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There is increasing experimental evidence for fractional quantum Hall effect at filling factor �=2+3 /8.
Modeling it as a system of composite fermions, we study the problem of interacting composite fermions by a
number of methods. In our variational study, we consider the Fermi sea, the Pfaffian paired state, and bubble
and stripe phases of composite fermions, and find that the Fermi sea state is favored for a wide range of
transverse thickness. However, when we incorporate interactions between composite fermions through
composite-fermion diagonalization on systems with up to 25 composite fermions, we find that a gap opens at
the Fermi level, suggesting that inter-composite fermion interaction can induce fractional quantum Hall effect
at �=2+3 /8. The resulting state is seen to be distinct from the Pfaffian wave function.
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I. INTRODUCTION

The fractional quantum Hall effect1 �FQHE� is understood
as a consequence of the formation of bound states of elec-
trons and quantized vortices known as composite fermions.2

In particular, the FQHE at fractions belonging to the se-
quences, �=s�n /2pn�1 is a manifestation of the integral
quantum Hall effect �IQHE� of composite fermions at the
composite-fermion filling ��=n. In recent years, the FQHE
at fractions not belonging to these sequences has attracted
interest because it cannot be explained in terms of a model of
noninteracting composite fermions, which only exhibit
IQHE. In many instances, these new fractions can be shown
to arise from the weak residual interactions between compos-
ite fermions. For example, the FQHE at �=5 /2 is understood
as a p-wave Pfaffian-paired state of composite fermion,3,4

and the FQHE at 4/11 as a fractional quantum Hall effect of
composite fermions.5–7 Recent experiments in very high mo-
bility samples have found signatures8,9 for FQHE at �=2
+3 /8, albeit with a tiny gap of a few mK. Although the
evidence is not yet conclusive, the possibility of this FQHE
is particularly exciting both because it is an even denomina-
tor fraction and because this fraction occurs in the second
Landau level, where FQHE is not as extensive as in the
lowest Landau level. That has motivated us to examine vari-
ous theoretical possibilities at this filling factor, proceeding
with the assumption that the second Landau level 3/8 state
can be modeled as composite fermions at filling 3/2. Within
this model, we rule out several simple variational states but
find an instability of the composite fermion Fermi sea into a
gapped state; while the true nature of this FQHE state is not
fully understood at present, our studies indicate that it is
distinct from the usual Pfaffian state. We demonstrate the
robustness of this state against finite thickness.

The strongly interacting system of electrons confined to a
Landau level is described in terms of exotic emergent par-
ticles called composite fermions, which are bound states of
an electron and an even number �2p� of vortices of the
many-body wave function. The most dramatic consequence
of the composite fermion �CF� formation is that the Berry

phase due to the attached vortices effectively cancels part of
the external magnetic field, producing dynamics governed by
a reduced field B*=B−2p��0, where � is the CF density, and
�0=hc /e is the flux quantum. Composite fermions form
Landaulike levels, called � levels, with their filling factor
related to the electronic filling factor through the expression
�=�� / �2p���1�. The CF formation correctly accounts for
most of the correlation effects, and a model of weakly inter-
acting composite fermions securely explains the prominent
experimental observations, including the FQHE �
=n / �2pn�1� as the IQHE of composite fermions2 and the
compressible liquid at �=1 / �2p� as the Fermi sea of com-
posite fermions.10 More subtle structures can emerge due to
the weak residual interactions between composite
fermions.4,11–16

Treating the lowest-filled Landau level as inert, the prob-
lem of our interest is that of interacting electrons in the sec-
ond Landau level �LL� at ��1�=3 /8. The dimension of the
Hilbert space here is too large to obtain meaningful results
from exact diagonalization. We proceed instead by modeling
��1�=3 /8 as a state of composite fermions at filling factor
��=3 /2. Assuming that composite fermions are fully spin
polarized, the state contains a fully occupied lowest � level
and a half filled second � level. We assume that the lowest �
level is inert and works with only the composite fermions of
the half-filled second � level in the rest of the paper, denot-
ing their number by N.

Several states of composite fermions have been consid-
ered at a half-filled Landau level: Fermi sea, paired Pfaffian
state, stripes, and bubble crystals. When considering the first
two states at half-filled second � level, the 2CFs in the sec-
ond � level capture two additional vortices to transform into
4CFs, thereby, producing very complex mixed structures.
�The symbol 2pCF refers to composite fermions carrying 2p
vortices.� Which, if any, of these states is stabilized in nature
depends on the residual interaction between composite fer-
mions in their second � level, which itself is a remnant of
the Coulomb interaction between electrons occupying the
second Landau level.

