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We study spin dynamics and singlet-triplet decoherence due to the hyperfine interaction in a parabolic
double quantum dot. We use exact diagonalization and perturbation theory for calculating the time evolution of
the wave function. The probabilities for the singlet state exhibit damped oscillations and converge toward a
value, which depends only on the strength of the hyperfine field and the exchange energy. We derive expres-
sions for the asymptotic singlet probability and its variance using a 2�2 effective Hamiltonian matrix. The
asymptotic values and variances for singlet probabilities are in agreement with previous experimental data.
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I. INTRODUCTION

The progress of nanotechnology has made the construc-
tion of a quantum computer a realistic goal. Several alterna-
tives for a quantum bit, the building block of a quantum
computer, have been considered. The Loss-DiVincenzo
scheme1 proposing semiconductor quantum dots for qubits
has spurred various studies concerning this realization.2–6

Extensive studies, for example, have been made on a two-
electron double quantum dot.7–13

The decoherence is always a significant obstacle in quan-
tum computing. In semiconductor quantum dots, decoher-
ence is mainly caused by the hyperfine interaction with 105

lattice nuclei with spin 3/214–19 and spin-orbit interaction
with lattice phonons.20,21 Decoherence due to the spin-orbit
interaction has a timescale from 100 �s to 100 ms,10,22,23

whereas decoherence of hyperfine interaction has a timescale
of 10 ns.11,13 Hence, as recent experiments show, for times
under 10 �s in low temperatures the hyperfine interaction is
the most significant decoherence mechanism.13,24 The dipolar
interaction between the nuclei changes the individual
nuclear-spin orientations. This interaction is weak, having a
time scale of 100 �s for a finite magnetic field.25 Consider-
ing that the spin-diffusion time for nuclei in the vicinity of
donors exceeds one second,26 the nuclear spins may be ap-
proximated as frozen in the timescale of hyperfine-induced
dephasing. The spin dephasing times may be increased by
nuclear polarization and projective measurement resulting in
the narrowing of the nuclear-spin distribution.27–29

The singlet-triplet decoherence due to the hyperfine inter-
action was studied theoretically by Coish and Loss.30 Their
model predicts damped oscillations and a saturation value for
the singlet probability that depends only on the ratio of the
rms hyperfine interaction strength and the exchange energy.
Laird et al.24 measured the singlet-triplet decoherence of an
electron pair in a GaAs double dot. By varying the gate
voltage, they modified the exchange energy J and observed
changes in the oscillations and saturation of the spin corre-
lator. There have been only a few exact diagonalization stud-
ies of hyperfine dephasing, mainly concerning single spin de-
cay31,32 and a recent study of a two-electron quantum dot.33

In this paper, we study the effect of exchange interaction
on hyperfine-induced singlet-triplet decoherence in a para-

bolic double quantum dot. We obtain similar values for the
exchange energy as observed in the experiments of Laird et
al.24 by adjusting the external voltage properly in the calcu-
lations. The eigenstates and eigenvectors of the two-electron
Hamiltonian are solved using exact diagonalization. We cal-
culate the time evolution of the singlet probability and com-
pare the results with the experimental results. In the time
evolution, we first solve the four lowest eigenstates without
hyperfine field. The 4�4 Hamiltonian matrix that includes
hyperfine fields is then constructed using exact diagonaliza-
tion. This method enables the study of various dot geom-
etries and perturbations. We also analyze the dependence of
the spin variance on the spin expectation value and derive
expressions for the asymptotic singlet probability and its
variance using a 2�2 effective Hamiltonian.

