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We study the effects of the strong sp-d exchange interaction, ferromagnetic ordering, and large spin fluc-
tuations on quantum transport in a ferromagnetic semiconductor quantum dot �FSQD� coupled to nonmagnetic
current leads. The retarded Green’s function for a FSQD in the Coulomb blockade regime is calculated using
a simple equation of motion technique. The dot level broadening due to sp-d exchange interaction between the
charge carrier spins and the localized magnetic moments of the magnetic atoms is considered within a self-
consistent Born approximation. We also calculate the giant Zeeman splitting of the dot levels, the conductance,
and the spin accumulation on the dot. The model predicts a large dot level broadening due to spin-disorder
scattering, especially at temperatures close to the ferromagnetic ordering temperature. Our main finding is that
in a small FSQD with a large intradot Coulomb repulsion the unusual temperature and magnetic field depen-
dences of the level broadening give rise to a conductance behavior, which is similar to the Kondo resonance in
QDs, even when the higher order correlations in the current leads are neglected.
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I. INTRODUCTION

Spin physics has become one of the most studied
branches of solid-state physics. Also a lot of new ideas as
well as device realizations in the context of spin electronics
�spintronics� have been reported in recent years.1–4 One of
the most challenging applications of spintronics is the quan-
tum computer, which would represent a breakthrough in in-
formation processing.1,5 Due to the reduced dimensionality
and long-lived spin states quantum dots �QDs� have been
proposed as building blocks for the implementation of quan-
tum bits �qubits� for quantum computation.6,7 Recent
experiments8–13 show that electrons in QDs have a long spin
relaxation time �up to 20 ms �Ref. 10�� and it is now possible
to coherently control the electron states and spin in QDs with
a precision up to a single electron. Electronic transport stud-
ies through QDs provide a valuable tool for investigating
various novel physical phenomena, such as the Coulomb
blockade �CB�,14,15 the spin blockade,16 and the tunneling
magnetoresistance.17

Much recent effort in semiconductor spintronics has been
devoted to the development of ferromagnetic semiconduc-
tors, which are created by doping conventional semiconduc-
tors, such as GaAs, with magnetic ions to concentrations of a
few percent.18–20 In these materials, the strong sp-d exchange
interaction between charge carriers and the magnetic ions
results in, e.g., a resistivity peak at the Curie temperature TC
due to spin-disorder scattering and a giant Zeeman splitting
of the electronic states. Interesting novel possibilities arise
when QD structures are combined with magnetic semicon-
ductor materials. The diluted magnetic QDs have been
grown using material systems based on II-VI semiconduc-
tors, such as CdMnTe/ZnTe �Refs. 21 and 22� or
CdSe/ZnMnSe.23 In this way magnetic QDs with a few or
even single Mn atoms in the dot can be fabricated.24,25 An
advantage of the magnetic QDs is that they offer a way to
study the interaction between a controlled number of injected
carriers and the magnetic ions. A versatile control of the

number of carriers, spin, and the quantum confinement could
lead to improved transport, optical, and magnetic
properties.26 Recently, the first high TC ferromagnetic semi-
conductor quantum dots �FSQDs� have been grown using
Co-doped CdSe �Ref. 27� and ZnO,28 and Mn-doped InAs.29

Also the first single electron transistor �SET� made of ferro-
magnetic Mn-doped GaAs has been reported, which, in ad-
dition to CB oscillations, showed a large anisotropic magne-
toresistance effect at low temperatures.30 A new possibility in
FSQDs would be the separate control of the Coulomb and
the sp-d exchange interactions simply by adjusting the size
of the dots.

In QDs new states of many-body character are created at
the Fermi level at low temperatures by the Kondo effect,
which has inspired both theory31–33 and experiment.34–37 The
main signatures of the Kondo effect are a zero-bias conduc-
tance resonance, its specific temperature dependence, and a
splitting of the resonance in a magnetic field. The origin of
the Kondo resonance is related to higher order tunneling of
correlated spin pairs between the quantum dot and the leads
at temperatures below the Kondo temperature. In this paper,
we study the effect of level broadening due to the strong sp-d
exchange interaction on quantum transport in a FSQD. We
predict that in a small FSQD with large intradot Coulomb
interaction all the specific features of the Kondo resonance
may appear even when the higher order correlations in the
leads are neglected completely. Previously transport across a
QD with a single magnetic ion38,39 or through a magnetic
semiconductor QD embedded in a tunneling barrier40 have
been studied theoretically. Also spin-dependent tunneling in
QDs with ferromagnetic leads and in ferromagnetic SETs has
been discussed thoroughly.41–47 In spite of all this activity, to
the best of our knowledge, no work has been done on spin-
dependent transport in a FSQD. Especially, the effect of the
large spin fluctuations and the ferromagnetic ordering on the
dot level broadening in a FSQD have not been considered
previously. In nonmagnetic QDs, intradot spin-flip scattering
due to spin-orbit interaction has been studied by several
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groups.48–51 Also electron spin relaxation induced by
phonon-mediated sp-exchange interaction in a II-VI mag-
netic semiconductor QD has been investigated.52 Here we
study quantum transport in a FSQD by calculating the tem-
perature and magnetic field dependences of the conductance
in the Coulomb blockade regime. We present a detailed
model for a FSQD including a large on-site Coulomb repul-
sion and the strong sp-d exchange interaction between the
charge carriers and the magnetic ions. By using an equation
of motion technique, we calculate the retarded Green’s func-
tion for a FSQD, and the level broadening due to the spin-
disorder scattering is calculated within the self-consistent
Born approximation.

The paper is organized as follows. In Sec. II we describe
the model Hamiltonian for a FSQD. In Sec. III we present
formulation based on Zubarev’s double-time-Green’s
functions.53 We also give explicit formulas for the level
broadening. In Sec. IV we present numerical results for the
level broadening, conductance, and spin accumulation in a
FSQD based on Sec. III. Finally, in Sec. V we give some
final remarks.

