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Spontaneous spin polarization and electron localization in constrained geometries:

The Wigner transition in nanowires
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The Wigner transition in a jellium model of cylindrical nanowires has been investigated by density-
functional computations using the local spin-density approximation. A wide range of background densities p;,
has been explored from the nearly ideal metallic regime (r,=[3/4p,]"?=1) to the high correlation limit
(ry=100). Computations have been performed using an unconstrained plane wave expansion for the Kohn—
Sham orbitals and a large simulation cell with up to 480 electrons. The electron and spin distributions retain the
cylindrical symmetry of the Hamiltonian at high density, while electron localization and spin polarization arise
nearly simultaneously in low-density wires (r,~30). At sufficiently low density (r,=40), the ground-state
electron distribution is the superposition of well defined and nearly disjoint droplets, whose charge and spin
densities integrate almost exactly to one electron and 1/2up, respectively. Droplets are arranged on radial
shells and define a distorted lattice whose structure is intermediate between bce and fce. Dislocations and grain
boundaries are apparent in the droplets’ configuration found by our simulations. Our computations aim at
modeling the behavior of experimental low-carried density systems made of lightly doped semiconductor

nanostructures or conducting polymers.
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I. INTRODUCTION

Advances in nanofabrication techniques and rising expec-
tations in nanotechnologies have greatly enhanced our inter-
est in natural and artificial structures whose linear dimen-
sions are in the nanometer range.! Conducting nanowires
represent a particularly interesting case since they are a nec-
essary component of any nanometric device, and their fabri-
cation, characterization, and control are likely to represent
the most relevant challenges to be faced before the wide-
spread application of nanotechnologies in electronic devices
becomes a reality.> From a theoretical point of view, the in-
terest is increased by their combination of a finite cross sec-
tion with an extended dimension that allows us to investigate
the interplay of confinement effects and conductivity.>*

Nanowires have been produced and characterized by sev-
eral methods. The fabrication of metallic nanowires, in par-
ticular, has reached the ultimate limit of subnanometric cross
sections,>® while retaining a significant conductivity. Early
experiments relied on the formation and breaking of metal
bridges connecting thicker metal leads. The aspect ratio of
these structures, defined as the ratio of wire length over its
radius, is sometimes fairly low, setting them into an interme-
diate class in between homogeneous linear wires and inho-
mogeneous point contacts. Longer wires of atomic thin di-
ameter are obtained by filling and/or intercalating nanotubes
(for instance, carbon, BN, MgO, or Ga,0O; nanotubes) with
metal atoms,’” or using nanotubes as lithography masks to
produce long metal wires.® The valence density of these sys-
tems is almost exclusively determined by the chemical iden-
tity of the metal atoms and cannot be significantly varied,
thus excluding the possibility of exploring a wide combina-
tion of confinement and electron correlation. Carbon nano-
tubes themselves represent an important family of nano-
wires, whose electronic and transport properties can be
varied by selecting their size and structure, by controlling
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doping, and by changing physical conditions.’

Up to now the most widely used, and possibly the most
flexible method to fabricate nanowires, has been based on
the artificial nanostructures’ technology, which has provided
in fact the first practical route to prepare nanowires.'” Also in
this case, selective doping, thermal excitations, and/or con-
tinuous optical pumping are used to create a population of
mobile charge carriers whose number can be controlled and
varied over a wide density range.!' The electrostatic potential
of a gating semiconducting substrate may provide an addi-
tional parameter to control the system properties. The elec-
tron states in high-quality samples are fairly extended, some-
what reducing the effect of lattice defects, of doping
fluctuations, and of the atomic scale modulation due to the
semiconductor structure.'?

A third class of nanowires consists of conducting
polymers.'3 Doping is usually needed to give rise to conduc-
tivity and metallic behavior, and also in this case it represents
the most crucial step to ensure the reproducibility of the
sample properties. These systems share with artificial semi-
conductor nanowires the advantage of high flexibility in the
choice of the valence charge density. Moreover, because of
their soft interchain interactions, their properties can some-
times be tuned by changing physical parameters such as
pressure, in addition to varying chemical conditions (for in-
stance, changing the pH or the oxygen partial pressure) of
the surrounding medium, allowing a finer system control.

The theoretical and computational literature on nanowires
is abundant and still expanding very quickly. For this reason
we limit ourselves to a short enumeration of the major theo-
retical issues concerning nanowires, and a brief discussion of
the methods and results directly related to our study. First of
all, nanowires arguably represent the closest approximation
to one-dimensional (1D) conductors, whose properties are
qualitatively different from those of their three-dimensional
(3D) counterparts'!3 since 3D conductors are generally de-
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scribed by the Fermi liquid formalism,'® while the Luttinger
picture'” is expected to provide the most appropriate descrip-
tion for the 1D case. Experimental results, however, show
that genuine Luttinger liquid features are fairly rare,'® and up
to now have been identified mainly in carbon nanotubes,'” in
exotic inorganic?® and organic?! conducting polymers, and
possibly in inhomogeneous systems with channel-like con-
strictions ~ joining two mesoscopic Or  macroscopic
conductors.??

Most of the nanowires made by nanofabrication, instead,
behave like normal Fermi systems, even though confinement
affects their properties up to relatively large diameters, giv-
ing rise to new phenomena and opportunities for advanced
applications. Theory, computations, and experimental inves-
tigations of nanowires have in fact revealed a variety of un-
usual features in their ground state electronic structure, con-
cerning especially their response to low-frequency
(conductivity) and high-frequency (optical properties) elec-
tromagnetic perturbations. Prominent among these phenom-
ena is the observation of a localization transition2 and,
possibly, of a spontaneous spin polarization’®2?” recently re-
ported in the literature, which provide the primary motiva-
tion for the present study.

We present the results of density functional computations
for a jellium model of a metallic nanowire, restricting our-
selves to the simplest geometry, representing a cylindrical
nanowire, translationally invariant along the axial direction.
We focus on wires whose diameter is nanometric, but still
well above (by 1 or 2 orders of magnitude) the atomic size
limit, i.e., in a range that corresponds to recent realization of
nanowires by artificial semiconductor techniques. As dis-
cussed below, several subbands are populated in this size
range, thus justifying the usage of ordinary density-
functional (DF) approximations in our study. In what follows
we refer to the active particles as electrons, even though the
model can be adapted to different types of charge carriers by
an appropriate choice of the particle effective mass, of the
system dielectric constant, and of the sign of the carried
charge (*e).

