantum dots and rings, or more generally speaking, the to-
pology of the two nanostructures. For six-electron quantum
dots, it is known that spatial distribution of the electrons can
form a shell structure with a core inside �see the inset of Fig.
2 as an example�. In the shell, there are nearly five electrons
with pentagonal correlation. Such distribution makes the
character of the six-electron dots similar to the five-electron
ones since the effect of the core on the shell also becomes
weak with the increase of the dot’s size. It is worthwhile to
point out that the variational quantum Monte Carlo study10

has also revealed a polarization effect in quantum dots.
The effect occurs with the confinement strength ��0
�0.28 meV �with our definition of R, it corresponds to R
�64 nm�, which is very close to the characteristic size of
the spin transition obtained by our ED results.

For quantum rings, the structure with core inside is for-
bidden by the ringlike confinement or the topology �also see
the typical electronic density distribution of the quantum ring
in Fig. 2�. So there is no similarity between the spin transi-
tion of the six-electron and five-electron quantum rings. In-
deed, for a small ring with the parabolic confinement, the
weak confinement may allow electrons to enter the central
area. Some more elaborate forms of confinement36,37 may
greatly depress such phenomenon. However, it will not affect
the above conclusion because the six-electron-spin transition
mainly takes place when the radius of the ring becomes large

FIG. 1. �Color online� Size dependence of the energy differ-
ences between the four lowest states of the five-electron quantum
rings with 	�a�–�c�
 different shapes and �d� the quantum dot. The
energy of the state �L ,S�= �1,0.5� is set to be zero �dashed lines�,
and the lines with �, �, and � correspond to the states �L ,S�
= �0,0.5� , �0,2.5�, and �1,1.5�, respectively.

FIG. 2. �Color online� For quantum dots, the energy differences
of three-electron E0,3/2−E1,1/2 ���, four-electron E0,0−E0,1 ���,
five-electron E0,5/2−E1,1/2 ���, and six-electron E0,2−E0,0 ��� as
functions of the radius of the dots. For quantum rings, the energy
differences of six-electron E0,2−E0,0 �
� as function of the mean
radius of the rings with 
=1.0. The electronic density distributions
of the six-electron state with L=0, S=2 in the quantum dot with
R=80 nm, and the quantum ring with R0=80 nm, 
=1.0 are
shown in the inset.
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enough. It is also worthwhile to note that the diffusion Monte
Carlo simulation also demonstrated that there are no spin
transitions in quasi-one-dimensional six-electron quantum
rings. However the variational quantum Monte Carlo method
suggested a spin transition for purely one-dimensional quan-
tum rings �see Refs. 11 and 12 for details�.

The spin configuration of the ground state in few-electron
QDs and QRs can be studied experimentally by electron-
transport measurements. A study on a small Si quantum dot38

has revealed that there is interesting spin transition between
the five-electron and six-electron ground states with �S
�S�N�−S�N−1�=3 /2. It is different from the one between
four-electron and five-electron cases, which has �S=1 /2.
The similar observation can be also anticipated for the GaAs
dots since the spins of four-electron, five-electron, and six-
electron ground states can be S=1, 1/2, and 2, respectively,
with appropriate sizes �R is about 65�75 nm for ideal para-
bolic dot, see Fig. 2�.

B. Angular momentum transitions and entanglement
in magnetic field

The shape and size of quantum dots and rings affect not
only the spin of the ground state but also the characters of
the few-electron states in magnetic field.

In Fig. 3, we show two typical energy-level structures of
the many-particle states of the four-electron quantum dot and
ring in magnetic fields. For the quantum dot with R
=40 nm, the states with different spins are clearly separated
and the energy spectra have no clear structures when the field
is small. The increase of the magnetic field makes the ener-
gies of the lowest states with different total spins increase
rapidly and form a narrow band. The emergence of such
structure in magnetic fields is a characteristic of few-electron
quantum dots and can be attributed to the formation of the
rotating Wigner molecules. The field leads to the crystalliza-
tion of the electrons. With the decreased overlapping of elec-
trons, the exchange energies of different spin states are de-
pressed totally. Then the energy differences between lowest
states with different total spins gradually disappear. For a
narrow quantum ring, as the one shown in Fig. 3�b�, the
formation of the narrow band in energy spectra is much more
notable and should be attributed to the strong confinement of
the ring. The increase of the energy caused by the field is
small since the confinement of the magnetic field is much
smaller than that of the ring.