II. MODEL HAMILTONIAN FOR THE FSQD

We study the system of a ferromagnetic semiconductor
quantum dot coupled to two nonmagnetic leads by tunneling
processes through thin barriers on the left �L� and right �R�
sides of the dot, as shown schematically in Fig. 1. An addi-
tional electrode provides the gate voltage Vg on the dot,
which can change the position of the energy levels of the dot
with respect to the Fermi energy EF. We assume a disklike
quantum dot with a radius R0 and height z0. The ferromag-
netic subsystem consists of the localized magnetic electrons
such as the five 3d electrons/atom on the Mn ion.

The spin operator for the total spin on a magnetic atom at

a lattice site R� is denoted by S�R� . Then a Heisenberg-type
Hamiltonian for the ferromagnetic subsystem inside the
FSQD is given by

HM = − �
R� ,R��

I�R� ,R� ��S�R� · S�R�� − gL�BB�
R�

S
R�
z

, �1�

where I�R� ,R� �� is the ferromagnetic coupling constant be-
tween the localized spins, and the last term gives the ordi-

nary Zeeman energy when an external magnetic field B� has
been applied in the z direction, i.e., in the growth direction of
the dot. The average spin polarization of the ferromagnetic
atoms can be calculated, e.g., in the mean-field approxima-
tion �see below�.

When considering the charge carrier system on the QD,
we assume a quantum well-type potential confinement in the
z direction with a large band offset and an in-plane parabolic
confining potential in the x and y directions. Then the solu-
tions of the Schrödinger equation HQD

0 �nm�=Enm�
0 �nm� are

the well-known Fock–Darwin states54 �nm��r��=�nm�r������
with the eigenvalues Enm�

0 . Here ���� is the eigenfunction of
the Pauli spin operator �� , and the indices n and m refer to the
radial and angular quantum numbers, respectively. The cal-
culation of the Green’s functions below requires the presen-

tation of the Hamiltonian in the second quantization formal-
ism. Therefore, by using the wave functions �nm��r��, we can
define the following field operators for the charge carriers on
the QD:

�̂�r�� = �
nm�

�nm��r��dnm�, �2�

�†�r�� = �
nm�

�nm�
� �r��dnm�

† , �3�

where the operator dnm�
† �dnm�� creates �destroys� a charge

carrier with spin � on the level �nm��. By using Eqs. �2� and
�3�, we can express the noninteracting dot Hamiltonian as

ĤQD
0 =� d3r��†�r��HQD

0 �r����r�� = �
nm�

Enm�
0 dnm�

† dnm�. �4�

FIG. 1. Schematic drawing of the structure, energy diagram,
and density of states �DOS� of the FSQD including two-spin
degenerate dot levels �d

0 and �d
0+U with the on-site Coulomb

repulsion U. The two levels are split to four levels
�1�↑�=�d

0−�sp-d /2, �2�↓�=�d
0+�sp-d /2, �3�↑�=�d

0−�sp-d /2+U, and
�4�↓�=�d

0+�sp-d /2+U due to the giant Zeeman splitting �sp-d

�see Eq. �10�� caused by the sp-d exchange interaction �9� between
the charge carriers and the magnetic 3d electrons of the magnetic
ions on the dot. The exchange interaction also broadens the levels,
as shown schematically in the DOS. Here 	i’s are the imaginary
parts of the self-energy �27� related to the sp -d interaction.
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Next we can add the perturbations to the Hamiltonian �4�.
The magnetic and electronic subsystems in the FSQD are
coupled by the sp-d exchange interaction, which can be di-
vided into a mean-field part and a fluctuating part,

Hsp-d = Hsp-d
0 + Vsp-d

= − �
R�

Jsp-d�r� − R� �s� · 	S�R��

− �
R�

Jsp-d�r� − R� �s� · �SR� − 	S�R��� , �5�

where Jsp-d�r�−R� � is the sp-d exchange interaction potential,
which is assumed to be of the contact-potential type, and it is
given by

J�r� − R� � = Jsp-d
��r� − R� ���R0 − 
� . �6�

Here Jsp-d is the sp-d exchange interaction parameter, 
 is
the volume of the unit cell, 
= �x ,y� and the Heaviside unit
step function � restrict the potential �6� to the FSQD. The
mean-field part Hsp-d

0 causes the giant Zeeman splitting of the
electronic states in the FSQD in the cases where the average

spin polarization 	S�R�� is nonvanishing. On the other hand, the
fluctuating part Vsp-d gives rise to spin-disorder scattering of
the charge carriers, which in the ferromagnetic semiconduc-
tors may be the dominant scattering mechanism at tempera-
tures close to TC.55 With the field operators �2� and �3� and
the exchange potential �6�, we can express the exchange in-
teraction Hamiltonian �5� in the second quantization form,

Ĥsp-d =� d3r��†�r��Hsp-d��r�� = Ĥsp-d
0 + V̂sp-d, �7�

with

Ĥsp-d
0 = −

1

2
�sp-d

nm �
nm

�dnm↑
† dnm↑ − dnm↓

† dnm↓� , �8�

and

V̂sp-d = − 
 Jp-d


2
� �

nm�

n�m���

R� �FSQD

�nm
� �R� ��n�m��R

� ��S
R�
+
dnm↓

† dnm↑

+ S
R�
−
dnm↑

† dnm↓ + �S
R�
z

− 	S
R�
z ���dnm↑

† dnm↑ − dnm↓
† dnm↓�� ,

�9�

where �sp-d
nm is the temperature and magnetic field dependent

spin-splitting parameter, which is given by

�sp-d
nm �T,B� = xJsp-d	Sz�T,B��
Fnm, �10�

with

Fnm = �
R� �FSQD

��nm�R� ��2. �11�

Here x is the mole fraction of the magnetic atoms, x	Sz�
=�R�	S

R�
z � /N, and N is the number of unit cells. The weight

factor Fnm is smaller than unity since a part of the dot wave
functions lies outside the quantum well, when 
�R0, which
reduces the splitting of the dot levels. The spin raising and
lowering operators are defined as usual by S

R�
+

=S
R�
x

+ iS
R�
y

and

S
R�
−

=S
R�
x

− iS
R�
y
, respectively.