Our computations cover a wide range of densities, from
values typical of the valence charge of simple metals such as
Al or the alkali metals, down to very dilute electron systems.
The high electron density computations allow us to compare
our results to those of previous studies. Our interest, how-
ever, is focused on the low-density regime, where the re-
duced dimensionality and the strong correlation give rise to a
sequence of transitions leading to a highly localized electron
distribution, consisting of nearly disjoint charge droplets,
each corresponding to one spin-polarized electron. The re-
sults allow us to investigate the interplay of the two length
scales characterizing the system, i.e., the Fermi wavelength
and the wire radius, and to highlight the role of disorder in
the droplets’ configuration.

The same model has been extensively used in the past to
investigate metal nanowires (see, for instance, Refs. 4 and
28-30; additional references will be cited in what follows),
but, despite its simplicity, it still retains reasons of interest
and many unexplored features. A closely related model has
been used, in particular, to investigate the Wigner transition
in jellium nanowires,3! which is also the main subject of the
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FIG. 1. (Color online) Schematic drawing of a cylindrical jel-
lium nanowire.

present study. To the best of our knowledge, however, previ-
ous studies (including Ref. 31) relied on symmetry restric-
tions for the electron density and/or on simplified DF ap-
proximations. Several other studies focused on the thin-wire
limit, restricting the system to 1D (see, for instance, Ref. 32
and 33). Delocalization in the plane perpendicular to the wire
axis is accounted for by a modification of the electron-
electron interaction removing the Coulomb singularity at
short range. The prescription for this modification is not
uniquely determined, and therefore an additional approxima-
tion is introduced, which is likely to be valid in the limit of
atomic-thin wires, but it is less justified for the mesoscopic
range investigated here. On the other hand, we emphasize
once again that our length and energy units need to be
rescaled using the appropriate dielectric constant and effec-
tive mass before a comparison with experimental data could
be made. The fully unrestricted computations described be-
low provide a high resolution view of the system structure
and electronic properties and point to features and behaviors
that have been repeatedly observed in nanometric wires
whose density approaches that of the Wigner crystal.

II. MODEL AND COMPUTATIONAL METHOD

The model and the methods used in our investigation are
closely related to general models and computational tech-
niques widely used in condensed matter physics**3 and are
briefly described here for completeness and in order to fix
the notation. We consider a highly idealized model of nano-
wires consisting of a rodlike distribution of positive charge
and of N electrons moving in the electrostatic field due to all
the charges in the system. The wire segment has length L, is
globally neutral, and is oriented along the z direction (see
Fig. 1). Cylindrical coordinates (r, ¢b,z) are used throughout
the paper, together with Hartree atomic units.

The simplest model is obtained by considering the follow-
ing distribution of positive charge,

0=z<L
0=z<L.

p, for r=R,
0 for r>R,

p.(r) = p,(r.z) = (1)
where R, is the radius of the cylindrical charge density, and,
in what follows, R.<<L. In other words, the positive density
is constant and equal to p, within the cylinder, and it van-
ishes outside. Following the standard practice of electron gas
studies,* the background density p, is measured by the ra-
dius r, of the sphere that contains one unit charge (r,
=[3/477Pb]1/3)-
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The ground-state energy and electron density are com-
puted by minimizing the functional of the electron density,

N
1
Exs[{gyii=1, ... .N1= > (¢ - EVZ
i=1

1
+ EVHa(r) +uxclpll ) (2)

with respect to the N occupied Kohn—Sham (KS) orbitals
{4}, which, in turn, determine the electron density according
to the relation

N
p(r) =2 [y(r)]*. 3)
=1

Here Vy, is the electrostatic potential of positive and nega-
tive charges, and therefore it includes the contribution of the
external field due to the positive background as well as the
Hartree potential due to the electron distribution. Moreover,
uxclp] is the exchange-correlation (XC) energy per electron,
which in our computations is given by the local spin-density
(LSD) approximation.®

Quantum Monte Carlo (QMC) computations for spherical
dots modeled by the same jellium approximation®’ have
shown that in the case of finite metal systems represented by
their valence charge only the LSD approximation provides
results that are better than those of popular gradient corrected
(GC) schemes,*® which, on the other hand, provide a more
accurate description of highly inhomogeneous systems such
as (all-electron) atoms. Nevertheless, the application of LSD
to low-density highly correlated states remains a severe ap-
proximation. Previous studies of the homogeneous electron
gas (heg) phase diagram using DF (Ref. 39) have shown that,
at variance from QMC, LSD predicts a unique transition
from the paramagnetic, homogeneous fluid to a partially po-
larized nonuniform state, taking place at r,=22. Such a den-
sity corresponds well to the magnetic transition as given by
QMC (Ref. 40) but greatly overestimates the QMC value of
the transition density to a bcc Wigner lattice.*! However,
LSD provides a fairly accurate description of the low-density
localized phase, and its prediction of the energy ordering of
different structures and spin configurations for the Wigner
crystal agrees with the results of QMC computations. There-
fore, we resort to LSD with the Perdew—Zunger form of the
exchange-correlation energy*? as a simple and prototypical
model able to provide an approximate but still consistent
description of the phase changes taking place in conducting
nanowires. The quantitative details of the phase diagram,
however, might need an a posteriori adjustment using the
results of higher-order methods (such as QMC) not yet
widely available.** It is interesting to remark that GC
schemes such as the Perdew-Burke-Ernzerhof (PBE) ap-
proximation (Ref. 38) stabilize even further spin-polarized
and space-localized configurations, thus moving the LSD es-
timate of the transitions points to even higher density.

The minimization of the functional (2) is equivalent to the
self-consistent solution of the Schrédinger-type equations,
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1
{— EVZ + Vig(r) + MXC[p]}|‘//i> = €i| ) (4)

for the N states of lowest eigenvalues. In the equation above,
uxclpl=uxclpl+pduxclpl/dp is the exchange-correlation
potential corresponding to the exchange-correlation energy
uxclp] of Eq. (2).