Next we step into the angular momentum transitions in
the narrow band. The studies on the angular momentum tran-
sition rules of few-electron quantum dots in strong magnetic
fields have been made based on both theoretical and numeri-
cal methods. For four-electron case, the so-called “magic
number” �Refs. 22 and 23� of angular momenta of the states
S=0 are L=4k and 4k+2, those of the states S=1 are L
=4k and 4k�1, and those of the fully-polarized states are
L=4k+2, where k are arbitrary integers. The state whose
angular momentum and spin obey those rules can take place
in the transition sequences of the lowest states. Our calcula-
tions demonstrate that the angular momentum transitions in
four-electron quantum rings are in accordance with the

magic number rules introduced above. And for the rings with

=0.25, the transitions are almost size independent while the
results of the rings with R0=40 nm and R0=10 nm are
same. For quantum dots in strong magnetic fields, the tran-
sitions also obey the rules of the magic number but a few
states with certain angular momenta may be absent from the
transition sequences when the field is weak.

It should be emphasized that in order to study the magic
number of different spin states, we have ignored the Zeeman
splitting in Eq. �1�. There have been literatures discussing the
angular momentum transitions of ground states with the Zee-
man splitting. Then in strong magnetic fields, the angular
momentum transition of ground states will have a period of
�L=N �N�5�, which is in accordance with our results of the

FIG. 3. �Color online� Four-electron energy spectra of �a� the
quantum dot with R=40 nm and �b� the ring with R0=40 nm, 

=0.25 in magnetic fields. The black, red, and green lines correspond
to the energies of the states with total spin S=0, 1, and 2. Field
dependence of entanglement entropies of the lowest states with dif-
ferent spins of 	�c� and �e�
 the quantum dots and 	�d� and �f�
 the
quantum rings with R�R0�=40 and 10nm. For all rings, 
=0.25.
The black �, red �, and green � correspond to the states with S
=0, 1, and 2, respectively. The correspondence of the magic number
angular momentum and the total spin of four-electron states are
shown in the blank of subfigure �c�. The MDD state for the smaller
dot and the state with same L=6 for the larger dot are indicated in
subfigure �e� and �c�, respectively.
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fully-polarized states. For the case N�5, the transition will
have more complicated behaviors.39 �See also Refs. 16, 22,
and 39 for detailed theoretical and numerical analyses.�

Although the angular momentum transitions in QDs and
QRs are very similar, the characters of the entanglement en-
tropies of the four-electron quantum dots and rings are quite
different. In Fig. 3 we show the typical transitions of the
entanglement entropies of the lowest states with different
spins in the quantum dots and rings as functions of the mag-
netic field. For the quantum dots in strong magnetic fields
�strictly speaking, when the flux excess one quanta of mag-
netic flux�, no matter what the total spin is, the entanglement
entropies of the lowest states increase rapidly with the in-
crease of the field.

For a small dot such as the one in Fig. 3�e�, the change of
the entropies in small fields is not monotonic. The states with
different S have their own minimal values in their respective
fields. Taking the transition sequence of fully-polarized states
as an example, we find that the state with �L�=6, whose
filling factor is just equal to one, has the smallest entropy.
This state is also referred to the maximum density droplet
state �MDD� �Refs. 16, 40, and 41� in quantum dots and very
similar to the Laughlin wave function with filling factor �
=1. If the single-particle bases are restricted in the lowest
Landau level, the MDD with maximum Sz is just the Laugh-
lin state.27 Then it must be unentangled since the Laughlin
wave function with �=1 is just a single Slater determinant.29

It should be noticed that the entropy of the MDD state does
not equal to zero but almost equals to one in our calculation
because we take Sz=0 in our calculations for convenience.
For a large dot 	see Fig. 3�c� as an example
, the increase of
the entropies are monotonic even in the small field. For fully-
polarized states, the state with �L�=6 no longer has the small-
est entropy. It is due to this reason that the crystallization of
the electrons in the large dot is much more easier than that in
the small one. Then the crystallization makes the state devi-
ate remarkably from the MDD one.

