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The valley splitting �VS� in a silicon quantum well is calculated as a function of barrier height with both the
multiband sp3d5s� model and a simple two-band model. Both models show a strong dependence of the VS on
barrier height. For example, in both models some quantum wells exhibit a sharp minimum in the valley-
splitting amplitude as the barrier height is changed. From the simple two-band model we obtain analytic
approximations for the phases of the bulk states involved in the valley-split doublet, and from these we show
that such sharp minima correspond to parity changes in the ground state as the barrier height is increased. The
two-band analytic results show a complicated dependence of the valley splitting on barrier height, with the
phases essentially being determined by a competition among effective quantum wells of differing length. These
analytic results help explain the VS in realistic structures where different finite barrier heights are possible
depending on the confining heterojunctions used.
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I. INTRODUCTION

The electronic structure of conduction-band bound states
in silicon quantum wells is particularly rich due to the prop-
erties of the bulk conduction-band minimum. In bulk, the
X-valleys are sixfold degenerate, with minima occurring
somewhat in from the Brillouin-zone faces. Strain can be
applied along �001� to lift the sixfold degeneracy so that the
degenerate valleys of interest are those lying along z. Be-
cause the minima lie completely within the Brillouin zone,
there are four propagating states �with z wave vectors
�k1 , �k2 near the minima at �kmin� at each energy within
the valleys. In the simplest approximation, the quantum well
bound states are linear combinations of all four propagating
states, and as a result, the bound states occur in doublets. The
splitting between the states comprising the lowest doublet is
referred to as the valley splitting.

Most experimental1 studies of this valley splitting in flat-
band silicon quantum wells are at finite magnetic field. The-
oretical studies of infinite wells at zero magnetic field have
used the two-valley effective-mass model2 and tight-binding
approaches.3–6 The influence of electric fields on the valley
splitting has also been investigated with two-valley effective
mass,7 simple tight-binding,8 and sp3d5s* tight-binding
approaches.9 Theoretical investigations of the effect of finite
barriers include numerical studies using the two-valley
effective-mass,7 pseudopotential,10 and tight-binding
approaches.11,12 In contrast, there are relatively few zero
magnetic-field experiments13 and to our knowledge, none ad-
dresses the effect of barrier height on valley splitting for
fixed well length.

Simple tight-binding models3,4,8 have proven particularly
useful for studying infinite-barrier flatband and V-shaped
quantum wells, since these models permit analytic approxi-
mations which clarify much of the essential physics of valley
splitting without any of the additional arbitrary fitting param-
eters found in the two-valley effective-mass approach.2,7,14 In
agreement with the much more complete sp3d5s* model, the
simple tight-binding model demonstrates that the coupling of
the four bulk states to yield two split bound states3,4 produces
the most striking features of the valley splitting in flatband
quantum wells: its oscillation as a function of the quantum
well length and the length dependence of the ground-state
parity. These features have been predicted earlier6 but have
only recently been explained in detail.3,4 The simple tight-
binding model thus links the essential physics of valley split-
ting to more complete, but difficult to interpret, multiband
calculations.

Finite barrier, flatband quantum wells exhibit similar
valley-splitting behavior �oscillating valley splitting and par-
ity of the ground state� to infinite-barrier quantum wells, but
there are differing oscillation amplitudes and phase shifts in
the valley splitting as a function of quantum well width.4 The
tight-binding investigations of finite barrier quantum wells to
date have been numerical, while for the two-valley effective-
mass model Ref. 7 presents analytic approximations. The
overall similarity of finite and infinite-barrier systems is,
however, insufficient for understanding some important
properties of finite barrier systems. Tight-binding12 and
pseudopotential10 calculations have shown significant
changes in the valley splitting as a function of barrier height
not seen in effective-mass7 calculations. The purely numeri-
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cal nature of the more complete models10,12 obscures the
reasons for this very different predicted behavior. A simple
tight-binding approach, together with numerical, multiband
results can clarify the reasons for this discrepancy and lead to
a better understanding of the effect of barrier height.