II. MODEL AND METHOD

We model the two-electron system with the Hamiltonian,

H = �
i=1

2 ��− i��i − e
cA�2

2m�
+ V�ri,si�� +

e2

�r12
. �1�

The external potential V consists of two parts,

V = VZ + VC, �2�

where VZ is the potential caused by the Zeeman interaction,

VZ�r,s� = g��BB�r� · s , �3�

and the Lande factor of GaAs is g�=−0.44. The magnetic
field can be divided into a homogeneous external magnetic
field Bext and an inhomogeneous random hyperfine field
Bnuc�r�. The second part in the external potential is the con-
finement potential VC, similar to the potential used by Helle
et al.,34

VC�r� =
1

2
m��0

2�min��
j=1

2

�r − L j�2� − 2LTx� , �4�

where L j gives the positions of the minima of the confine-
ment potential and the detuning parameter LT is proportional
to the strength of the biased potential due to the external
voltage. The confinement potential is illustrated in Fig. 1.
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The cusp in the potential at x=0 does not affect the results,
as we have a large distance between the dots. We define the
positions of the minima of the confinement potential as
�Lx ,0�, �−Lx ,0�. Then the confinement potential can be writ-
ten using x and y coordinates as

VC�x,y� =
1

2
m��0

2 � �x2 + y2 − 2Lx	x	 + Lx
2 − 2LTx
 . �5�

We use GaAs material parameters m� /me=0.067 and �
=12.7, and the confinement strength ��0=3.0 meV. This
confinement corresponds to the harmonic oscillator length of
�� /�0m��20 nm. External magnetic field is 200 mT.

The four-dimensional Schrödinger equation is discretized
using a grid of around 204 points. We use finite difference
method with five-point Laplacian. The eigenvalues and
eigenvectors of the resulting Hermitian matrix are solved us-
ing the Lanczos diagonalization. The exchange energy J is
simply obtained from the difference of the eigenenergies of
the singlet and triplet states. The eigenenergies for the singlet
and triplet states agree with the values obtained in a previous
numerical study.34

Due to the hyperfine field, the wave function is not com-
pletely symmetric or antisymmetric. We obtain the spin ex-
pectation value from the wave function � by dividing it to a
symmetric part �S corresponding to the triplet state and an-
tisymmetric part �A corresponding to the singlet state

��r1,r2� = ��S�r1,r2� + ��A�r1,r2� , �6�

where �2+�2=1 and �2 is the singlet probability. When
electrons are exchanged, we obtain

��r2,r1� = ��S�r1,r2� − ��A�r1,r2� , �7�

and this helps us to calculate PS from integral,


 
 dr1dr2���r1,r2���r2,r1� = 2�2 − 1 = 2PS − 1. �8�

We model the experimental control cycle used by Petta et
al.,13 where both electrons are initially in the right quantum
dot, confined by the potential shown in the solid curve in Fig.
1. This state is called �0,2� below. Gradually the detuning

parameter LT is decreased so that a second potential mini-
mum becomes degenerate with the first minimum, see
dashed curve in Fig. 1. Now electrons are in both dots, in the
state called �1,1�.

In the �0,2� charge configuration, the triplet state has a
much larger energy and it is energetically inaccessible,
whereas in the �1,1� state both singlet and triplet states are
accessible. As the electrons are in a random hyperfine field,
the mean values of the hyperfine field in the left and right dot
are slightly different, which causes the emergence of triplet
states and singlet-triplet decoherence.

We calculate the time evolution of the wave function
��r1 ,r2� when the potential is changed by the detuning pa-
rameter. The exponential of the Hamiltonian matrix is evalu-
ated using a Krylov space method.35 The randomness of the
hyperfine field is taken into account by averaging the results
over different hyperfine field realizations.

It turns out that using realistic parameters the separation
of the quantum dots is an adiabatic process. The change in
the detuning voltage is performed in 1 ns �Ref. 13�, which is
a short time compared to the decoherence timescale 10–1000
ns �Ref. 24�. Thus the spin does not change significantly
during the separation. We can model the spin evolution with
a time-independent Hamiltonian. There is a large energy gap
between the four lowest-lying states �S, T0, and T	1� and
higher excited states. Hence only the four lowest states are
occupied and we may use perturbation theory for the evalu-
ation of the effect of the hyperfine interaction. This method
is much faster compared to the propagation of full exact
diagonalization �ED� wave function. We begin the numerical
simulation from the case of separated dots and solve for
Bnuc=0 the singlet ground state and excited triplet state.
These states are used for the calculation of the matrix ele-
ments of the hyperfine field. In the following, we denote Bl
=g��BBnuc�rl�, where l=1,2 and set �=1. The perturbation
term in the Hamiltonian due to the inhomogeneous hyperfine
field is