It is interesting to note that when composite fermions in
the second � level capture an additional pair of vortices, as
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is the case for the CF Fermi sea or the Pfaffian state, three
species of fermions coexist in the system: electrons in the
lowest LL, 2CFs in the lowest � level of the second LL, and
4CFs in the second � level; only the last will be explicitly
considered in our calculations. Much of our effort will be
toward obtaining the effective interaction between them by
integrating out the remaining fermions.

Our paper is organized as follows. In Sec. II an effective
inter-CF interaction is derived for composite fermions in the
second � level of the second Landau level; both pseudopo-
tential and real-space representations are obtained. By using
this interaction, several variational states are compared ener-
getically in Sec. III. Exact diagonalization results in Sec. IV
confirm the relative advantage of the CF Fermi sea state.
Then, in Sec. V, the residual interaction between composite
fermions is included perturbatively to explore any further
instability of the CF Fermi sea state. Section VI summarizes
the principal conclusions of our study.

II. INTER-COMPOSITE-FERMION INTERACTION

The determination of the inter-CF interaction proceeds
along several steps. First of all, following standard practice,
we represent the second LL Coulomb interaction �including
finite thickness effects� as an effective interaction in the low-
est LL �with zero thickness� for which we use the form17

Veff�r� =
1

r
+

B3

�r6 + A3

+
B5

�r10 + A5

+
B7

�r14 + A7

+ �
i=0

3

Cir
ie−r2

,

�1�

where the constants Bi ,Ci are evaluated by matching the first
few pseudopotentials for the two problems. This form is mo-
tivated by the following observations: �i� The Fourier trans-
form of the exact effective interaction for w=0 is18,19

Veff�q�= �2� /q��1−q2 /2�2. Its inverse Fourier transform
V�1��r�=1 /r+1 /r3+9 /4r5, however, is ill-behaved in that it
yields divergent pseudopotentials for relative angular mo-
menta m=0,1. �ii� Regularizing the interaction as in Eq. �1�
removes the short distance divergences without significantly
altering the long-distance behavior. �iii� Adding short-range

Gaussian terms and fitting the first few pseudopotentials take
care of the short-range part of the interaction without affect-
ing the long-distance behavior. The constants Aj are arbi-
trary; we choose A3=1, A5=10, A7=100 to maximize the
efficiency of our calculation. The interaction in Eq. �1� re-
produces all second LL pseudopotentials almost exactly. The
transverse thickness w is modeled through a square quantum
well potential with the electronic wave function given by
��z�=�w /2 cos�z� /w� in the transverse dimension. Table I
gives Bi ,Ci for various values of transverse thickness w, as
well as the greatest relative error in pseudopotentials due to
the approximations made in the form of Eq. �1�.

The next step is to determine the interaction
pseudopotentials18 for composite fermions in the second �
level following Refs. 15 and 20 by evaluating the energy of
the state with two composite fermions in relative angular
momentum m state, the wave function for which can be con-
structed explicitly according to the standard CF theory.2 �An-
other formalism21 has also been used for a treatment of the
inter-CF interactions at the Hartree–Fock level. However,
that approach is designed for long distance physics and is not
reliable for absolute energy comparisons of competing CF
states�. Our calculation is based on the Monte Carlo method
in the spherical geometry,18 in which electrons move on the
surface of a sphere, and a radial magnetic field is produced
by a magnetic monopole of strength Q at the center. Here
2Q�0 is the magnetic flux through the surface of the sphere;
�0=hc /e; and 2Q is an integer according to Dirac’s quanti-
zation condition. The single particle states are monopole
harmonics22 YQlm, where l=Q+n is the angular momentum
with n=0,1 , . . . being the LL index, m=−l ,−l+1, . . . , l is the
z component of angular momentum. Composite fermion
states are defined as2,23

	CF = PLLL�
i
j

�uiv j − viuj�2� , �2�

where u�cos�� /2�exp�−i� /2�, v�sin�� /2�exp�i� /2�, � is
a Slater determinant of YQlm’s, and PLLL is the lowest LL
projection. �The planar geometry equivalents are obtained,
apart from the Gaussian factor e−1/4�i�zi�

2
, by the substitution

�uiv j −viuj�⇐ ⇒ �zi−zj�, where zi=xi− iyi denotes the coordi-

TABLE I. The coefficients of the second Landau level effective interaction �Eq. �1�	 as a function of
quantum well thickness.