Here we employ both a simple two-band tight-binding
model3,4,8 and the multiband sp3d5s* model3,4,12,15 to study
the valley splitting in flat, finite-barrier silicon quantum
wells. In order to isolate the effect of the barrier height �as
opposed to alloying and roughness in the barriers� we em-
ploy pure materials for the barriers. Our calculations show
that the valley splitting can change significantly as a function
of barrier height. In certain cases, notches in the valley split-
ting occur; the simple model shows that these correspond to
parity flips of the ground state. Using the simple tight-
binding model, we obtain approximate analytic expressions
for the phase change in a finite barrier well as opposed to an
infinite-barrier well. These expressions show that the valley
splitting versus barrier height is a delicate interplay of phase
shifts for different effective well lengths. This picture helps
clarify some aspects of valley splitting in alloy barrier quan-
tum wells because it shows that it is incorrect to think of the
valley splitting an average of the valley splitting for different
barriers. Instead one should think of the valley splitting as
being governed by a weighted average of the phases appro-
priate to different infinite barriers.

II. METHOD

A. Bulk eigenstates

To model a Si quantum well grown along �001�, we em-
ploy a one-dimensional tight-binding model consisting of a
chain of identical atoms along the z direction, with one pz
orbital per atom.3,4,8 The atomic separation is a /2, and inter-
actions up to second-near-neighbor are included. As dis-
cussed in Refs. 3 and 4, one may view this model as either a
two-band model, with two atoms per unit cell, length a, or a
single-band model, with one atom per unit cell, length a /2.
�The one-band model is in fact just a zone-unfolded two-
band model, as expected.� The one-band description has the
advantage of being mathematically much more tractable.
However, because each unit cell of a flatband �001�-oriented
Si quantum well consists of two atomic planes �one “anion”
and one “cation” plane�, one must parameterize the simple
model so that the two-band version correctly mimics the
lowest two conduction bands of Si. In our calculations we
work in terms of the one-band phase, �=k�1�a /2, where k�1�

is the one-band wave vector �different from the two-band
wave vector, due to zone folding�. The two-band model is
parameterized so that minimum of its lower conduction band
mimics that of Si in terms of position and longitudinal effec-
tive mass, and the resulting parameters are used in the math-
ematically simpler one-band version. Although we shall refer
to the simple model as “two-band” since it is that version
which is parameterized to mimic Si, from here on we work
exclusively with the one-band formulation.

The wave function is written as

��� = �
n

Cn�z;n� , �1�

where the ket �z ;n� is a pz orbital on the atom indexed n and
the Cn are expansion coeffieients which include the normal-

ization; the orbitals are orthonormal. The Schrodinger equa-
tion in the tight-binding treatment appears as an infinite set
of coupled equations. Within a bulklike region �all atoms of
the same type and no applied fields� these equations take the
form

u�Cn−2 + v�Cn−1 + ��� − E�Cn + v�Cn+1 + u�Cn+2 = 0,

�2�

where �� �w ,b	 denotes either the well �w� or the barrier �b�
material. Both barriers will be taken to be semi-infinite and
made of the same material. The onsite parameters are the ��,
nearest-neighbor-coupling parameters are the v�, and the
second-near-neighbor-coupling parameters are the u�. In or-
der to keep the analytic treatment tractable, we assume that
the same neighbor-coupling parameters apply to both mate-
rials, and that only the onsite parameters differ by a
conduction-band offset W:

uw = ub = u, vw = vb = v , �3�

�w = �, �b = �w + W = � + W . �4�

The propagating state dispersion is found by substituting
into Eq. �2� Cn=exp�in��, ��Re, where � is the single-
band phase introduced above. As shown in Ref. 4, the result
is

E���� = �� + 2v cos��� + 2u cos�2�� . �5�

Also from Ref. 4, the conduction-band minimum phase �min
and energy satisfy

cos��min� = −
v

4u
; E�

min = E���min� = �� −
v2

4u
− 2u . �6�

To reproduce the lowest conduction band of Si, we take the
values from Ref. 4: �=3.0 eV, v=0.682640 eV, and u
=0.611705 eV.