Hhf = B1 · S1 + B2 · S2, �9�

where Bl are the nuclear hyperfine fields and Sl=
1
2 �
xl+
yl

+
zl� are the spin operators for electrons l=1,2. The Hamil-
tonian is expressed in a scalar form as

Hhf = �
l=1

2
1

2
�Bl

x
xl + Bl
y
yl + Bl

z
zl� . �10�

We calculate the elements of the Hamiltonian matrix in the
basis of one singlet and three triplet states �	S� , 	T1� , 	T0� ,
	T−1��. The space parts of the wave functions of the triplet
states are denoted with �T and the singlet state correspond-
ingly with �S. We obtain the matrix elements from space
integrals, e.g.,

�S	Hhf	T0� =
1

2

 
 dr1dr2�S

��r1,r2��B1
z − B2

z��T�r1,r2� .

�11�

For the integral we use the shorthand notation,
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FIG. 1. Confinement potential Vc�x ,0� and Lx=50 nm for de-
tuning parameters LT=0 nm �dashed� and LT=20 nm �solid�.
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hl
i =
 
 dr1dr2�S/T

� �r1,r2�Bl
i�S/T�r1,r2� , �12�

where the space parts of the wave functions �S/T
� ,�S/T are

determined by the respective matrix element. In order to
write the matrix elements compactly we use the variables30

hi =
1

2
�h1

i + h2
i �, �hi =

1

2
�h1

i − h2
i � , �13�

h	 = �hx 	 i�hy, �h	 = hx 	 ihy , �14�

and �Z=g��BBz. We subtract the singlet energy from the di-
agonal matrix elements. The resulting Hamiltonian matrix H
reads

�
0 − �h+/�2 �hz �h−/�2

− �h−�2 J + �Z + hz h−/�2 0

�hz h+/�2 J h−/�2

�h+/�2 0 h+/�2 J − �Z − hz
� ,

corresponding to the result of Coish and Loss.30 In our
method all matrix elements are obtained from the ED calcu-
lation and the dots need not to be separate. The time evolu-
tion of the wave function ��t�= ��1�t��2�t��3�t��4�t�
T is
then simply obtained by ��t�=exp�−iHt���0�.

III. RESULTS

The exchange energy J may be tuned by adjusting the
detuning parameter LT in the confinement potential Vc. Fig-
ure 2 presents the exchange energy J as a function of LT for
different interdot distances d=2Lx. We notice that the depen-
dence of J on LT approaches a step function with increasing
Lx. Large LT values correspond to a single parabolic quantum
dot. Naturally, the exchange interaction diminishes with the
growing distance of the dots. By a small detuning voltage,
one can obtain large values of J even for large distances. The
inset of Fig. 2 shows J for 2�LT�5 nm and Lx=50 nm. In

this case changing LT by 1 nm changes the voltage by 0.8
mV. The form of the curve is similar and the range in the
values of LT �3 nm, corresponding to 2.4 mV change in the
voltage� correspond to the measurements of J for detuning
voltage between 0 and 3 mV.13 We use values shown in the
inset for our simulations.

Figure 3 shows the spin time evolution of a single hyper-
fine field realization for J=41 neV and Lx=50 nm. The in-
set shows spin evolution for the first few nanoseconds calcu-
lated from full exact diagonalization during the change of the
detuning �up to 1.2 ns� and from perturbation theory after
that. We notice that the change in spin from the beginning to
1.2 ns is small and the perturbation calculation continues
smoothly the full ED calculation. As the calculation of time
evolution of one nanosecond takes around 24 h of computer
time, the evaluation of many realizations up to hundreds of
nanoseconds is too time-consuming to do with full ED. In
the case of one hyperfine field realization, the singlet prob-
ability PS exhibits sinusoidal oscillation between one and a
value between zero and one depending on the realization, see
dashed curve in Fig. 3. However, when results are averaged
over several hyperfine field realizations, the oscillation is
damped and singlet probability saturates, see dash-dotted
curve in Fig. 3.