Finite-size effects are minimized by periodically repeating
the basic segment in the z direction, thus approaching the
limit of a geometric wire extending to infinity along a single
direction. The periodicity along z implicitly defines a 1D
Brillouin zone (BZ) of width 27/L, and electron states can
be labeled with a continuous wave vector k, belonging to the
BZ. Results do not depend on the choice of the periodicity L
and of the corresponding number N of electrons in the simu-
lation cell for systems whose density is translationally invari-
ant along z.

The cylindrical symmetry** of the external potential is
retained by the electron density at least for r, in the 2=r,
=06 range appropriate for the valence charge of simple met-
als. In such a case, Eq. (4) can be solved by separation of
variables. First of all, the KS orbitals are factorized accord-
ng to

'r//kz(r) — X(r)eim¢>ei(2ﬂ-/Ll+kz)z, (5)

where m and [ are relative integers and, following widely
accepted conventions, k. is selected in the interval —(7/L)
=k, <(w/L).

The radial function x(r) is then determined by solving the
differential equation,

Pxr) | 1dx(0)
dr? r dr
2

2
+|:2(5_VKS(I'))_<%+]€2) —%]X(F)=0, (6)

subject to the appropriate boundary conditions that for bound
states read

limy(r) = r"(ag + a,r + a,r?), (7)

r—0

exp(= V- er)
lim y(r) = M (8)

r— \r

These conditions can be satisfied for a discrete set of nega-
tive eigenvalues, which we indicate with ¢, (k. + ZT’TI), where
n is a positive integer analogous to the principal quantum
number of atoms. The corresponding radial functions x(r)
depend on the n and m quantum numbers, while they are
independent of [ and k,, and in what follows they will be
denoted by x,,,(r). In addition to these bound states, the
system has a continuum of scattering states whose eigenval-
ues are positive. The ground-state density is given by
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2l
p(r) = E f|: enm(kz + %) :| |Xnm(r)|2dk2’ (9)

nml ¥ BZ

where f[ €] is the occupation number. In the case of a cylin-
drical ground state, the z-momentum dependence of e,,,(k.)
is given by

k2
enm(kz) = enm(kz = 0) + Ez P (10)

and the integration over k, can be performed analytically.?’
States are occupied up to an energy € such that the number
of states whose energy is less than € is equal to the number
of electrons in the system. The total number of distinct {nm}
combinations found for the occupied states is by definition
the number of occupied subbands for the wire under inves-
tigation. As detailed below, this number is of the order of 10
for the sizes investigated in our study.

In our computation a radial grid of 2000 points has been
used, extending up to R,,,,=4R, in the case of high-density
samples (r;<<10) and up to R, =2R,. for low-density sys-
tems. Each orbitals is integrated outward from r=0 and in-
ward from R, using a predictor-corrector method. The cor-
responding eigenvalue is determined by the matching of the
two solutions at R.. Angular momenta up to m=20 have been
considered, and degenerate levels are equally populated at all
stages of the calculation. A similar computational procedure
is adopted for the determination of the Coulomb potential
from the charge density.

Apart from the k, label and apart from obvious differences
in the radial equations, the approach is completely analogous
to methods routinely used to compute the electronic structure
of atoms with the restriction to spherical symmetry, and high
accuracy solutions can be obtained relatively easily with a
limited computational effort. The method outlined above has
been used several times to determine the ground-state prop-
erties of jellium wires whose density has cylindrical
symmetry.*?8 It has been implemented one more time by us,
and the solutions have been used to test the accuracy and
convergence of the results provided by a more general but
computationally more intensive method.

The restriction to cylindrical symmetry for the electron
density has to be abandoned in order to describe broken sym-
metry solutions, expected to arise at low p, densities, and
also in the case of wires subject to an external perturbation
not conserving the original symmetry. In those cases a gen-
eral solution is obtained upon expanding KS orbitals in plane
waves,

lﬂ]((l)(l') — 2 cg)eiGreikr. (1 1)
G

In doing so we assume that the system is periodic in 3D, and
we impose a fictitious periodicity of length (L,,L,) in the
plane perpendicular to the z axis. Among other things, this
periodicity implies that the label k is now a 3D vector. The
plane wave expansion of Eq. (11) is limited to those G vec-
tors such that |G+k|? is less than a preselected cutoff E,
which has the dimensions of an energy, and in what follows
is measured in Rydbergs.
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The functional Egg[{i;}] is in fact is a function of the
multitude of {c(G’)k} coefficients, and it can be optimized by
iterative minimization using the information provided by the
gradient,

OExs _ J SExs diyi)(r)
ac® " %) suldx) dcl)

— 2 f %ei(ﬁdl‘
e J sy (r)

= f Hylp. K] (r)e'®dr. (12)
k

The sum over k points is a discretized version of the integral
over the Brillouin zone implied by the 3D periodicity.

The actual optimization may be achieved by a variety of
methods,* including steepest descent, conjugate gradient,
etc. We used a simple interpolation-minimization scheme
that will be described elsewhere. In all cases the energy
minimization is performed at fixed spin polarization {=(n,
—n_)/(n.+n_), where n, and n_ are the spin-up and spin-
down charges, respectively. The sum of n, and n_ is equal to
N, although neither of the two partial charges needs to be an
integer if the system is a metal. The empty states are deter-
mined by minimizing the sum of their KS eigenvalues in the
fixed potential of the ground state density.

The iterative approach briefly outlined in this section
closely follows the plane wave methods developed for ab
initio simulations, and a variety of technical details can be
found in Ref. 45. The approach and the related computer
program can be easily adapted to account for more realistic
pseudopotential models and to allow the simultaneous mo-
tion of ionic and electronic degrees of freedom whenever the
shape of the positive charge is allowed to evolve in time.