To find the evanescent �growing/decaying� states we re-
quire that in Eq. �2� the expansion coefficients be powers of
a propagation factor, � :Cn=C0�n, then cancel out a common
factor of uC0�n−2 from Eq. �2� because u�0, to obtain a
quartic equation in �. Since the minima occur somewhat in-
ward from their respective Brillouin-zone faces, general
properties of complex bands16 indicate that the propagation
factors � ought to occur as a quartet: �� ,�* ,1 /� ,1 /��	.
Some algebra shows that the four solutions of this quartic
equation are

� = e���i�, �,� � Re . , �7�

where to satisfy Eq. �2� with Cn=C0�n, the �−� relationship
and the energy are

cosh���cos��� = −
v

4u
= cos��min� , �8�

E�
evanesc��,�� = �� − 4u cosh2��� − 4u cos2��� + 2u . �9�
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In Fig. 1 we graph the real and complex bands of the one-
band version of the two-band model. Note in particular that
the evanescent state phase � lies between the valley mini-
mum phase �min and 	 /2, varying little over a fairly wide
energy range. In Sec. II C, this slow variation will allow us
to make some useful simplifying approximations.

Because the well and barrier states have the same energy,
Ew���=Eb

evanesc�� ,��, the phases of the valley-split states in
the quantum well are related to the decay/propagation con-

stants in the barriers. For states involved in valley splitting,
Ew

min
E
Eb
min=Ew

min+W, and requiring equality of the two
energy functions yields

cos2��� =
1

2
�B − 
B2 − 4 cos2��min��, cos��� = − 
cos2��� ,

�10�

B = �1 +
W

4u
+ cos2��min�� − �cos��� − cos��min��2,

�11�

where the second part of Eq. �10� follows from Eq. �8� which
shows that cos����0. Likewise, the phases in the well of the
two valley-split states are related. �In Fig. 1, �1 ,�2 label two
such bulk states.� Requiring in Eq. �5� that Ew��1�=Ew��2�
and noting that cos��1��cos��2�, one finds

cos��1� + cos��2� = −
v

2u

= 2 cos��min�

⇒ cos��̄�cos��� = cos��min� , �12�

where the last equation is written in terms of an average
phase and average phase difference, �̄= ��1+�2� /2,
�= ��1−�2� /2.

B. Quantum well eigenstates: exact transcendental equations

The quantum well consists of �2N+1� atoms, indexed
n=−N , . . . ,N. The barriers are identical and semi-infinite; the
left extending for n�−�N+1�, the right for n
 �N+1�. Be-
cause the Hamiltonian is symmetric about n=0, the coeffi-
cients Cn in Eq. �1� can be taken as even or odd. �Note that
because the basis states are pz orbitals, the wave-function
parity is opposite that of the coefficients.� The even �e� and
odd �o� coefficients are thus

Cn
�e� = 
�b1

�e� cos���e��n + N + 1�� + b2
�e� sin���e��N + 1 + n���exp���e��N + 1 + n�� , n � − �N + 1�

a1
�e� cos�n�1

�e�� + a2
�e� cos�n�2

�e�� , − N � n � N

�b1
�e� cos���e��N + 1 − n�� + b2

�e� sin���e��N + 1 − n���exp���e��N + 1 − n�� , n 
 �N + 1�
� , �13�

Cn
�o� = 
− �b1

�o� cos���o��n + N + 1�� + b2
�o� sin���o��N + 1 + n���exp���o��N + 1 + n�� , n � − �N + 1�

a1
�o� sin�n�1

�o�� + a2
�o� sin�n�2

�o�� , − N � n � N

�b1
�o� cos���o��N + 1 − n�� + b2

�o� sin���o��N + 1 − n���exp���o��N + 1 − n�� , n 
 �N + 1�
� . �14�

The transcendental equations which determine the phases
involved in the valley-split states are found by solving the
four equations at either barrier/well interface; we solve those
at the right barrier interface. These four equations are of the
form of Eq. �2�,

uCn−2
��� + vCn−1

��� + ��n − E�Cn
��� + vCn+1

��� + uCn+2
��� = 0, �15�

where n= �N−1� , . . . , �N+2� and �n=�, n�N; �n=�+W,
n
 �N+1�. The process is considerably simplified by recog-
nizing that each of the interface equations is easily converted
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FIG. 1. Real and complex bands of the one-band version of the
two-band model used in the text. Real bands and parts of bands are
plotted on the positive axis and imaginary parts of bands are plotted
on the negative axis. The heavy solid line on the positive axis is the
conduction band. The conduction-band minimum phase is denoted
by �min and two degenerate bulk states contributing to one state of
a valley-split pair are indicated by the phases �1 ,�2. The heavy
dashed lines show the real and imaginary band pair beginning just
below the conduction-band minimum. �In the text the phase of the
real part of this pair is denoted �, with � reserved for the conduc-
tion band itself.�
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to a purely bulk equation �equal to zero� plus an additional
term, which is therefore also equal to zero. At the right in-
terface, introduce the notation for the coefficients:

�n
�e� = a1

�e� cos�n�1
�e�� + a2

�e� cos�n�2
�e�� , �16�

�n
�o� = a1

�o� sin�n�1
�o�� + a2

�o� sin�n�2
�o�� , �17�

�n
��� = �b1

��� cos��N + 1 − n������

+ b2
��� sin��N + 1 − n������	exp��N + 1 − n������ .

�18�

Note that the �n
��� are solutions of the well bulk equations

while the �n
��� are solutions of the barrier bulk equations.

One first solves the n= �N+2� interface equation, Eq. �15�,
adding and subtracting u�N

��� in the notation of Eqs.
�16�–�18� for the Cn

���. Part of the result is a bulk equation
�equal to zero� so that the remaining term u��N

���−�N
���� is

likewise zero. This result is used in the n= �N+1� interface
equation after adding and subtracting the term v�N−1

��� +u�N
���.

The process is repeated for the other interface equations, and
because u ,v�0 the resulting four equations take the same
form:

�n
��� − �n

��� = 0, n = �N − 1�, . . . ,�N + 2� . �19�

The four equations �19� therefore constitute a system of ho-
mogeneous equations for the even �e� and odd �o� coeffi-
cients, the aj

��� and bj
���.

Rearranging each homogeneous system into matrix form
and requiring the determinants of the respective matrices to
vanish finally result in the transcendental equations satisfied
by the even- and odd-coefficient states. After some trigono-
metric simplifications and dividing out a factor sin�������0,
one finds for both states

�
m=−1

3

cm
��� exp��m − 3������ = 0, �20�

c3
��� = f�

�N+1,1�, �21�

c2
��� = − 2 cos������f�

�N,2�, �22�

c1
��� = f�

�N−1,3� + �4 cos2������ − 1�f�
�N,1�, �23�

c0
��� = − 2 cos������f�

�N−1,2�, �24�

c−1
��� = f�

�N−1,1�. �25�

where

fe
�n,m� = cos��n + m��1

�e��cos�n�2
�e��

− cos�n�1
�e��cos��n + m��2

�e�� , �26�

fo
�n,m� = sin��n + m��1

�o��sin�n�2
�o��

− sin�n�1
�o��sin��n + m��2

�o�� . �27�

Observe that as W→�, ����→�⇒exp�−q�����→0, and
q�0, so that Eq. �20� becomes the appropriate infinite-
barrier transcendental equation,4 as expected. Using trigono-
metric identities, the f�

�n,m� may be rewritten compactly in
terms of the �̄��� and ���� as defined following Eq. �12�:

f�
�n,m� = − �sin��2n + m������sin�m�̄����

+ P� sin��2n + m��̄����sin�m�����	 , �28�

where

Pe = + 1, Po = − 1. �29�

The form of the f�
�n,m� in Eq. �28� is well suited for finding the

approximate phases of the bulk states comprising the valley-
split pair.

C. Quantum well eigenstates: approximate solution

Approximate solutions of the transcendental equations are
most easily found for quantum wells which are at least of
moderate length. As in Ref. 4, the objective is to use these
transcendental equations to find approximations for the ����,
from which the approximate valley splitting may be calcu-
lated. Thus, in approximating the f�

�n,m� we are interested in
cases �m��n, where m=1,2 ,3. Furthermore, for the lowest-
lying valley-split pair,4 �����	 / �2n+m�, so that the angle
�	− �2n+m�������1. Hence, we may rewrite the factors in
Eq. �28� in terms of small angles and make appropriate
small-angle approximations:

sin��2n + m������ = sin�	 − �2n + m������ � 	 − �2n + m�����,

�30�

sin�m����� � m����. �31�

Doing so, the f�
�n,m� are approximately

f�
�n,m� � − P�m���� sin��2n + m��̄���� − 	 sin�m�̄����

+ �2n + m����� sin�m�̄���� . �32�

Using Eq. �32� along with Eqs. �20�–�27�, results in a
lowest-order solution of the respective transcendental equa-
tions for the average phase differences ����:

���� �
	N���

D1
��� − P�D2

��� , �33�

N��� = sin��̄���� − 2 exp�− �����cos������sin�2�̄���� + exp�− 2������sin�3�̄���� + sin��̄�����4 cos2������ − 1�	

− 2 exp�− 3�����cos������sin�2�̄���� + exp�− 4�����sin��̄���� , �34�
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D1
��� = �2N + 3�sin��̄���� − 2�2N + 2�exp�− �����cos������sin�2�̄���� + exp�− 2������2N + 1�

��sin�3�̄���� + sin��̄�����4 cos2������ − 1�	 − 4N exp�− 3�����cos������sin�2�̄���� + �2N − 1�exp�− 4�����sin��̄���� ,

�35�

D2
��� = sin��2N + 3��̄���� − 4 exp�− �����cos������sin��2N + 2��̄���� + exp�− 2�����sin��2N + 1��̄�����3 + �4 cos2������ − 1�	

− 4 exp�− 3�����cos������sin�2N�̄���� + exp�− 4�����sin��2N − 1��̄���� . �36�

These equations are still fairly complicated, so further ap-
proximations are helpful. Physical intuition suggests that less
accurate, but more easily computed, approximations can be
tolerated in the barriers �not in the well, of course�. Thus, we
use somewhat crude but easily computed formulas for the
barrier regions. Because the even- and odd-coefficient
valley-split states are so close in energy it is physically rea-
sonable to ignore the differences between the ���� and ����.
We therefore drop the distinguishing superscripts. Further-
more, using results from Ref. 4, to lowest order in ����,

cos��1
���� − cos��min� � − ���� sin��min� , �37�

so that using Eq. �37� in Eqs. �10� and �11�, the lowest-order
approximation yields

cos��� �
cos��min�


1 + W/�4u� + cos2��min�
. �38�

Equation �38�, together with Eq. �8� results in a quadratic
equation for the exponential factors, whose solution is

e−� � 
1 + W/�4u� + cos2��min� − 
W/�4u� + cos2��min� .

�39�

From Ref. 4, we take there the lowest-order approximation
�̄�����min in sin��̄���� and sin��2N+m��̄����, m=−1, . . . ,3
as well. Introducing these approximations and Eqs. �37� and
�38� in Eqs. �33�–�36�, together with the general expression
for the approximate valley splitting in terms of the ����,4

�E = E��1
�o�� − E��1

�e�� � 4u sin2��min����o� − ��e�����o� + ��e��
�40�

gives the approximate expression for the valley splitting in
finite barrier systems. Note that the presence of the exponen-
tial factors, together with the rapidly oscillating terms
sin��2N+m��min� means that the valley splitting is a delicate
interplay between phases for different effective quantum well
lengths weighted by decay constants. As will be shown be-
low, this interplay can effectively shift the valley-splitting
curve by a fraction of a cell length, thereby greatly changing
the splitting.

III. RESULTS

Figure 2 graphs the valley splitting versus number of at-
oms S=2N+1 as calculated with four different models: the
simple two-band model presented in Sec. II with either finite

�0.4 eV� or infinite barriers, and the nearest-neighbor sp3d5s�

model with 1.525 eV barriers, with and without spin-orbit
coupling. The barriers are simulated with carbon parameters
taken from Ref. 15, with a variable conduction-band offset
�here 1.525 eV�; the silicon parameters are from Refs. 17 and
18. The two-band results come from numerical solution of
the even- and odd-coefficient versions of the exact finite-
barrier transcendental equation, Eq. �20�, for the �1

���. The
valley splitting is then calculated as ��E�= �E��1

�o��−E��1
�e���,

where E��� is defined in Eq. �5�. In the broadest sense, the
curves are similar in shape and period, but with differing
amplitudes and phase shifts. In other calculations with dif-
ferent confinement methods, we have observed a sensitivity
of the valley-splitting amplitude. Similar sensitivity to the
barrier height has been noted in other recent work.19 This
sensitivity implies a strong dependence on the evanescent
states responsible for the confinement, and because these
evanescent states are necessarily different in the simple and
multiband tight-binding models, the difference in valley-
splitting amplitude between them is not surprising. Qualita-
tively, though, the two models are in agreement, and in both
cases it is abundantly clear that for a fixed quantum well size
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FIG. 2. Valley splitting versus number of atoms �two-band
model� or atomic planes �sp3d5s� model� for different barrier
heights, and in the case of the sp3d5s� model, both with and without
spin-orbit interaction included in the calculation.
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S, the valley splitting can change significantly with the bar-
rier height. This behavior is in contrast to the two-valley
effective-mass model7 where the valley splitting is indepen-
dent of barrier height.