In Fig. 4, we plot the numerical results for the singlet
probability as a function of time for the Lx=50 nm case. The
results are averaged over 104 nuclear configurations. We also
show the experimental data of Laird et al. for comparison,
extracted from Fig. 4 of Ref. 24. We use approximately the
same values for J as found in the these experiments. The
variance of the hyperfine field is difficult to determine in the
calculation, because one unit cell given by the numerical grid
contains of the order of thousands of GaAs atoms. Hence, the
value of the hyperfine field in each grid point is an average
of the hyperfine fields of the GaAs nuclei in the unit cell and
as a result of this, the variance of the averaged hyperfine field
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FIG. 2. �Color online� Exchange J as a function of detuning
parameter LT. From top to bottom at LT=0 nm: Lx=10, 20, 30, and
50 nm. Distance between the dots is d=2Lx. Inset shows Lx

=50 nm case zoomed in the region of small LT values.
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FIG. 3. Singlet probability PS as a function of time t for J
=41 neV and Lx=50 nm. Dashed line is a single realization and
dash-dotted line is an average over 104 realizations. The inset is
zoomed in the region of few nanoseconds and shows the singlet
probability of a single realization obtained with full ED calculation
�solid� until 1.2 ns and after that with the perturbation calculation
�dashed�.
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is reduced. We have fitted the variance of the hyperfine so
that the asymptotic value of PS for J=62 neV coincides with
the experimental asymptotic value PS�0.95. This value of
the variance has been used for other values of J and as Fig. 4
shows, the numerical saturation values of PS match with the
experimental findings for all other J values. In Ref. 24, the
authors add an experimental visibility factor to explain their
results using the model of Coish and Loss.30 This is not used
here, and we emphasize that we use only one experimental
parameter when we fit the variance of the hyperfine field for
J=62 neV.

Before we compare in detail our simulations with the ex-
periments, it is useful to estimate the error bars. We calculate
the standard deviation of the mean of PS�t� using 104 hyper-
fine field realizations. Then the standard error of the mean of
PS�t� is estimated in the case of 50 realizations to mimic the
experimental data. The error bars based on this estimate
match with the deviation of the experimental results for large
times. For small times, the simulations follow closely the
experimental values. The initial descent of the curves is simi-
lar and the first minima for smaller values of J occur at the
same time for simulations and experiments. For larger values
of J, the numerical data has larger oscillations than that ob-
served in the experiments. The oscillation in cases J=62 and
133 neV exhibits a phase difference between experimental
and numerical values, but for smaller J the variance of the
singlet probability is larger and the possible phase difference
cannot be observed. This phase shift might not have a simple
theoretical explanation, but it could be related to the tunnel-
ing coupling. Namely, in Fig. 4 of Ref. 24, there is a phase
shift between the singlet probabilities for J=131 neV with
small tunnel coupling and for J=118 neV with large tunnel
coupling. This indicates that the tunnel coupling has an effect
on the experimental results.

Figure 5 depicts the variance of the triplet probability
PT=1− PS. The variance increases with the triplet probabil-

ity, which was also evident in the experimental results,24

where the fluctuation in the singlet probability values in-
creases with a decreasing singlet probability. The values of
the variance seem to depend on PT

3/2, as the fit with the func-
tion 
2�PT�=0.56�PT�3/2 indicates.

It turns out in our perturbation calculation that the 	T1�
and 	T−1� states have a vanishing occupancy, as expected
when the external magnetic field exceeds the hyperfine field.
In this case the perturbation is effectively described by the
matrix,

Heff = � 0 �hz

�hz J
� , �15�

in the 	S�− 	T0� basis. Hence, the time evolution of the singlet
probability depends solely on the ratio �hz /J, as in the pre-
vious theoretical study.30

The exact time dependence of the singlet probability can
now be calculated from the relation ��t�=exp�−iHefft���0�.
We denote ��t�= ���t���t�
T and use the initial condition
��0�= �1 0�T. Then, using the exponential of 2�2 matrix,
one can show that the singlet probability, given by ��t�2, is