As described below, for low r, (high density) and up to at
least r;=20, the ground-state density turns out to be cylindri-
cally symmetric, and the cutoff energy for the 3D-plane
wave computation is tuned by the comparison with the re-
sults of the radial program using full cylindrical symmetry.
Total energies computed by the two methods shows that con-
vergence in the plane-wave expansion is already achieved at
a cutoff energy of E,(r,)~10/r> Ry. The localized states
found at low density (r;=30) are more difficult to represent
in plane waves, and explicit tests have shown that a cutoff
energy of Ecm=20/rf Ry is required for a uniform conver-
gence of ground-state properties over the full density range
1=r;=100 explored in our study. More details on conver-
gence are given below, in relation to the precise conditions
(size, density, and net spin polarization) of our computations.
Despite the relatively low cutoff, the large cell size implies
that the number of variational degrees of freedom is of the
order of 5 X 10* per state. Taking into account the high num-
ber of states included in our computations, it is not surprising
to find that the minimization of the energy functional turns
out to be relatively time consuming, requiring ~ 10 days on a
single AMD Opteron (2.2 GHz) processor even for the small-
est (N=240) system size.
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We emphasize that while the nominal (or net) spin polar-
ization {=(N,—N_)/(N,+N_) is an input parameter of our
computations, the spin density pg(r)=p,(r)—p_(r) is fully
unconstrained both in the radial cylindrical and in the plane
wave approach, and Is=[|ps(r)|dr can be significantly larger
than |[N,—N_|. In particular, at low background density (r,
>30) local spin polarization is found also in nominally para-
magnetic samples at {=0.

III. COMPUTATIONAL RESULTS

Computations have been performed for a series of wires
of length L=32r, periodically repeated along z, consisting of
N=240 electrons moving in the electrostatic potential of a
cylindrical distribution of positive charge whose plasma pa-
rameter r, spans the range 1=r,=100. At r,=1, therefore,
the radius of the positive charge is R.=3.162 a.u., or
1.673 A, and the wire segment explicitly included in the
computation is 16.93 A long. The radius reaches 167.3 A at
the lower-density range (r,=100), and in such a case the
periodicity along z is 1693 A or 0.1693 wum. All wires have
the same aspect ratio L/R.=10.12.

Plane-wave computations have been performed using a
cubic simulation box of side L, and, therefore, the back-
ground density occupies ~3% of the simulation box. We
verified that the overlap of KS orbitals and electron densities
from periodic replicas of the central wire is negligible. In
order to investigate the size dependence of the results, plane-
wave computations have been performed also for larger sys-
tems (N=480 electrons) and r,=1, 20, 30, 40, and 70. The
same simulation box of the N=240 samples has been used
for this second set of computations, and the aspect ratio of
the wires turns out to be L/R.=7.2.

Because of the fairly large size of our samples and con-
sidering also their low average density, the sampling of the
system Brillouin zone in the plane-wave computations has
been restricted to the I'-point only. The electron density of
states (DOS) resulting from the I'-point sampling reproduces
only qualitatively the exact result (see Fig. 2 for the N
=240 electrons system at r,=20). However, test computa-
tions for different system sizes and/or better k, sampling
show that the discretization of the DOS does not affect the
results in a significant way, and, in particular, it changes only
slightly the relative stability of different phases in the transi-
tion region. Moreover, the role of k, points is decreased by
the fact that the systems we are primarily interested in (i.e.,
the low electron-density wires) are in fact insulators.

The full range of spin polarizations 0=¢=1 has been
explored by varying the relative number of spin-up (N,) and
spin-down (N_) electrons, starting from the paramagnetic
case (N,=N_=120), and progressively increasing (decreas-
ing) N, (N_) in steps of ten electrons up to N,=240 (N_
=0). We use here N, and N_ instead of n, and n_ to indicate
that the net spin imbalance N,;,=N,—N_ is restricted to in-
teger values.

pin

A. Computations in the radial-cylindrical approach

The results obtained by the radial code under the restric-
tion of cylindrical symmetry are summarized in Figs. 3 and
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FIG. 2. (Color online) Comparison of the exact DOS (full line)
with the approximate result from a I'-point computation (dash line)
for a 240-electron wire of length L=32r; and diameter 2R,
=6.326r, at r;=20. The electronic configuration (ground state) is
paramagnetic. The discrete eigenvalues of the I'-point computation
have been convoluted with a Gaussian of 7.2510™* eV half-width.
4. Our data agree with those of previous computations?®?
whenever a comparison is possible.

As pointed out in Ref. 29, the enhancement of the ex-
change interaction due to confinement, together with the de-
generacies of cylindrical wave functions in very thin wires
may give rise to a progressive filling of subbands reminiscent
of Hund’s rule in atoms. In turn, this implies that partial
polarization may arise at densities as high as those of bulk
sodium (r,=4). The integral of the spin polarization density
ps(r)=p,(r)—p_(r) is small, amounting to a few electrons at
most, and, therefore, the relative spin polarization is fairly
low as soon as the wire radius exceeds monatomic thickness.
Moreover, as expected, pg(r)=p,(r)—p_(r) always peaks at
the background edge in high-density samples, and spin po-
larization might indeed represent the precursor of spin polar-
ized states quasilocalized at the surface of the semi-infinite
jellium.

15
— rg=1
—— 1g=15
rg =10 -+
“\
\
\
1\\
0 N~
0 1 2

r/R,

FIG. 3. (Color online) Electron density p(r) as a function of the
radial coordinate r at three values of the electron gas parameter r,,
computed using the 1D algorithm under the assumption of cylindri-
cal symmetry (Ref. 44). The positive density distribution has radius
R.=3.162r,, and the ground state is paramagnetic for the three cases
displayed here.
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FIG. 4. (Color online) Radial dependence of the Kohn-Sham
potential Vig(r) (full line) and of the electrostatic potential Vi, (r)
for wires at r_1 and r;=5.