The other important on-site interaction in QDs is the Cou-
lomb repulsion between the charge carriers, which can be
described by the following Hubbard Hamiltonian:32,33

ĤU = U �
n,m,n�,m�,�

n̂nm�n̂n�m��̄, �12�

where U is the electron correlation parameter for the dot,
n̂nm�=dnm�

† dnm� is the occupation operator of the level
�nm��, and �̄ denotes the opposite spin direction to �. By
combining Eqs. �4�, �7�, and �12�, we can write the final
Hamiltonian for the isolated FSQD including the on-site ex-
change and Coulomb interactions,

ĤFSQD = �
nm�

Enm�
�1� dnm�

† dnm� + V̂sp-d + ĤU

= ĤFSQD
�1� + V̂sp-d + ĤU, �13�

where

Enm�
�1� = Enm�

0 −
���↑ − ��↓�

2
�sp-d

nm �14�

is the energy of the spin-polarized dot level including the
giant Zeeman splitting �10�.

The FSQD is coupled to the nonmagnetic leads by tunnel-
ing processes, as shown in Fig. 1. The Hamiltonian for the
charge carriers in the current leads is given by

ĤC = �
k��L,R

�

�k��ck��
† ck��, �15�

where ck��
† �ck��� creates �destroys� a spin-� charge carrier with

momentum k� and energy �k�� in one of the leads on the right
�R� or left �L�. Finally, the tunneling of the charge carriers
between the FSQD and the leads can be described by the
following Hamiltonian:

ĤT = �
k��L

n,m,�

	k���VL�r���nm��ck��
† dnm� + �

k��L

n,m,�

	nm��VL�r��

��k���dnm�
† ck�� + �

k��R

n,m,�

	k���VR�r���nm��ck��
† dnm�

+ �
k��R

n,m,�

	nm��VR�r���k���dnm�
† ck��, �16�

where VL�R��r�� is the potential barrier on the left �right� side
of the FSQD.
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To summarize, we can combine the Hamiltonians �1�,
�12�, �13�, �15�, and �16� and write the final model Hamil-
tonian for the interacting FSQD as

Ĥtot = ĤFSQD
�1� + ĤC + ĤU + V̂sp-d + ĤT + HM . �17�

This Hamiltonian is the simplest one that includes the
coupling between the leads and the FSQD and allows us to
consider the interplay between the on-site Coulomb and ex-

change interactions on the FSQD. Ĥtot also includes the fa-

mous Anderson Hamiltonian ĤA= ĤQD
0 + ĤC+ ĤU+ ĤT for

nonmagnetic QDs.31–33

III. RETARDED GREEN’S FUNCTION FOR THE FSQD

The spectral densities, which are needed in the calculation
of the conductance, level occupations and spin accumulation,
are obtainable from the retarded Green function for the
FSQD.32 It can be calculated, e.g., by means of Zubarev’s
double-time-Green’s-function technique53 �also called an
equation of motion �EOM� method56�. Let us apply this
method to the dot level fermion operators dnm� and dnm�

† in
the case of the total Hamiltonian �17�. By calculating the

commutator �dnm� , Ĥtot�, we get the following EOM for the
dot Green’s function Gnm����= 		dnm� ;dnm�

† ��:

��� − Enm�
�1� �		dnm�;dnm�

† �� = 1 + �
k��L

	nm��VL�r���k���		ck��;dnm�
† �� + �

k��R

	nm��VR�r���k���		ck��;dnm�
† ��

−
Jsp-d


2 �
n�,m�,��,R�

�nm
� �R� ��n�m��R

� ��		�S
R�
z

− 	S
R�
z ��dn�m���;dnm�

† �����↑ − ��↓� + 		S
R�
−
dn�m�↓;dnm�

† ����↑

+ 		S
R�
+
dn�m�↑;dnm�

† ����↓� + U		dnm�n̂nm�̄;dnm�
† ����↑ + U		n̂nm�̄dnm�;dnm�

† ����↓, �18�

New Green’s functions such as 		ck�� ;dnm�
† ��, 		S

R�
�
dn�m��� ;dnm�

† �� ��= + ,−,z�, and 		dnm�n̂nm�̄ ;dnm�
† �� are generated in Eq.

�18�, for which new EOMs can be derived. As an example, let us consider the Green’s function 		S
R�
−
dn�m�↓ ;dnm�

† ��. Here we

have used the Hartree–Fock �HF� approximation to the higher order Green’s function U		S
R�
−
n̂nm↑dnm↓ ;dnm↓

† ��
�U	n̂nm↑�		SR�

−
dnm↓ ;dnm↓

† �� and also the decoupling 		S
R�
−
S

R��

+
dn�m�↑ ;dnm↑

† ���	S
R�
−
S

R��

+ �		dn�m�↑ ;dnm↑
† ��, where 	S

R�
−
S

R��

+ � is the spin
pair correlation function. Furthermore, following the steps we have applied in the case ferromagnetic quantum wells,57 we get

		S
R�
−
dn�m�↓;dnm↓

† �� = −
Jsp-d


2 �
n�,m�,R��

�nm
� �R� ���n�m��R

� ��	SR�
−
S

R��

+ �

��� − En�m�↓ − U	n̂n�m�↑� − �n�m�↓
T �����

		dn�m�↑;dnm↑
† �� , �19�

where the self-energy for the tunneling processes is given by

�nm�

T
���� = �

k��L�R�

�	k���VL�R��r���nm���2

��� − �k���

= Re
�nm�
T ����� − i

��nm��
2

, �20�

with

�nm����� = 2��
k��L

�	k���VL�r���nm���2���� − �k���

+ 2� �
k��R

�	k���VR�r���nm���2���� − �k���

= �nm�
L ���� + �nm�

R ���� . �21�

In the same way, the EOMs for the other higher order
Green’s functions 		S

R�
�
dnm� ;dnm�

† �� with �=+ or z can be

derived. The solutions are similar to Eq. �19� when the spin-
correlation function 	S

R�
−
S

R�
+� is replaced by the functions

	S
R�
+
S

R��

− � and 	�S
R�
z

− 	S
R�
z ���S

R��

z
− 	S

R��

z ��� for �=+ and z, respec-
tively.