PS�t� =
1

2
�1 +

J2

D2 + �1 −
J2

D2�cos�Dt�� , �16�

where D=�4��hz�2+J2.
It is not trivial to average PS�t� over the hyperfine field

distribution. However, this average turns out to be easy to
calculate for the saturation value of PS. This is based on the

fact that the time average of the singlet probability P̄S

= 1
T�0

TPS�t�dt is equal to the asymptotic singlet probability
PS�t=
� when the upper limit T of the time integral ap-
proaches infinity, as the initial oscillation does not affect the
value of the integral. Using this, one finds the time average
to be

P̄S =
1

2
�1 +

J2

D2� . �17�

Next, we average P̄S over the hyperfine field realizations by

integrating P̄S over normally distributed values of the off-

0 2 4 6 8 10 12 14 16

0.4

0.5

0.6

0.7

0.8

0.9

1

2πtJ/h

P
S

FIG. 4. �Color online� Measurements of Laird et al. �Ref. 24�
with numerical results. From top to bottom: J=133 �red�, 62
�green�, 41 �blue�, 22 �brown�, and 12 neV �magenta�. The unit time
determined by J is from top to bottom, respectively, 5, 11, 16, 30,
and 55 ns. The dashed lines give the standard error of the mean
when the number of realizations is 50. The distance of the dots 2Lx

is 100 nm. The curves are offset by 0.05 for clarity, i.e., all cases
have PS=1 at t=0.
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FIG. 5. Asymptotic triplet probability P̄T and its variance 
2.

Solid line is a fit 
2=0.56�P̄T�1.5.
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diagonal matrix element �hz. We assume �hz distribution to
have zero mean and variance 
0

2. We use the notation �hz

=x and obtain the average from

�P̄S� =
1

2�2�
0



−



 exp�−
x2

2
0
2�

4
x2

J2 + 1

dx +
1

2
, �18�

which leads to the formula for the mean of the asymptotic
singlet probability,

�P̄S� =
1

2
+��

2

J

4
0
exp� J2

8
0
2�erfc� J

2�2
0
� . �19�

We obtain in a similar fashion the variance of the asymptotic

singlet probability 
2�P̄S�= �P̄S
2�− �P̄S�2;


2�P̄S� =
J3

64
0
3�− 2�


0

J
exp� J2

4
0
2�erfc2� J

2�2
0
�

− �
0
2

J2 +
3

4
��2� exp� J2

8
0
2�erfc� J

2�2
0
�

+

0

J
�8


0
2

J2 + 3�� . �20�

The asymptotic triplet probability and its variance as a func-
tion of 
0 /J calculated using the formulas above are pre-
sented in Fig. 6. One can observe that the variance increases
slowly and approaches 1/8 for 
0 /J�1. The triplet probabil-
ity increases rapidly for 
0 /J�1, but then the curve starts to

slope toward the limit P̄T=1 /2. The variance of the triplet
probability is shown in Fig. 7 as a function of the mean of

the asymptotic triplet probability. This confirms our numeri-

cal results in Fig. 5 and the approximation 
2=0.56�P̄T�1.5 in

the region P̄T�0.2. This approximation might serve as an
additional calibration for the spin values and help to deter-
mine the visibility factor in the experiments.

IV. SUMMARY

In summary, we have studied the effect of exchange in-
teraction on the singlet-triplet decoherence in a parabolic
double quantum dot. We used exact diagonalization and per-
turbation theory for the calculation of the time evolution of
the wave function. As a result, we observed damped oscilla-
tions and saturation values for the singlet probability. Our
method allowed the evaluation of the exchange energy for
different external voltages, which made possible a compari-
son to previous experimental data. The calculated singlet
probabilities were in agreement with the results obtained in
experiments.13,24 The experimental saturation values corre-
sponded very well to our numerical results. For larger values
of the exchange energy, the phase of the spin oscillation
differed from the experimental values. We estimated numeri-
cally the dependence of the variance of the asymptotic triplet

probability 
2�P̄T� on the asymptotic triplet probability P̄T,

which depends approximately on P̄T
3/2. We also derived ex-

pressions for the asymptotic singlet probability and its vari-
ance using a 2�2 effective Hamiltonian.
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