For quantum rings, the increase of the entanglement en-
tropies caused by the field is much smaller than that in quan-
tum dots. Instead, the entropies exhibit apparent Aharonov-
Bohm oscillations 	see Figs. 3�d� and 3�f�
. It is due to this
reason that the effect of the magnetic field on quantum dots
is to make the electrons crystallized, which leads to the in-
crease of the entanglement. However, in narrow quantum
rings, the confinement of the ring is much stronger than that
of the magnetic field. Then the field can only contribute the
effect of the magnetic flux. It means that the states with
angular momenta L and L+N can almost have the same
single-particle orbital occupation except for a translation of
all occupied single-particle angular momentum orbits from m
to m+1. Such two states must have same entanglement en-
tropy since they have the same single-particle reduced den-
sity matrix.

We take the five-electron case as an example to discuss
the size effect of the ring on the angular momentum transi-
tions and entanglement of the lowest states with different
spins. In Figs. 4�c�–4�f� we show the magic number of an-
gular momenta and the entanglement of the corresponding
states of two quantum rings with different radii R0=10 and
40nm but same shape 
=0.25.

As discussed above, the angular momentum transitions of
the four-electron quantum rings are almost size independent
and the transition rules are in accordance with the results of
quantum dots. On the contrary, the five-electron angular mo-
mentum transitions depend on not only the shape but also the
size of the ring. For quantum dots, we find that, in strong
magnetic fields, the magic number of the five-electron states
S=1.5 are L�5k, where k are arbitrary integers. However, as
shown in Fig. 4�c�, our studies suggest that the angular mo-
menta of the lowest states with S=1.5 in the quantum ring
with R0=10 nm and 
=0.25 are only those L=5n�2. Only
for the rings with larger radius �see the result of the one with
R0=40 nm as an example�, the states L=5k�1 can take
place in the transition sequence. It is known that for the ring
with small radius, the confinement energy is important. Then
only the states whose single-particle orbital occupations have
lower orbital energy can be presented in the transition se-
quence of the lowest states. In small rings, for S=1.5, the
states L=5k�2 can have almost two electrons with opposite
spins occupy the single-particle orbit m=k 	see Fig. 5�a� as a
sketch
. Then those states have lower orbital energy than the
states L=5k�1, where the two electrons with opposite spins
mainly occupy m=k�1, as shown in Fig. 5�b�. For the ring
with larger radius, the weaker confinement makes the differ-
ence of the single-particle orbital energies decrease. So for
the ring with R0=40 nm, the states with L=5k�1 are no
longer absent 	see Fig. 4�d�
.

For the five-electron states with S=0.5 in strong magnetic
fields, the magic numbers for quantum dots can be succes-

FIG. 4. �Color online� 	�a� and �b�
 Magic number angular mo-
menta of the lowest five-electron states with different spins in quan-
tum dots with R=24 nm. Magic number angular momenta of the
lowest five-electron states with different spins and their field depen-
dence of the entanglement entropies in the quantum rings with �c�
and �e�: R0=10 nm, 
=0.25, and �d� and �f�: R0=40 nm, 
=0.25.
The black �, red �, and green � correspond to the states with S
=0.5, 1.5, and 2.5, respectively.
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sive integers. Similar to the case of S=1.5, there are also
regular absences of the magic number states in quantum
rings. However, at this time, the phenomenon of the absence
is just contrary to the case of S=1.5; the absent states are
those with L=5k�2 rather than L=5k�1. It is due to this
reason that the four electrons with two opposite spins in the
states L=5k�1 and S=0.5 are almost paired in two orbits
m=k and k�1, and the residual electron occupies m=k�1
	see Fig. 5�d�
. In the states L=5k�2, only two electrons are
paired in the orbit m=k, and the other three electrons occupy
m=k+1, k−1, and k�2, respectively. So the states L
=5k�2 have higher orbital energy and may be absent from
the transition sequence of small rings, as also shown in Fig.
4�c�. However, in the case of S=0.5, the orbital energy dif-
ference between the states L=5k�1 and 5k�2 is larger than
that in the case of S=1.5. It can be found that for S=0.5, the
absence of the states L=5k�2 is also true in small magnetic
fields even for the ring with R0=40 nm. Unlike the case of
S=1.5, the absence of the states L=5k�2 in the case of S
=0.5 only disappears in larger magnetic fields.