The spin operator dependent higher order Green’s func-
tions �19� appear also in the EOMs for the Green’s functions
		dnm↓n̂nm↓ ;dnm↓

† �� and 		n̂nm↑dnm↓ ;dnm↓
† �� generated in Eq.

�18�, for which we find

��� − Enm↑
�1� − U�		dnm↑n̂nm↓;dnm↑

† ��

= 	n̂nm↓� + �
k��L�R�

	nm↑�VL�R��r���k�↑�	n̂nm↓�		ck�↑;dnm↑
† ��

− 
 Jsp-d
	n̂nm↓�
2

� �
n�m�R�

�nm
� �R� ��n�m��R

� �

��		S
R�
−
dn�m�↓;dnm↓

† �� + 		�S
R�
z

− 	S
R�
z ���dn�m�↑;dnm↑

† ��� .

�22�
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Inserting Eq. �19� into Eq. �22� we can solve Eq. �22� and a
similar EOM for the Green’s function 		n̂nm↑dnm↓ ;dnm�

† �� and
obtain

		dnm↑n̂nm↓;dnm↑
† �� =

	n̂nm↓��1 + �tot
�2����,nm↑�		dnm↑;dnm↑

† ���
��� − Enm↑

�1� − U�
,

�23�

and

		n̂nm↑dnm↓;dnm↓
† �� =

	n̂nm↑��1 + �tot
�2����,nm↓�		dnm↓;dnm↓

† ���
��� − Enm↓

�1� − U�
,

�24�

where �tot
�2���� ,nm��=�nm�

T ����+�sp-d
�2� ��� ,nm�� is the to-

tal self-energy including the tunneling processes and the sp-d
exchange interaction. Here �sp-d

�2� ��� ,nm�� is the second or-

der self-energy related to V̂sp-d, which is given by

�sp-d
�2� ���,nm�� = 
 Jsp-d


2
�2

�
n�m�R� ,R��

�nm
� �R� ��n�m��R

� ��n�m�
� �R� ���nm�R� �� ·� 	S

R�
+
S

R��

− ���↓

�� − En�m�↑
�1� − U	n̂n�m�↓� − �nm↓

T

+
	S

R�
−
S

R��

+ ���↑

�� − En�m�↓
�1� − U	n̂n�m�↑� − �nm↑

T
+

	�S
R�
z

− 	S
R�
z ���S

R��

z
− 	S

R��

z ���

�� − En�m��
�1� − �nm�

T � . �25�

Now we can solve our original EOM �18� by inserting Eqs. �19�, �23�, and �24� into Eq. �18�, and finally, we obtain the
retarded Green’s function for the FSQD,

Gnm�
�2� ���� = 		dnm�;dnm�

† �� =
�� − Enm�

�1� − U�1 − 	n̂nm�̄��

��� − Enm�
�1� ���� − Enm�

�1� − U� − �tot
�2����,nm����� − Enm�

�1� − U�1 − 	n̂nm�̄���
, �26�

This result is similar to the one obtained for the nonmagnetic QDs,56,58 excluding correction �25� related to the sp-d interac-
tion.

In the diluted magnetic semiconductors, the sp-d exchange interaction is very large2,20 causing strong spin-disorder scat-

tering at temperatures close to TC. Also the spin-correlation functions 	S
R�
�
S

R��

��� appearing in the self-energy �25� are divergent
in the long-wavelength limit at TC �see Sec. IV B�. Therefore, as shown by Sinkkonen,59 the weak-coupling theory is not valid
anymore, and the self-energy related to the sp-d interaction must be calculated in a self-consistent manner using an infinite
order perturbation theory. In the calculation of the self-energy �sp-d, we can apply Sinkkonen’s method,59 which is equivalent
to the well-known self-consistent Born approximation �SCBA�.58 In our case it means that we continue the chain of EOMs for
the higher order Green’s functions such as Eq. �19� to infinite order. Taking into account only the two-spin-correlation
functions, the summation of the perturbation expansion can be performed, and we get an expression for the self-energy similar
to Eq. �25�. However, now the self-energy appears also in the denominator, and we obtain the following self-consistent
equation:

�sp-d
SCBA���,nm�� = 
 Jsp-d


2
�2

�
n�m�R� ,R��

�nm
� �R� ��n�m��R

� ��n�m�
� �R� ���nm�R� �� ·� 	S

R�
+
S

R��

− ���↓

�� − En�m�↑
�1� − U	n̂n�m�↓� − �nm↓

T − �sp-d
SCBA���,nm��

+
	S

R�
−
S

R��

+ ���↑

�� − En�m�↓
�1� − U	n̂n�m�↑� − �nm↑

T − �sp-d
SCBA���,nm��

+
	�S

R�
z

− 	S
R�
z ���S

R��

z
− 	S

R��

z ���

�� − En�m��
�1� − �nm�

T − �sp-d
SCBA� , �27�

Furthermore, in SCBA the retarded Green’s function �26� can
be expressed in a compact form as

Gnm�
SCBA���� =

1 − 	n̂nm��
�� − Enm�

�1� − �tot
SCBA���,nm��

+
	n̂nm��

�� − Enm�
�1� − �tot

SCBA���,nm�� − U
,

�28�

where

�tot
SCBA���,nm�� = �nm�

T ���� + �sp-d
SCBA���,nm�� . �29�

We find, as in the case of nonmagnetic QDs,32 that
Gnm�

SCBA���� has two resonances, one at ��=Enm�
�1�

+�tot
SCBA��� ,nm�� weighted by the probability 1− 	n̂nm��

that the other level is vacant and the other one at ��
=Enm�

�1� +�tot
SCBA��� ,nm��+U weighted by the probability

	n̂nm�� that the other level is occupied. However, in the case
of the FSQD, there is an additional renormalization of the
dot levels by Re
�nm�

SCBA� as well as a level broadening
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Im
�nm�
SCBA� due to the sp-d exchange interaction. The quan-

tity Im
�sp-d
SCBA� /� can be interpreted as a scattering rate for

the spin-disorder scattering,55 where the first two terms in
Eq. �27� describe the spin-flip processes �̄= ↓ →�=↑ and
�= ↑ → �̄=↓, respectively, and the last term is related to the
transitions without any spin flip. An interesting fact is the
appearance of the terms U	n̂nm�� in the denominator of Eq.
�27� as a consequence of the HF approximation in the deri-
vation of the higher order Green’s functions. Therefore, the
self-energy and the occupation probabilities must be calcu-
lated in a self-consistent manner. We have used the HF ap-
proximation only for the spin-flip terms in the derivation of
Eq. �27�, since in the case of the transitions without spin-flips
we will consider only the transitions within the broadened
dot level �see Sec. IV�. The self-energy �27� and the Green’s
function �28� are the main results of the present work, which
allow us to estimate the spectral densities and the conduc-
tance in a FSQD as a function of temperature and external
magnetic field.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Parameters

In order to simplify the calculations and to see clearly the
effect of the sp-d exchange interaction on the properties of
the FSQD, we assume that the dot consists only of a single
spin-degenerate energy level �d��Enm�

�1� , given by Eq. �14�,
on which there is the Coulomb interaction U, as shown in
Fig. 1. Here �d� denotes the topmost occupied level of the
dot, which we consider responsible for transport. All other
energy levels En�m��

�1� of the dot are neglected since we as-
sumed that they do not take part in transport. Therefore, in
our model FSQD we have only four different energy
levels denoted by �1�↑�=�d↑=Enm

0 −�sp-d
d /2,

�2�↓�=�d↓=Enm
0 +�sp-d

d /2, �3�↑�=�d↑+U=Enm
0 −�sp-d

d /2+U,
and �4�↓�=�d↓+U=Enm

0 +�sp-d
d /2+U �see Fig. 1�, when the

spin degeneracy is removed due to the giant Zeeman splitting
�sp-d=xJexch

sp-d	Sz�F00=�2�↓�−�1�↑�=�4�↓�−�3�↑� in the case
of a nonvanishing spin polarization 	Sz� of the magnetic ions.
Here we have neglected the ordinary Zeeman splitting since
at the magnetic fields studied in the present paper it is orders
of magnitude smaller than �sp-d

d . Furthermore, we assume
that F00 can be calculated from Eq. �11� for the ground state
wave function54 �00 given by

�00�
,z� = 
 �2

l�
��z0

�sin��

z0

z +

z0

2
��e−
/2l�, �30�

where lw describes the decay of the wave function. We con-
sider a rather small dot with dimensions R0=z0=10 nm, for
which the charging energy U can be estimated using the first
order perturbation theory for the Coulomb interaction Wee
=e2 /4��r between the two electron on the dot, U
= 	00�Wee�00��30 meV.54 However, in the calculations be-
low, we vary the value of U between 5 and 50 meV since the
size of the QDs can be varied in the fabricated dots. The
other material parameters were those of diluted III-V mag-
netic semiconductors, such as Mn-doped GaAs: a0=5.65 Å,
x=0.04, TC=30–50 K, m�=0.5m0, and S=5 /2. One of the

most interesting parameters for FSQDs is the sp-d exchange
interaction parameter Jsp-d, for which the experimental val-
ues vary a lot. In the case of the electrons the estimates range
from 0.023 �Ref. 60� to 0.18–0.26 eV,61 and in the case of
holes from 0.6 �Ref. 62� to 2.5�0.8 eV.63 In the present
work, we have chosen mainly the lower values, i.e, Js-d
=0.1 eV for electrons and Jp-d=0.8 eV for holes, in order to
compensate partly for the too large values of the spin-
correlation functions for FSQDs, when they are estimated
from the results derived for bulk ferromagnets in the long-
wavelength limit �see Sec. IV B�. For the coupling parameter
�, we use the constant value of 0.5 meV for all the dot levels
�a wide-band limit� symmetrically on both sides of the
FSQD.

B. Spin correlation functions

The experimental results29 for magnetization vs tempera-
ture show that the FSQDs behave qualitatively according to
the predictions of the mean-field theory. Therefore, we have
estimated the average spin polarization of the magnetic at-
oms inside a FSQD from Hamiltonian �1� within the molecu-
lar field approximation �MFA�,59,63,64 which yields

x	Sz� = N−1�
R�

	SR�
z � = xSBS��� . �31�

Here BS��� is the Brillouin function for the spin quantum
number S of the magnetic atoms and

� =
gL�BS

kBT
Beff =

gL�BS

kBT
�B +

3kBTC

S�S + 1�gL�B
	Sz�� , �32�

where Beff is the effective molecular field acting on the spin

S�R� . There is no theory of spin fluctuations in small magnetic
quantum dots having a limited number of magnetic ions.
Although the measured average magnetization29 in small
FSQDs behaves according to the mean-field theory, we have
no guarantee that the spin pair correlations act as those in the
bulk ferromagnets. Especially, we may expect that in the
case of the FSQDs made of the diluted magnetic semicon-
ductors, the ferromagnetism is more complex than in bulk
due to, e.g., the epitaxial strain, substitutional disorder, quan-
tum confinement, clustering of the magnetic atoms, carrier
induced ferromagnetic coupling, and bound magnetic po-
larons. All these effects may suppress the spin fluctuations in
QDs compared to those in bulk. However, in spite of all
these effects, we believe that at least a qualitatively correct
behavior �i.e., a peak at TC and a suppression of fluctuations
with external magnetic field� can be found using MFA in the
derivation of the spin pair correlation functions if we take
into account the substitutional disorder, i.e, the fact that a

magnetic atom is found at a lattice site R� with probability x.
Then we can apply the method developed by Sinkkonen59,63

and later refined by Takahashi et al.65 for the calculation of
the temperature and magnetic field dependence of the spin-

correlation functions 	S
R�
�
S

R��

��� needed in the self-energy �27�.
The expressions in the long-wavelength limit are given by