Extensive spin polarization in the ground state appears
only at much lower density, far below those found in elemen-
tal metals, but achievable in artificial conductors obtained by
doping semiconducting structures or polymeric chains. A
plot of the spin polarization energy AE¢({)=E;({)—E(0)
for the wire and for the homogeneous electron gas shows
that at low density and for the relatively thick wires consid-
ered in our study, the stabilization of the spin polarization
brought about by confinement and by inhomogeneity is fairly
modest (see Fig. 5). Nevertheless, computations in the cylin-
drical symmetry approximation show that the transition to a
(partially) spin-polarized ground state takes place at r,=27.
At variance from what has been found in high-density wires,
the spin polarization in low-density (nominal {~0) low-
spin-polarization samples tends to be localized in the central
region of the wire, with only negligible contributions from
regions beyond the background radius.
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g
FIG. 5. (Color online) Spin polarization energy AEg({)

=E () —E(0) for the wire (full line) and for the homogeneous
electron gas (dash line). Computations have been performed for a
finite system with N=240 electrons under the assumption of a cy-
lindrically symmetric charge density.
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A detailed comparison of the phase change observed in
wires with the same paramagnetic to ferromagnetic transition
in the heg is in order. In our computations we use the local-
density exchange-correlation approximation of Perdew and
Zunger*? (PZ). Together with the elementary expression for
the kinetic energy of plane wave KS orbitals,*® the PZ ap-
proximation gives an expression for the polarization energy
AEgeg(g) of the heg, which has a minimum at (=0 for r
=75 and at {=1 for r,>75. The magnetic transition in the
heg as described by the PZ formula, therefore, is first order;
it corresponds to the change from paramagnetic at high den-
sity to fully spin polarized at low density and takes place at
r,=T75, i.e., at a density far below the one found in the wire
computations. It is important to note, however, that plane
wave computations for the extended electron gas using the
same PZ approximation but without the homogeneity restric-
tion for the electron density in the jellium model do find the
transition at r,=22.% In this case, the transition takes place
between the paramagnetic homogeneous state stable at high
density and a partially spin polarized inhomogeneous elec-
tron density at higher r.. Our computations for wires using
the radial-cylindrical formalism exclude density modulations
along z, but partial spin polarization is allowed, as well as
partial localization in the radial direction, manifesting itself
in the enhancement of the density oscillations along the ra-
dial direction with increasing r,. These two effects combined
are responsible for the change of the transition point from
r,=T75 in the heg to r,~ 27 in wires. We emphasize, however,
that this displacement of the transition density is due far
more to the release of the homogeneity constraint (along r)
than to confinement and reduced dimensionality, even though
these effects also play a secondary role, as will be shown
below.

In the past, the discrepancy between the r =75 transition
for the heg implicit in the PZ exchange-correlation interpo-
lation and the results of plane wave computations has been
attributed to a failure of LSD for highly correlated systems.
However, it is difficult at present to unambiguously conclude
whether this is indeed the case, or whether the LSD-plane-
wave result faithfully predicts a real jellium property. In fact,
despite a growing number of quantum MC studies,3¢4%4! the
exploration of the jellium phase diagram is still incomplete,
and, in particular, computations for partially spin polarized
and partially localized states (see below the discussion of
localization in the KS orbitals) similar to those found by
LSD have never been carried out for densities corresponding
to r,=30.

B. Plane-wave computations

Electron localization is fully accounted for by the 3D-
plane-wave computations, whose results display the same
magnetic transition at nearly the same density of the radial-
cylindrical computations. More precisely, up to r,=30 the
solutions found by the plane-wave code also display transla-
tional invariance along z at all £, and, apart from occasional
interchanges of nearly degenerate states, the corresponding
sequence of KS orbitals agrees with that of the radial com-
putations for full cylindrical symmetry. As anticipated in Sec.
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FIG. 6. Total energy per electron of jellium wires computed by
the radial-cylindrical method (full line) and by the 3D-plane-wave
method (full dots). At each r, the energy of the lowest-energy spin
configuration is reported. The arrow marks the transition between
paramagnetic and partially spin-polarized configurations. The polar-
ization energy per electron AEg({) at six background densities is
shown in the inset. Full dots, r,=1; circles, r,=20; squares, r,=30;
filled squares, r;=40; diamonds, r,=70; and triangles, r,=100.

II, the convergence of the plane-wave expansion is con-
firmed by the good agreement of the total energy obtained by
the two computational approaches (see Fig. 6).

Sizable differences between the solutions of the radial
scheme and those of the plane-wave computation first appear
at r,=30. Inspection of the electron density found by the
unconstrained plane wave minimization (see Fig. 7) reveals
that an apparent localization transition involving all coordi-
nates (i.e., now including z) takes place in the samples of

3

N}
I

p/py

5
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highest spin polarization ({=0.5). Localization can be de-
scribed as partial because the overlap of different electron
density peaks is significant, and the density at local minima
is still a sizable fraction of p, (see the inset in Fig. 7). We
verified that the density modulation along z remains nearly
unchanged when the sampling of the BZ is extended to more
k, points. Further analysis described below suggests that the
electron configuration consists of a majority of delocalized
states similar to those found at high density, coexisting with
localized states whose energy is at the bottom and at the top
of the occupied (valence) band. We remark that up to r,
=40 localization in the radial direction, giving rise to a se-
quence of well defined electron-density shells, is more
marked than localization within each of the radial shells.
Moreover, localization is stronger in the inner region of the
wire and somewhat attenuated in the outer electron shell, as
apparent in Fig. 7.

Comparison of the different energy contributions for the
z-invariant and for the localized states show that, as ex-
pected, localization is driven by a gain in correlation energy,
only partly compensated by the kinetic energy term, which
increases upon localization. This energy balance, in turn, ex-
plains why localization takes place at first in spin polarized
samples since the kinetic energy*® of ferromagnetic states is
higher than that of the paramagnetic state, while their corre-
lation energy is lower. On the other hand, the kinetic energy
of the Wigner crystal is nearly independent of spin, and thus,
the kinetic energy cost of localized states is less relevant for
the ferromagnetic configuration, while the potential gain in
correlation energy is comparatively larger. Both energy
terms, therefore, point to high spin configurations as the first
candidates for localization.

Despite the energy gain provided by localization, at r
=30 the ferromagnetic configuration is still slightly higher in

FIG. 7. (Color online) Electron
density of a fully spin polarized
jellium wire obtained by the plane
wave method. N=240, r,=30.
Panel (a): 2D plot of the density
p(r,z) on the axial plane ¢=0.
Panel (b): 1D plot of the electron
density p(z) along the line parallel
to the cylindrical axis of coordi-
nates: x—a=y=0, where a=2.25
Xry=0.71R,
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FIG. 8. (Color online) Electron-density contour plot for the ferromagnetic ground state of the r;=70, N=240 wire. Panel (a): transversal
view. Panel (b): perspective view. Panel (c): radial density profile obtained upon averaging the 3D density over ¢ and z.

energy than the paramagnetic z-invariant state. The energy
difference between the two, however, is very small, and, in
fact, the ground-state energy is almost constant over the en-
tire 0={=1 range, suggesting that in the vicinity of the
localization transition spin glass features might arise from
the near degeneracy of several different spin states. This
same near degeneracy with respect to changes of { makes it
difficult to provide an accurate determination of the net
ground state spin polarization at densities close to the tran-
sition point (see the inset in Fig. 6). Nevertheless, plane-
wave computations confirm the stability of partially polar-
ized stated at r; slightly higher than 30, as already
anticipated by the radial-cylindrical computations. Of course,
these observations imply that the transition to the spin polar-
ized state is at most weakly first order.