w /�B B3 B5 B7 C0 C1 C2 C3 rel. error at m=9

0 1 2.25 0 −29.6652 25.9333 −5.7924 0.35502 −510−6

0.6 0.98824 2.1447 −0.64764 −26.7113 22.8682 −5.05705 0.308495 −410−6

1 0.96733 1.96027 −1.73059 −23.7501 20.1878 −4.46304 0.27412 −310−6

1.2 0.95295 1.83554 −2.42498 −22.4375 19.2136 −4.2825 0.266517 −110−6

1.8 0.89414 1.3427 −4.85138 −19.8480 18.4978 −4.41921 0.299473 710−6

2 0.86931 1.14304 −5.68157 −19.53315 19.0897 −4.72306 0.332065 110−5

2.4 0.81181 0.69985 −7.17964 −19.7498 21.4679 −5.70842 0.429353 210−5

3 0.70595 −0.04589 −8.4768 −21.80525 27.2074 −7.87814 0.634219 510−5

4 0.47724 −1.3468 −5.64371 −25.4366 34.7657 −10.7723 0.907296 910−5

5 0.18318 −2.39612 6.65526 −17.5712 20.2936 −6.19823 0.513039 610−5
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nates of the ith particle on the plane.	 For the pseudopoten-
tials Vm

CF in the second � level, we consider states that con-
tain two composite fermions in the second � level above a
fully occupied lowest � level. In the spherical geometry the
pseudopotentials are size or N dependent. For any specific N
the pseudopotential Vm

�N� is the energy of two composite fer-
mions at relative angular momentum m. The interaction �Eq.
�1�	 is evaluated for such states assuming that r in Eq. �1� is
the chord distance. To allow for a comparison between sys-
tems with different numbers of particles, an additive constant
is chosen to fit the largest m pseudopotential to the expected
asymptotic value Vm=3−5/2��m+1 /2� /2��m+1� between
pointlike charge e /3 objects at long distances. �The prefactor
accounts for both the fractional charge and the conversion
factor for energies expressed in terms of e2 /��B and e2 /��B

� ,
where �B

� =�3�B is the magnetic length for composite
fermions15 and �B=��c /eB�. Then Vm

CF is obtained from a
linear extrapolation to the N→� limit of Vm

�N� as a function
of 1 /N. We used 18�N�50 for this extrapolation. As seen
in Fig. 1, the inter-CF interaction smoothly connects to the
interaction between pointlike charge e /3 objects at long dis-
tances with significant deviation at short distances. The
asymptotic expression is used for m�17, where the numeri-

cally calculated pseudopotential is fitted to the asymptotes
modulo an additive constant. As expected, the transverse
thickness weakens the short-range part of the interaction.

Armed with the CF pseudopotentials, we finally map the
system into that of fermions at ��=��−1=1 /2 in the lowest
Landau level. To the pseudopotentials of Fig. 1 an effective
real-space interaction can be associated, for which we use the
form15

V�w��r�� = 
�
i=0

5

c8i+4
�w� r�8i+4e−r�2

+
�2n + 1�−5/2

r� � e2

��B
, �3�

where r� is the distance measured in units of �B
� . With six

parameters �Table II�, all odd pseudopotentials Vm from m
=1 to m=13 can be fitted exactly, and Eq. �3� already has the
correct long-range behavior.

III. VARIATIONAL STATES

We first consider charge-density-wave states of composite
fermions both stripes and bubble crystals; analogous states
have proved to be relevant for half-filled electronic LLs with
high LL index.24 �We note that liquid crystalline phases of
electrons, possibly with nematic order, have also been con-
sidered in high Landau levels;25 we do not consider in this
work analogous phases for composite fermions�. In the
Hartee–Fock scheme the cohesive energy of these states is24

Ecoh =
�2��3

2NLxLy
�
q�0

ŨHF�q���− q���q� , �4�

which is defined as the interaction energy measured from the
uniform Hartree–Fock state

E0 = −
Ũ�q = 0�

2
��. �5�

This expression is based on the assumption that the CF back-
ground and the background-background interaction also have
the same form as the CF-CF interaction in Eq. �3�; because
the first two are identical for all uniform states, their actual
form is not relevant to the energy comparisons and can be

1 3 5 7 9 11 13 15 17 19 21
m

0.01

0.015

0.02

0.025

V
m

w=0
w=0.6
w=1
w=1.2
w=1.8
w=2
w=2.4
w=3
w=4
w=5
3

-5/2
/r

FIG. 1. �Color online� The pseudopotentials for two composite
fermion quasiparticles in the n=1 LL and the asymptotic form
�2n+1�−5/2Vm

�0�=3−5/2��m+1 /2� /2��m+1�. The solid line on the
asymptotic form is a guide to the eye.