LEBEDEVA, HOLMBERG, AND KUIVALAINEN PHYSICAL REVIEW B 77, 245308 �2008�

245308-6



C−+�T,B� = C+−�T,B� =
��T�xTS2BS���/�

T −
3STCBS���

��S + 1�

, �33�

Czz�T,B� =
��T�xTS2 � BS���/��

T −
3STC � BS���/��

�S + 1�

, �34�

where C����T ,B�=limq→0	S
R�
�
S

R��

���q and 	S
R�
�
S

R��

���q is the
Fourier transform of the spin-correlation function with
� ,��= + ,−,z. ��T� is a weakly temperature dependent factor
which has the value of 0.5 at temperatures close to TC and
then increases slightly at higher temperatures.65 We have
used the constant value of 0.5 in all our numerical calcula-
tions since we are mainly interested in the behavior of the
FSQDs in the temperature region where the spin fluctuations
are largest, i.e., when T�TC. Using a Taylor expansion for
the Brillouin function BS�����S+1�� /3S, when ��1, we
find that the spin-correlation functions �33� and �34� diverge
at T=TC, C����T��1 / �T−TC�, which was the motivation for
the use of the infinite order perturbation theory59 in the deri-
vation of the expression for the self-energy �27�.

Figure 2 shows the transverse and longitudinal spin pair
correlation functions �33� and �34�, respectively, vs tempera-
ture at various magnetic fields in a FSQD, when the Curie
temperature is 30 K. The main difference between the two
functions is found at low temperatures T�TC, where the
transverse correlation function C+−�T ,B� �and C−+�T ,B�� is
much larger than the longitudinal function Czz�T ,B�. An im-
portant feature is the large magnetic field dependence of the
correlation functions at temperatures close to TC, i.e., the
spin fluctuations are suppressed strongly by an increasing
magnetic field. Although expressions �33� and �34� may
overestimate the magnitude of the spin fluctuations, we be-
lieve that a detailed theory for the spin correlations in a small
FSQD would preserve the main features of C����T ,B�, i.e.,

the strong peak at T=TC and the decrease of the spin fluc-
tuations with increasing magnetic ordering.

C. Spectral densities and level broadening

The spectral densities for a FSQD can be expressed in
terms of the dot Green’s function �28�, and they are given by

Ad���� = −
1

�
Im
Gd�

SCBA��� + i��� . �35�

On the other hand, the Green’s function Gd�
SCBA depends

on the occupation probabilities 	n̂��, which are given by an
integral of the spectral density weighted by the Fermi factor
nF���,

	n̂d�� =� d�nF���Ad���� . �36�

Furthermore, using the correlation functions �33� and
�34�, we can estimate the level broadening 	i

SCBA for the
level �i��� from the imaginary part of the self-energy �27�,
and it is given by

	i
SCBA��i���� = Im
�sp-d

SCBA��i�����

= 
 Jsp-d
F00

2
�2

�� C+−�T,B�	i�
tot��↓

��i�↓� − �̃d↑ − U	n̂d↑��2 + �	i�
tot�2

+
C−+�T,B�	i�

tot��↑

��i�↑� − �̃d↓ − U	n̂d↓��2 + �	i�
tot�2

+
Czz�T,B�	i�

tot

��i��� − �̃d��2 + �	i�
tot�2� , �37�

where 	i�
tot=	i

SCBA��i����+� /2 is the total level broadening
including both spin-disorder scattering and tunneling, and

�̃d� = Enm�
0 + Re
�sp-d

SCBA� + Re
�T� −
�sp-d

d

2
���↑ − ��↓�

� �̃d −
�sp-d

d

2
���↑ − ��↓� . �38�

We have solved Eqs. �35�–�38� self-consistently by itera-
tions. For the spin-flip processes in Eq. �37�, we have con-
sidered transitions between the dot levels having opposite
spins, such as the transition from �1�↑� to �2�↓�, but for the
transitions without spin-flips only those which occur within
the broadened level. This is possible, when the level broad-
ening is calculated self-consistently from Eq. �37�. Figure 3
summarizes the behavior of the spectral density Ad↑��� for
spin-up electrons in a FSQSD with the parameters TC
=30 K, x=0.04, U=40 meV, Jexch

s-d =0.1 eV, and lw
=0.7 nm. The results for the spin-down electrons are mirror
images of those in Fig. 3 with respect to the energy ��
= �̃d+U /2 �particle-hole symmetry33�. At low temperatures
T�TC, where the spin fluctuations are small, there are two
resonances at ��� �̃d and ��� �̃d+U. At T�TC the large

FIG. 2. Transverse and longitudinal spin-correlation function
C+−=C−+ and Czz, respectively, vs temperature at various external
magnetic fields in a FSQD with TC=30 K.
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spin fluctuations, and consequently, the large level broaden-
ings �see below� decrease and broaden the resonance peaks.
On the other hand, even at T�TC a magnetic field restores
the resonance peaks due to decreasing level broadening with
increasing magnetic field.

Figure 4 shows the calculated level broadenings 	1
=Im
�exch

SCBA��1�↑��� and 	2=Im
�exch
SCBA��2�↓��� as a function

of temperature at various magnetic fields. The results for

	3�	4� are similar to those of 	2�	1�. The level broadening is
very large as compared to the coupling constant �, even with
a rather small value for the exchange interaction parameter
Jsp-d=0.1 eV. The large values for 	i are related to an over-
estimation of the spin-correlation functions �33� and �34�,
when they are calculated in the long-wavelength limit. How-
ever, this overestimation is not a problem in our case since
for the conclusions from the conductance results below, the
most important factor is the ratio Jsp-d /U, which can be ad-
justed in FSQDs quite freely by changing the size of the dot
and thereby changing the Coulomb repulsion U.