As mentioned above, for S=0.5, the states L=5k are also
the magic number states in quantum dots. In the quantum
ring with R0=40 nm, they are also absent from the transition
sequence when the field is small and gradually take place
with the increase of the field, which is similar to the situation
of the states L=5k�2.

It is worthwhile to point out that the phenomenon of the
absence of some magic number states from the transition
sequences is also true in quantum dots. For example, as
shown in Figs. 4�a� and 4�b� for the five-electron dot with
R=24 nm, the states with �L�=2,3 ,6 ,9 ,10,11,14,17,
18,20,22,23,25,29 are absent from the transition
sequence of S=0.5, and the states with �L�
=3,4 ,7 ,12,13,17,19,21,24,30 are absent from the se-
quence of S=1.5. For the ring with smaller radius, the ab-

sences are even more notable. There have been studies on the
phase diagram of QDs with different sizes in magnetic fields.
Our results, presented above, are in accordance with those in
Ref. 26, and the size of the QD in our Figs. 4�a� and 4�b�
corresponds to the dimensionless parameter ��1.7 there.
However, the relation between the absent magic number
states and the size of the dot is still an open problem.

We also show the entanglement entropies of the lowest
states of the five-electron quantum rings in Fig. 4. The oscil-
lations of the entanglement entropies in quantum rings with
small 
 are clear. And the absences of certain angular mo-
mentum states in quantum rings with different size lead to
the different patterns of the entropies. It is found that the
absent states in small fields have higher entanglement since
the absent states that have higher orbital energies also have
more complex single-particle orbit occupations.

IV. SUMMARY

To conclude, we have employed the exact diagonalization
and series-expansion method to investigate the shape and
size effects on the angular momentum and spin transitions,
and the entanglement properties in few-electron quantum
dots and rings.

Without the magnetic fields, changing the size of the five-
electron dots or rings can lead to the transition of the ground
state. For quantum dots, the spin transition �S :0.5→2.5�
is simultaneous with the angular momentum transition
�L :1→0�. However, for quantum rings, the transition takes
two steps: the angular momentum transition is completed
first and followed by the spin transition. For six-electron
quantum dots, there is a similar spin transition as the five-
electron case but it is not found for quantum rings. All those
differences originate from the difference of the shapes or the
topology of the two systems.

With magnetic fields for the narrow ring, the angular mo-
mentum transitions of four-electron lowest states are almost
size independent. However, the five-electron case is size sen-
sitive and the absence of certain angular momentum states
from the transition sequences in small rings can be under-
stood by inspecting the single-particle orbital occupation.
The shape and size of the system affect not only the spin and
angular momentum transitions but also the entanglement be-
haviors of the lowest states. In quantum dots, the crystalliza-
tion of the electrons is mainly caused by the field, which
results in the increasing entropies in strong magnetic fields.
However, for narrow quantum rings, the magnetic field can
almost only cause the AB oscillations of the entropies.
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FIG. 5. Sketches of the single-particle angular momentum oc-
cupations of five-electron states �a� L=5k+2, S=1.5, �b� L=5k
+1, S=1.5, �c� L=5k+2, S=0.5, and �d� L=5k+1, S=0.5 in a
narrow quantum ring. In the subfigures �a� and �b�, we select the
states with Sz=1.5 for simplicity. ↑ and ↓ represent the spin-up and
spin-down electrons.
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