The fully ferromagnetic state becomes the state of lowest
energy for r,=35, the shift in the transition point from r;
=27 estimated in the radial cylindrical method due to the
discretization of the DOS, and to the finite plane wave ex-
pansion of orbitals and electron density, which affects spin-
polarized systems slightly more than the paramagnetic ones.
In the low-density regime at r,=40, localization is apparent
in all systems, irrespective of spin polarization, and becomes
progressively more marked with increasing r,. Plots of con-
stant electron density surfaces (isosurfaces, in what follows)
provide a direct and intuitive view of the localization extent
in low-density systems, as apparent from Fig. 8 showing the
p=1.6p, isosurface for the ferromagnetic ground state at r,
=70. Shell effects are apparent from the transversal view of
the density distribution [Figs. 8(b) and 8(c)] and might be
seen as the oversized and frozen-in version of the charge

(Friedel) oscillations already present in the high density lig-
uid phase (see Fig. 3). The perspective view of the same
isosurface [Fig. 8(a)] clearly shows that the system consists
of an assembly of well defined charge droplets. In what fol-
lows, these droplets will sometimes be referred to as charge
blobs to account for their somewhat irregular shape.

The gradual organization of charge into shells with in-
creasing r,, followed by the breakdown of shells into one-
electron droplets is qualitatively similar to the two-stage
freezing (or, equivalently, melting) observed in 2D circular
quantum dots (see, for instance, Ref. 47), whose radial and
orientational orders set in at different densities and/or tem-
peratures. Only for sufficiently large systems the two local-
ization processes merge into a unique freezing transition.

The fairly regular pattern displayed by the droplets distri-
bution in low-density samples suggests that a geometrical
lattice, possibly closely related to the bcc structure of the
extended Wigner crystal, might underlay the ground state
charge configuration. To identify this ideal geometry, the
continuous density distribution provided by LSD is mapped
onto a particles configuration by (i) first identifying con-
nected regions whose density is higher than p.,=2p,, and
then (ii) associating one particle to each of these domains,
and locating it at the center of mass of the corresponding
charge distribution. This procedure provides a fully unam-
biguous result only for systems of fairly high r, (r,>50). For
these low-density systems, the number of connected regions
(and thus the number of associated particles) is always very
close to the number N of electrons in the system, the differ-
ence being at most a few units in all samples at r,=70, thus
lending a reality flavor to the representation of the electron

245312-8



SPONTANEOUS SPIN POLARIZATION AND...

FIG. 9. Radial distribution function of particles representing
charge blobs (see text) for a wire of N=240 electrons at r,=70 and
{=1. Inset: running coordination number n.(r) of particles repre-
senting charge blobs. Full line: N=240 electrons, r;=70, {=1; dash
line: N=480 electrons, r,=70, {=1; and dotted line: N=240 elec-
trons, r;=100, {=1. The horizontal lines correspond to full shells of
neighbors in the bee (n,=8 and n.=14) and in the fcc (n,=12)
lattice. The vertical line corresponds to the minimum of g(r) and
defines the cutoff radius for the computation of the average coordi-
nation number.

density by particles. The configuration obtained in this way
closely resembles the low temperature structure of classical
particle models such as the one component plasma (OCP), as
obtained by slowly annealing liquid samples. In this respect,
it is interesting to note that the radial distribution function
g(r) of the representing particles*® belonging to the inner
radial shells of the computed structures displays the same
characteristic features found in the glassy state of the classi-
cal one-component plasma,*® consisting in an asymmetric
first peak and a split second peak (see Fig. 9).

The radial distribution function of particles representing
charge blobs depends only weakly on spin polarization (see
below) and on density for r, =70, apart a trivial scaling of all
distances. The dependence on sample size is also very weak
up to the second peak of g(r), while it becomes important at
larger distances. These results are reflected in the weak den-
sity and size dependence of the running coordination number
n.(r) defined as

r

n.(r) = 477p,,f r'2g(r')dr' (13)
0

and displayed in the inset of Fig. 9.

Despite the unambiguous mapping of charge blobs into
particles, the identification of the ideal structure underlying
the ground-state charge distribution of low-density wires is
made difficult by the unavoidable distortions imposed by the
finite sample size and by the likely mismatch of the optimal
lattice parameter with the other length scales entering the
definition of our model, such as the background radius and
the wire length. However, the major difficulty in character-
izing the particles’ geometry arises from a variety of point
and extended defects such as dislocations and grain bound-
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FIG. 10. Defective configurations in the ground-state distribu-
tion of charge droplets of fully spin-polarized wires at r,=70: (a)
pair (+,-) of miscoordinated droplets in the middle shell of the N
=480 sample; (b) grain boundary on the inner shell of the N=240
sample.

aries that are distributed in the structures produced by our
energy optimization (see Fig. 10) both for the N=480 [Fig.
10(a)] and for the N=240 systems [Fig. 10(b)]. These defects
are likely to result, at least to some extent, from limitations
of our computational scheme, unable to reach the absolute
minimum of the density-functional energy within an accept-
able number of iterations. More importantly, the disorder in
the electron droplets distribution certainly reflect a real and
relevant property of these low energy systems, having a vast
number of similar but different configurations of nearly equal
energy. In turn, the positional disorder frozen into low energy
configurations is likely to affect the properties of electron
density systems measured in experiments and to give rise to
glasslike features in the thermodynamics and real-time dy-
namics of low density wires.