TABLE II. The coefficients of the effective inter-CF interaction in the second � level of the second Landau level �Eq. �3�	 as a function
of quantum well thickness.

w /�B c4 c12 c20 c28 c36 c44

0 −0.275427217 0.00317402221 −1.5298897310−6 9.5455775510−11 −1.1595534610−15 2.7159399010−21

0.6 −0.264914310 0.00302703755 −1.4518424910−6 9.0092881610−11 −1.08876680510−15 2.54034504710−21

1 −0.252523057 0.00285573396 −1.3622600810−6 8.4050045510−11 −1.0104309310−15 2.3485949510−21

1.2 −0.246070821 0.00276724752 −1.3165805310−6 8.1019182510−11 −9.7179737710−16 2.2552447610−21

1.8 −0.227976782 0.00252196654 −1.1927175910−6 7.3041189310−11 −8.7330743810−16 2.0233449310−21

2 −0.222696641 0.00245136596 −1.1581427010−6 7.0911467810−11 −8.4836103710−16 1.9672599910−21

2.4 −0.213492009 0.00232970992 −1.1003908210−6 6.7525440410−11 −8.1119019610−16 1.8888821110−21

3 −0.202852166 0.00219192928 −1.0392401410−6 6.4352087310−11 −7.8265188710−16 1.8426845810−21

4 −0.189229729 0.00201494874 −9.6327910510−7 6.0647113010−11 −7.5321488310−16 1.8050017510−21

5 −0.168823778 0.00172511349 −8.0857945010−7 4.9748753710−11 −6.0437811410−16 1.4235514810−21
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chosen according to convenience. The quantity ��q�
= �1 /2���ke

−kqx��B
� �2

�ak+

† ak−
 in Eq. �4� is the orbit-center den-

sity, and we define ŨHF�q�= Ũ�q�− ��B
��2U�q�B

��, Ũ�q�
=V�w��q�e− 1

2
q2��B

� �2
, and k�=k�qy /2. For the stripe phase this

reduces to

Ecoh
stripe =

1

2����B
*�2 �

q�0
ŨHF�q��2 sin

q�s��

2

�sq
�

2

, �6�

where q= 2j�
�s

, and for the bubble crystal,

Ecoh
bubble =

2�2l0
2

��
�
q�0

ŨHF�q�� R

Al0
2q

J1�qR��2

, �7�

with R=�b
��3�� /2�, A= ��3 /2��b

2, and q=ne1+me2 with
e1=4� /�3�bŷ and e2=2� /�bx̂−2� /�3�bŷ. The parameters
�s and �b denote the period of the stripe and bubble phases,
respectively. The results shown in Fig. 2 indicate interesting
differences from electrons in higher LLs24 and also from
composite fermions in the lowest Landau level.15 The stripe
phase is favored in an intermediate range 0.12����0.4; the
bubble crystal is better for ���0.12, and the two are very
competitive close to half filling 0.4���
0.5. The periods
are 8.5
�b
10 and �s�8–9, apart from small �� where
the stripe phase is irrelevant.

The sharp short-range repulsion between composite fer-
mions �Fig. 1� suggests the possibility of further vortex at-
tachment to account for correlations between them. We con-
sider the Pfaffian wave function,4

	Pf = �
i
j

�uiv j − viuj�2Pf� 1

uiv j − viuj
� , �8�

which describes an incompressible p wave paired state of
composite fermions, and the compressible CF Fermi sea,

	CFFS = PLLL�
i
j

�uiv j − viuj�2�FS. �9�

For a comparison with the charge-density-wave states, we
calculate the cohesive energy of 	Pf and 	CFFS by subtract-
ing the energy of the uniform Hartree–Fock state �Eq. �5�	.
The cohesive energies of 	Pf and 	CFFS are shown in Fig. 3.
The extrapolation is based on N=30–100 particle systems
for the Pfaffian and N=36,49,64 for the Fermi sea. In the
thermodynamical limit N→�, both the Pfaffian and the CF
Fermi sea states are energetically favored over the charge-
density-wave states �Table III�. The Pfaffian wave function
has higher energy for the whole range of transverse thickness
studied, making Pfaffian-CF pairing unlikely as a mechanism
for incompressibility at 2+3 /8.