The strong temperature and magnetic field dependences
of the level broadenings in Fig. 4 are due to the T and B
dependences of the spin-correlation functions C����T ,B� �see
Fig. 2�. At temperatures close to TC, the level broadenings
are on the same order of magnitude as the charging energy
U. At low temperatures T�TC, 	2 is larger than 	1 since in
this temperature range the spin-flip processes between the
broadened dot levels dominate in 	2, where as in 	1 the
transitions within the broadened levels without spin-flip are
more important. More precisely, in the case of the
spin-flip processes for 	1 and 	2, we get ���− �̃d−U	n̂d↓��
= ��sp-d

d +U	n̂d↓�� with ��=�1�↑�= �̃d−�sp-d
d /2 and

���− �̃d−U	n̂d↑��= ��sp-d
d −U	n̂d↑�� with ��

=�2�↓�= �̃d+�sp-d
d /2, respectively, in the denominators of Eq.

�37�. Therefore, with the increasing Zeeman splitting �sp-d
d at

T�TC, 	1���sp-d
d +U	n̂d↓��−2 decreases, whereas 	2

���sp-d
d −U	n̂d↑��−2 increases, especially if �sp-d

d �U	n̂d↑�.
This condition can also be interpreted as a spin-flip reso-
nance between the levels �2�↓� and �3�↑�. The spin-flip pro-
cesses are improbable during the double occupancy of the
dot since, e.g., the transition from �1�↑� to �2�↓� is forbidden
if 	n̂d↑�= 	n̂d↓�=1. However, in the case where the Fermi en-
ergy lies between �̃d and �̃d+U and where also the large
conductance resonance is seen, we find that on the average
the dot is singly occupied with 	n̂d↑��	n̂d↓��0.5 �see Sec.
IV E�. This is a finding previously reported in the case of the
Kondo resonance.31 The intradot spin-flip scattering in non-
magnetic QDs due to spin-orbit coupling has been discussed
by several groups48–51 using phenomenological models. In
our model �27� both the spin-flip and nonflipping processes
are treated using a microscopic theory.

D. Conductance

The linear magnetoconductance g=limV→0 � I /�V through
a QD can be calculated using a Landauer-type formula32,33

generalized to interacting systems in the wide-band limit,

g�T,B� =
e2

�2

�L�R

�L + �R
�
�
�

−�

�

d�Ad���,T,B�
−
�nF���

��
� ,

�39�

Figure 5 shows the conductance vs Fermi energy �or gate
voltage eVg� at 4 K�TC and at B=0 T for various values of
the Coulomb repulsion U. The other parameters are the same
as in Fig. 3. When U=5 meV or less, there is only a single
peak and no CB effect. This is due to the fact even at 4 K the
level broadening 	2 �and 	3�, shown in Fig. 4, is on the same

FIG. 3. Spectral density Ad↑��� vs �� in a FSQD with TC

=30 K, x=0.04, U=40 meV, and Jexch
s-d =0.1 eV �a� at two tem-

peratures �B=0 T� and �b� at two magnetic fields �T=40 K�.

FIG. 4. The level broadenings 	1=Im
�exch
SCBA��1�↑��� and 	2

=Im
�exch
SCBA��2�↓��� vs temperature at various magnetic fields in a

FSQD. The results for 	3�	4� were similar to those of x 	3�	4�. The
parameters are the same as in Fig. 3.
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order of magnitude as U, which washes out the sharp reso-
nances. For larger values of U, the ordinary CB effect can be
seen, and the separation of the two conductance peaks de-
pends on the value of U. Although the bare level spacing is
�sp-d

d so that even if there in principle are four energy levels
in the FSQD at T�TC, as shown in Fig. 1, only two peaks
appear in the conductance, split by U+�sp-d

d . This suppres-
sion of peaks follows from the dependence of the spectral
density of each level on the occupancy of the other level, as
reported previously by Meir et al.32

The CB effect, which is shown clearly at low tempera-
tures T�TC=30 K, almost vanishes, when T approaches TC
�Figs. 6�a� and 6�b��. This is due to the large increase in the
level broadenings 	i at temperatures close to TC, as shown in
Fig. 2, which causes an increasing overlap between the spec-
tral densities of the bare dot levels. At T�TC the CB effect
becomes more clear again due to the decreasing level broad-
enings shown in Fig. 2, which makes the conductance peaks

sharper. However, at T�150 K�TC the thermal effects
wash out the CB effect, as shown in Fig. 6�b�.

An interesting finding is that just above TC, there is a
narrow temperature range, where the conductance minimum
gmin at EF− �̃d=20 meV between the two CB peaks de-
creases with increasing temperature. This is shown more
clearly in Fig. 7, where the calculated gmin has been plotted
against temperature for three values of U. The decrease in g
with increasing T is one of the most remarkable signatures of
the Kondo resonance in the quantum dots.31–37 However, in
our model for the FSQDs this anomaly, which becomes more
apparent with increasing U, is not related to the higher order
correlations in the leads, as in the case of the nonmagnetic
QDs, since these correlations were neglected totally in the
derivation of Eqs. �27� and �28�. Instead, in the FSQDs the
large decrease in the level broadenings with increasing T at
T�TC, as shown in Fig. 3, causes the anomalous T depen-
dence of g, i.e., the CB effect becomes more prominent as
the level broadenings and the overlap between the levels de-
crease. The external magnetic field B also causes shifts of the
conductance peaks due to the giant Zeeman splitting, as
shown in Fig. 8, where we now have Jsp-d=0.2 eV and TC
=50 K.

The most interesting finding is that the broad conductance
peak at B=0 T and at T�30 K is split into two peaks with
increasing B. Again, this behavior is one of the specific sig-
natures of the Kondo resonance in nonmagnetic QDs.33

However, in the case of FSQDs, the splitting is not related to
the ordinary Kondo resonance since it may occur even at
Curie temperature TC=50 K, as shown in Fig. 8�d�, which
can be much higher than the Kondo temperature TK �in our
case TK���U /2kB�27 K with U=40 meV and �
=0.5 meV�. Our model for FSQDs also predicts a large
magnetoresistance �MR�= �g�B=0 T�−g�B�� /g�B=0 T� at
low temperatures, as shown in Fig. 8. MR is largest at the
two resonance peaks, and it changes sign from negative to
positive at T�30 K, when the Fermi energy EF shifts from

FIG. 5. Conductance, in units of �� /U��e2 /��, vs energy differ-
ence between the Fermi level EF and the dot level �̃d �or vs gate
voltage� at T=4 K with various values for U when B=0 T. The
other parameters are the same as in Fig. 3.