Despite the unavoidable uncertainties due to the intrinsic
disorder of the structures resulting from our computations,
information on the underlying ground state structure can be
obtained from average quantities such as the radial distribu-
tion function g(r) and the coordination number n,, defined as
the value of the running coordination number up to a dis-
tance corresponding to the first minimum of the radial distri-
bution function (r;,=2.3r, for wires of r;=350). The simi-
larity of the particles’ g(r) with those of the OCP already
pointed out above clearly suggests a close relation with a bee
lattice. The coordination number 7, of the charge blobs re-
siding in the inner shell of the computed structures is close to
but nevertheless systematically lower than the n.=14 value
that corresponds to the number of first and second neighbors
in the bee structure (see Fig. 9). However, the absence of the
shell closing at n.=8, also expected for bcc, once again pre-
vents a fully unambiguous identification. A detailed analysis
of the structures found for the N=240 and N=480 samples
however suggest that it might be more appropriate to char-
acterize the computed geometries as being intermediate be-
tween fcc and bece lattices.™

At the highest r,’s considered in our study (r,=70), the
separation of the density peaks is so marked that it is pos-
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(a) (b)

FIG. 11. (Color online) Spin polarization of charge droplets for
the r,=70, {=0 wire. Red: spin up droplets. Blue: spin down drop-
lets. The (a) inner and (b) outer shells are shown separately.

sible and even easy to identify the spatial domain occupied
by each blob. This allows us to verify that not only the num-
ber of droplets corresponds to the number N of electrons,
but, in addition, the integral of the charge density for each
blob is very close to 1, the standard deviation amounting to
only 5%. At low density, therefore, blobs can be identified
with electrons, even though they should not be identified
with KS orbitals, as will be discussed later. The remarkable
correspondence of density blobs and electrons arises from
well known anomalies in the response functions, which in
reciprocal space identify the Brillouin zone of the Wigner
crystal, and in real space delimit the lattice unit cell, thus
determining the size, charge, and spin of the basic building
block.

Individual charge blobs always display partial (at r,<<70)
or full (r,=70) spin polarization for all systems in which
localization is apparent, irrespective of the average polariza-
tion ¢ and including nominally paramagnetic samples. Need-
less to say, this implies that the electronic structure of low-{
systems includes a spin-compensating mechanism, such as
antiferromagnetic ordering or a more general spin wave,
bringing the net spin to the value imposed by the N, and N_
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FIG. 12. Spin-resolved radial distribution function of particles
representing charge blobs for a wire of size N=240 at r;=70, {=0.
Full line: parallel spins and dash line: antiparallel spins. The radial
distribution function of the corresponding system at {=1 is shown
for comparison (dotted line).

values. This is apparent in Fig. 11, displaying the spin polar-
ization of charge blobs for the wire r,=70, {=0 wire. The
spin configuration of the outermost shell is fairly disordered,
while the inner shell displays a regular helical pattern [not
very clear in Fig. 11, as in any two-dimensional (2D) repre-
sentation but apparent in computer visualizations that allow
one to rotate the isosurface] probably related to the enhance-
ment of the spin-spin response function at k,=2K and k,
=4K F.Sl

The disordered spin distribution of the outer shell sug-
gests that the spin-spin coupling constant is fairly small, as
confirmed by the computation of the spin-resolved radial dis-
tribution functions g,,(r) and g, _(r) (see Fig. 12), which
show only a slight predominance of antiferromagnetic cou-
pling in the first coordination shell. This could be seen as the
expected consequence of a nearly disjoint charge and spin
blobs, reducing also the exchange interaction. It is important
to realize, however, that localization concerns the density,
not necessarily the KS orbitals. We verified, in fact, that even

FIG. 13. (Color online) Density isosurface p;=0.05p, for a KS
orbital whose eigenvalue is close to the top of the occupied band.
r,=70, N=240 fully spin polarized ground state. The solid particles
mark the center of mass position of individual charge blobs.
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FIG. 14. Density of states and inverse participation ratio pi_l for
the fully spin polarized wires at r;=30, 40 and 70, N=240

in samples displaying the most apparent charge localization,
each KS orbital contributes to the density of several, widely
spaced blobs, as can be seen in Fig. 13. The qualitative in-
formation contained in this figure is confirmed by a quanti-
tative measure of localization provided by the computation
of the inverse participation ratio, which, apart from a few
cases, points to a remarkably low localization for KS orbit-
als, as discussed below.

Charge and spin localization are nevertheless clearly re-
flected into basic properties of the KS orbitals, affecting, for
instance, the system DOS. As can be seen in Fig. 14, the
density of states for the r,=30, {=1 sample shows a deep
minimum (pseudogap) at the Fermi energy, pointing to an
incipient metal-insulator transition driven by localization.
The r,=40, {=1 sample is clearly an insulator, and at r,
=70, {=1 the energy gap separating occupied and unoccu-
pied states is as wide as the total width of the occupied
bands.

The localization of individual orbitals is measured by
computing the inverse participation ratio, defined as follows.

PHYSICAL REVIEW B 77, 245312 (2008)

FIG. 15. (Color online) Density isosurface p=2p,, for the sample
of N=240 electrons, r;=100, {=0.

First of all, we compute the z-dependent planar average of
each orbital defined as

f Wi(x,y,z)dxdy

mR?

c

l/}flane(z) — , (14)

then the inverse participation ratio pi_1 is computed according
to

f |”l’§)lane(z)|4dZ
-1

pi =L . (15)
[J |l/j};>lane(z)|2dz]2

The definition implies that localized states correspond to
p~'~L and delocalized states to p~'~1. The results, re-
ported in Fig. 14, show that the central and major portions of
the occupied band is made of fairly delocalized states, while
the most localized orbitals are found at the low- and high-
energy band edges. While the localization of these states
could have been expected, the relative delocalization of all
the other states is more surprising, given the apparent strong
localization of the charge.

The different behavior of the density and of KS orbitals
with respect to localization might be related to the invariance
of LSD with respect to unitary transformation of the occu-
pied states, which, by definition, leave the electron density
and the kinetic energy unchanged. A better correspondence
of charge blobs and KS orbitals at r;>40 could possibly
emerge from a Wannier function representation of the elec-
tronic structure, which, however, requires a less elementary
account of k_-point sampling as well as more demanding
computations.