Close examination of the both the two-band and multi-
band results reveals that a variety of behavior is possible as
the barrier height is changed for a fixed quantum well size.
Figure 3 for the two band model graphs the exact, finite
barrier valley splitting �solid lines� and the approximate
splitting �dotted lines�, along with the exact infinite-barrier
splitting �horizontal dashed lines� for three different quantum
wells. The approximate valley splitting is ��E� from Eq. �40�
with approximations �Eqs. �37�–�39�� and �̄�����min in Eqs.
�33�–�36� as discussed in Sec. II C. Observe that the valley
splitting can simply rise to its infinite-barrier value �N=36�,
exceed it, then fall back toward it �N=28�, or reach a sharp
minimum, then rise back toward the infinite-barrier value
�N=35�. The sharp minimum in this last case occurs because
at that point the parity of the ground state changes, as indi-
cated on the graph. Similar parity flips can occur in V-shaped
quantum wells as the field strength �slope of the V� is
changed.8

The multiband nearest-neighbor sp3d5s� results �Fig. 4�
show similar behavior, with one exception: the strong ten-
dency toward a fairly large valley splitting at low barrier
heights. As discussed above, this type of behavior is seen in
some quantum wells in the simple two-band model, but not
others. Just like in the simple model, however, sharp minima
can occur in the valley splitting of the multiband model �N
=28�. While the two models do not agree on the exact details
of the valley-splitting behavior, it is important to keep in

mind that in order to make the two-band model tractable,
only the conduction-band offset between the two materials
was changed. In the multiband model, the barrier, and the
interface parameters are different from those of the well. In
addition, the evanescent states of the two-band model are
much simpler than are those of the sp3d5s� model. The two-
band model can nevertheless provide qualitative explana-
tions of the multiband results.

The analytic results of Sec. II help to clarify the
valley-splitting dependence on quantum well size. For
quantum wells that are not too short, we may take �2N+m�
��2N+3�, m=−1, . . . ,2, so that D1��2N+3�N, where we
drop superscripts since in the lowest-order approximation we
take �̄�����min and, as in Eqs. �49�–�51�, ������, ������.
Equation �33� for the ���� then reads:

���� �
	

�2N + 3�
+ P�

	

�2N + 3�2

D2

N
, �41�

so that the approximate valley splitting is, from Eq. �40�,

�E � − 16u sin2��min�� 	2

�2N + 3�3��D2

N � . �42�

Note that D2 is a sum of fast-oscillating terms for different
effective quantum well lengths, weighted by the appropriate
barrier decay and phase factors. Which of these effective
quantum wells dominates depends on where each of the
sin��2N+m��min� terms is its cycle, as well as the barrier
height, which determines the decay factors via Eq. �39�.

The presence and nature of the competition between dif-
ferent effective quantum wells in the simple tight-binding
model account for the difference between our results and
those of Ref. 7. In the two-valley effective-mass model,7 the
barrier height is proportional to the valley coupling param-
eter and therefore there is no barrier height dependence of
the valley splitting. Part of the insensitivity to barrier height
is due to the fact that the results of Ref. 7 are to lowest order

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.0 1.0 2.0 3.0 4.0 5.0

V
al
le
y
S
p
li
tt
in
g
(m
eV
)

W (eV)

N=35

N=36

N=35, infinite barriers

N=36, infinite barriers

2-band

Parity flip

N=28

N=28, infinite barriers

FIG. 3. Valley splitting versus barrier height for different quan-
tum well lengths in the two-band model. The number of atoms in
each well is S= �2N+1�. Solid lines are the exact valley splitting,
dotted lines the approximate valley splitting discussed in the text.
Dashed horizontal lines indicate the infinite-barrier valley splitting
for each of the wells. Note the sharp minimum for the N=35 well,
where a parity flip occurs.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

V
al
le
y
S
p
li
tt
in
g
(m
eV
)

W (eV)

N = 36 (S = 73)

N = 28 (S = 57)

sp
3
d
5
s
*

FIG. 4. Valley splitting in the sp3d5s� model for two different
quantum well lengths versus barrier height. Note the sharp mini-
mum like that seen in the two-band results of Fig. 3.