FIG. 6. Conductance, in units of �� /U��e2 /��, vs energy differ-
ence between the Fermi level EF and the dot level �̃d �or vs gate
voltage� at various temperatures �a� below and �b� above TC when
B=0 T. The parameters are the same as in Fig. 3.

FIG. 7. Temperature dependence of the conductance minimum,
in units of �� /U��e2 /��, at EF− �̃d=20 meV between the two con-
ductance peaks for various values of U. The parameters are the
same as in Fig. 3.
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�̃d to �̃d+U /2. However, MR remains negative for all the
values of EF at higher temperatures T�30 K.

With the parameters used in the calculations of the results
of Figs. 4–8, the Zeeman splitting �sp-d

d is small even at low
temperatures, which explains why there is only a minor shift
of the conductance peaks at EF= �̃d and EF= �̃d+U with de-
creasing temperature. More prominent shifts of the peaks
occur, however, if we increase the value for the exchange
parameter to Jsp-d=0.8 eV �valid for holes�, as shown in Fig.
9�a�. Due to the very large level broadenings �	i

�100 meV at T�TC�, U must be larger than 20 meV in
order for some sign of the CB effect to be found at least at
low temperatures, as shown in Fig. 9�b�. However, as dis-
cussed above, due to various approximations the estimated
level broadenings probably are too large in our model.
Therefore, we may expect that in real FSQDs, the CB effect
could be seen, at least at low temperatures T�TC even in the
case of smaller U.

So far, there are no experimental results for magnetotrans-
port in a FSQD coupled to nonmagnetic leads. Wunderlich et
al.30 studied experimentally the CB effect in a Mn-doped
GaAs SET consisting of small islands created by potential
fluctuations in the channel. However, both the leads and the
islands in the SET were Mn-doped. No ferromagnetic order-
ing was reported, and the small amount of Mn �2%� implies
a very low TC .20 In any case, the results indicate that mag-
netic, probably even ferromagnetic semiconductor SETs and
quantum dots can be fabricated for transport measurements.
Then the novel effects predicted by our model could be
tested experimentally, e.g., by comparing the magnetotrans-
port properties of the nonmagnetic and ferromagnetic SETs
made of GaAs and Mn-doped GaAs, respectively.

E. Spin accumulation

Figure 10 shows the occupation probabilities 	n̂d�� and
the spin accumulation 	n̂d↑�− 	n̂d↓� vs gate voltage in a FSQD
with the parameters of Fig. 3. At low temperatures in the CB
regime 	n̂d↑�� 	n̂d↓�, i.e., the transport is dominated by the
spin-up electrons, and there is a large spin accumulation in
the energy range between �̃d and �̃d+U. Also in this energy
range the spin accumulation decreases rapidly, when the tem-

(a) (b)

FIG. 9. Conductance, in units of �� /U��e2 /��, vs energy differ-
ence between the Fermi level EF and the dot level �̃d �or vs gate
voltage� �a� at various temperatures below TC=30 K when U
=40 meV and �b� for various values of U at T=4 K when B
=0 T. The other parameters are the same as in Fig. 3.

FIG. 10. Occupation probabilities 	n̂d↑� �solid curve�, 	n̂d↓�
�dashed curve�, and the spin accumulation 	n̂d↑�− 	n̂d↓� vs energy
difference between the Fermi level EF and the dot level �̃d �or vs
gate voltage� at various temperatures when B=0 T. The parameters
are the same as in Fig. 3.

FIG. 8. Conductance, in units of �� /U��e2 /��, vs energy differ-
ence between the Fermi level EF and the dot level �̃d �or vs gate
voltage� at various temperatures and at various magnetic fields.
Here we have Jexch

s-d =0.2 eV and TC=50 K, the other parameters
are the same as in Fig. 3.
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perature approaches TC=30 K, but the dot remains approxi-
mately singly occupied, 	n̂d↑��	n̂d↓��0.5.

Figure 11 shows the effect of an external magnetic field
on the occupation probabilities at a temperature 32 K close
to TC. There is no net spin polarization of the charge carriers
at zero field. However, a large spin accumulation appears
with increasing magnetic field, when the system approaches
the CB regime.

V. CONCLUSIONS

We have analyzed theoretically charge transport through a
ferromagnetic semiconductor quantum dot in the Coulomb

blockade regime. The strong sp-d exchange interaction be-
tween the localized magnetic moments and the charge carrier
spins causes the giant Zeeman splitting of the dot energy
levels, and the spin-disorder scattering of the carriers inside
the dot. The scattering depends strongly on temperature and
magnetic field at temperatures close to the Curie tempera-
ture, where the spin fluctuations in the ferromagnetic sub-
system are largest. This results in a conductance behavior,
which is similar to the Kondo resonance in nonmagnetic
QDs. The predicted large spin-flip scattering means a very
short spin-life time, which should be taken into account
when considering the spintronic applications based on the
FSQDs. The model we have treated is a simple one, and it
could be improved in many ways. For instance, the spin-orbit
coupling, which also causes spin-flip scattering, should be
added to the present spin-disorder scattering model. Al-
though the present formalism included the multilevel system,
we neglected the transitions to the higher levels, which do
not take part in charge transport. In the case of the FSQDs
made from Mn-doped GaAs the real valence band structure
including the light and heavy holes and the split-off band
should be taken into account. The coupling due to tunneling
between the dot and the current leads depends on the dot
energy levels, which should be considered, especially in the
case of a large Coulomb repulsion. However, in spite of all
these neglected effects, we believe that our model can pro-
vide qualitatively correct predictions for FSQDs. Especially,
we believe that the large level broadening and its strong tem-
perature and magnetic field dependences are relevant in the
interpretation of the results of future magnetotransport mea-
surements in FSQDs.
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