We verified that the DOS and localization properties illus-
trated here by results for samples of N=240 electrons are the
same as those of the larger samples with N=480 electrons,
suggesting that they are more related to basic electron gas
(and jellium) properties than to the details of inhomogeneity
and confinement in the wire geometry. On the other hand, all
the effects described in this section are likely to affect the
transport properties of nearly 1D low-carrier density conduc-
tors. As a last observation, we would like to mention that at
the lowest densities explored by our computations (80=r,
=100) the plane-wave energy optimization gives rise to sur-
prising new structures, especially for the low spin samples,
as shown in Fig. 15 for the N=240 wire of r,=100, {=1.

IV. DISCUSSION AND CONCLUSIVE REMARKS

A jellium model of conducting wires has been investi-
gated by DF-LSD computations spanning a wide range of
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densities (1 =r,=100) and spin polarizations (0={=1). A
computational scheme free of shape approximations and
symmetry restrictions has been adopted based on a plane
wave expansion for the Kohn—Sham orbitals. The model ex-
plicitly describes a fairly large number of electrons (N=240
and N=480) on a finite wire segment periodically repeated in
space to approach a continuous extended wire. The actual
diameter and length of the wire are proportional to r,, reach-
ing the mesoscopic range at low density (high r,). The plane-
wave convergence has been tested by comparison with a cy-
lindrically symmetric computation at low r,.

Starting from a paramagnetic ground state, spin polariza-
tion arises at r,~ 30, in qualitative agreement with previous
studies using a 1D model with an effective electron-electron
potential and an ad hoc XC approximation.’! The transition
to a spin polarized state is accompanied by an apparent
change in the density, displaying a strong enhancement of the
radial oscillations, as well as a marked modulation in the z
direction. Close to the transition point the spin polarization is
only partial ({~0.5), and also the electron localization is
incomplete, giving rise to a density and spin distribution
reminiscent of the broken symmetry state found by LSD
computations for the homogeneous electron gas at compa-
rable background densities. The absolute value of the spin
polarization energy is very small on both sides of the transi-
tion point, and the transition itself is at most only weakly
first order. Both spontaneous spin polarization and electron
localization seen in our computations have a counterpart in
the results of recent experiments.?*-26

Our unconstrained computations offer a wealth of infor-
mation on the ground state structure of the broken symmetry
phase. At sufficiently low density (r,=40) electron localiza-
tion is complete, and the ground state is a collection of
charge droplets, each corresponding to one electron and
1/2 wp. The broken symmetry state is an insulator, and there-
fore the transition could be detected by measurements of the
low frequency electric conductivity. Other general spectro-
scopic properties such as the Raman spectrum might also be
significantly affected by the transition that is likely to change
also the frequency, strength, and dispersion relation of plas-
mon excitations.

The distribution of the charge droplets is fairly regular
and defines a lattice whose structure is intermediate between
bee and fce. Nevertheless, several defects are distributed in
the lowest-energy structures found by our numerical minimi-
zation. Disorder is apparent also in the spin distribution,
which shows only a weak preference for antiferromagnetic
coupling. Both positional and spin disorders might give rise
to glasslike features in the conductivity and in the Raman
excitation spectrum of low-density wires.

Charge localization into one-electron droplets does not
identically correspond to localization of the Kohn—Sham or-
bitals. Nevertheless, the paramagnetic transition and the suc-
cessive progressive localization are clearly reflected in the
DOS and in the inverse participation ratio of electron states.
As shown in Fig. 14, at all densities the central portion of the
valence band is made of delocalized KS orbitals. At r,> 30,
however, the high- and low-energy tails of the band display
increasing localization with decreasing background density.
Quasilocalized states at the band edge are likely to be very
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sensitive to even small perturbations in the external
potential52 due, for instance, to lattice defects or to fluctua-
tions in the doping concentration. At densities close to the
magnetic and localization transition, therefore, the combina-
tion of quasilocalized states and potential fluctuations might
greatly affect the wire conductivity and its spin polarization.
In this respect, and despite the different dimensionality, the
picture emerging from the present study appears to be
closely related to the results of recent experiments,>>* point-
ing to spontaneous spin polarization and localization in 2D
electron systems in high-mobility GaAs/AlGaAs heterostruc-
tures.

The application of LSD to a quasi-1D system is justified
by the fairly large diameter of the wires considered in the
present study, and by the fact that several subbands are popu-
lated in the ground-state configuration. On the other hand,
the application of a mean-field approximation such as LSD
to the highly correlated low-density regime is not without
drawbacks. Additional problems might arise from spin con-
tamination.

The LSD prediction of partial spin polarization and partial
density localization in the heg at densities as high as r,=22
has been seen as a clear indication that LSD fails in the
low-density high correlation regime since fixed-nodes diffu-
sion QMC computations provide a fairly different picture of
the heg phase diagram, predicting a first transition from the
paramagnetic state to a partially spin polarized, but still ho-
mogeneous fluid at r,=25 and a second transition to a
Wigner crystal at [(65=*10)=r;<106].3044!1 However,
even in the case of the heg the comparison still leaves a
narrow margin of uncertainty since QMC computations have
been performed only under rather restrictive choices for the
nodal surface of the ground state wave function. The uncer-
tainty is larger in the case of the wire, whose density is
already nonuniform at all r, values. Further investigations of
this issue would be highly desirable.

Spin contamination is likely to be present in our unre-
stricted solutions, in which we easily select the S, component
of the spin, but cannot determine the spin length S. However,
spin contamination has often been found to be less severe in
LSD than in other approximations relying on the exact
exchange.”

By considering the appropriate limit of the relativistic
Dirac equations, we verified that the spin-orbit energy arising
from the jellium background is negligible. In real systems,
however, spin-orbit interactions with the underlying atoms
might be important and might affect the energy ordering of
subbands.”® This, in turn, might modify the quantitative de-
tails of the picture provided by our computations, but the
qualitative features are likely to remain the same. On the
other hand, noncollinear spin states, excluded by our simple
LSD scheme, might instead appear as broken symmetry so-
lutions both in real systems and in more sophisticated deter-
minations of the nanowire electronic structure. In this re-
spect, the complex density distribution found by our energy
minimization at r,=100, {=0 provides clear evidence that
intriguing surprises may still be expected even from the sim-
plest jellium model of nanowires.
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