BOYKIN, KHARCHE, AND KLIMECK PHYSICAL REVIEW B 77, 245320 �2008�

245320-6



only, and when higher order corrections are included, a bar-
rier height dependence appears. Yet, even with these correc-
tions, parity flips have not been observed. The way in which
the valley coupling parameter in Ref. 7 is determined is the
probable cause for the remaining differences. The barrier
height dependence of this parameter was determined by fit-
ting to a simple tight-binding numerical calculation of valley
splitting versus quantum well length at fixed barrier height.
Thus, the valley coupling parameter in Ref. 7 necessarily
involves averaging over quantum well lengths. Seen in the
light of Eqs. �33�–�42�, this averaging tends to upset the
phase relationships in the D2 term above. Hence, the fine
structure of the valley splitting versus barrier height �for
fixed well length� tends to be washed out.20

Due to the multiband nature of the sp3d5s� model it is not
strictly correct to speak of a difference term ���o�−��e�� for it,
but this concept remains useful because four bulk states
dominate the wave function in the quantum well. In this
light, observe that as the sp3d5s� model is a nearest-neighbor
model, its effective difference term should be a competition
among fewer effective quantum well lengths. To see if this
observation might point toward factors behind the enhanced
valley splitting at low barrier heights, we can use the analytic
results of the two-band model. Here we make a very crude
approximation in the expressions for the D2 and N, retaining
only the two slowest-decaying terms in exp�−m��, m=0,1.
In Fig. 5 we graph the valley splitting versus S= �2N+1� for
barrier height W=0.05 eV as calculated both exactly and
with the two-term approximation, along with the infinite-
barrier valley splitting as a reference. Interestingly, the ad-
mittedly crude two-term approximation shows a tendency
toward larger amplitude oscillations; for low barriers this in-
crease is partly due to a smaller N. While these results do not
completely explain the tendency of the multiband model to-
ward increased valley splitting at low barrier heights, they do

suggest that the shorter-range interaction of this model limits
the number of effective quantum wells competing to deter-
mine the valley splitting.

Finally, we emphasize that the two-band analytic results
show clearly that the valley splitting cannot be seen as a sum
of valley splittings for different quantum well lengths, sim-
ply because the valley splitting is defined as an absolute
value. Instead, the different effective quantum wells contrib-
ute the phases and especially the critical phase difference
���o�−��e���D2 /N. Note that although the fast-oscillating
terms appear only in the numerator D2, the denominator N
still changes with the barrier height. That the result can be
rather complex and highly dependent on where the fast-
oscillating terms are in their respective cycles is clear from
Figs. 3 and 4, especially as regards minima resulting from a
parity-flip.

IV. CONCLUSIONS

We have shown that changing the barrier height for a
fixed quantum well length can greatly affect the valley split-
ting, using both a simple two-band model and the multiband
sp3d5s� model; these effects are not seen in the two-valley
effective-mass7 approach. For the two-band model we have
obtained analytic approximations for the phases of the bulk
states involved in the valley-split pair which show that in the
finite-barrier case there is effectively a competition among
different effective-length quantum wells to determine the
valley splitting. The outcome of this competition depends on
where the various fast-oscillating terms are in their respec-
tive cycles together with the barrier height, which determines
the multiplicative decay factor for the effective quantum
wells. There is of course no decay in the terms arising from
the actual quantum well. These results show that sharp
minima in the valley splitting are due to parity flips, where
the ground state changes parity as the barrier height is in-
creased. Similar minima are seen in the multiband results.
Finally, we have used the analytic results to examine the
effect fewer competing quantum wells on the valley splitting
by dropping terms which decay more quickly. Retaining only
the constant and slowest-decaying term tends to enhance the
amplitude of the valley-splitting oscillations with quantum
well length, suggesting that the fewer effective quantum
wells competing in the nearest-neighbor sp3d5s� model may
be a contributing factor to the enhanced valley splitting at
low barrier heights.
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