IV. EXACT DIAGONALIZATION

We have confirmed the above conclusion by performing
exact diagonalization for fermions at ��=1 /2 interacting
with the potential given in Eq. �3�. Exact diagonalization at
2Q=2N−3 for N=8,10 shows the ground state to be non-
uniform, consistent with the variational study ruling out the
Pfaffian wave function. However, we find that the quantum
number of the ground state at 2Q=2N−2 agrees with the
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FIG. 2. �Color online� Cohesive energy for the stripe �top� and
bubble �bottom� phases of composite fermion quasiparticles in the
second � level of second Landau level.
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FIG. 3. �Color online� Thermodynamic extrapolation of the co-
hesive energy of the Pfaffian and the CF Fermi sea wave functions.
The solid line extends to the right up to the smallest system in-
cluded the linear fitting �N=30 and 36, respectively�.
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prediction of the CF theory for N=4–11 �see Table IV�. The
same quantum numbers result for the half-filled lowest Lan-
dau level, where the CF Fermi sea state is well
established.10,26

V. COMPOSITE FERMION DIAGONALIZATION

While the noninteracting CF Fermi sea is compressible,
the possibility that the residual inter-CF interaction may give
rise to incompressibility cannot be a priori excluded. An
investigation of this physics requires larger systems than can
be addressed in exact diagonalization. We have studied this
problem by a perturbative process called CF
diagonalization.12,14 �Notice that we form 4CFs out of 2CFs,
and our starting point is a residual inter-2CF interaction Veff�.
The wave functions for noninteracting composite fermions,
for ground, as well as excited states, can be constructed by
analogy with the system of noninteracting electrons at an
effective filling.23 These are given by

	Q = PLLL�
i
j

�uiv j − viuj�2�Q� �10�

�here, �Q� is the wave function for the ground or excited
state at Q�=0�, and form bands separated by an effective CF

cyclotron energy. At the nth order CF diagonalization, we
diagonalize the residual inter-CF interaction in the truncated
space of correlated wave functions of the lowest n+1 bands,
using the Metropolis Monte Carlo method.12 It is necessary
to go to at least second order to allow hybridization of the
uniform �with orbital angular momentum L=0� state with
“excited” bands. At the second order, the ground state has
L=0 with a very small gap, which depends only weakly on
the layer thickness, as shown in Fig. 4. The enhancement of
the gap from N=16 to N=25 suggests possible establishment
of incompressibility due to the residual interaction between
composite fermions. While our data in the N�25 range, un-
fortunately, do not allow for an extrapolation of the gap to
the thermodynamical limit, it is clear that the gap is ex-
tremely small.

VI. CONCLUSION

In conclusion, modeling the system at �=2+3 /8 as filling
factor 3/2 of fully spin-polarized composite fermions in the
second electronic Landau level, we have considered many
possible structures by several methods. Our study suggests
the possibility of a very delicate FQHE here due to residual
interactions between composite fermions, but with a state
distinct from the Pfaffian state. At the end, we note that even
though our CF diagonalization approach gives the low en-
ergy spectrum, it does not provide a simple wave function
for the ground state, which has often been very useful in
achieving a physical understanding of the physics of a FQHE
state.
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TABLE III. The cohesive energy of the Pfaffian and the CF
Fermi sea wave functions.

w /�B Ecoh of 	Pf Ecoh of 	FS

0 −0.03050�2� −0.0331�1�
0.6 −0.03102�2� −0.0335�1�
1 −0.03164�2� −0.0339�1�

1.2 −0.03196�2� −0.0342�1�
1.8 −0.03287�2� −0.0349�1�
2 −0.03313�2� −0.0351�1�

2.4 −0.03359�2� −0.0355�1�
3 −0.03410�2� −0.0360�1�
4 −0.03471�2� −0.0365�1�
5 −0.03564�1� −0.0372�1�

TABLE IV. The ground state angular momentum for 2Q=2N
−2 on the sphere along with its interpretation. The state with
n-filled � levels is denoted by �n.

N Q L CF interpretation

4 6 0 �2

5 8 2 �2+a CF quasiparticle with L=2

6 10 3 �2+two CF quasiparticles at maximum separation

7 12 3 �3+two CF quasiholes

8 14 2 �3+a single CF quasihole

9 16 0 �3

10 18 3 �3+a CF quasiparticle with L=3

11 20 5 �3+two CF quasiparticles at maximum separation
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FIG. 4. �Color online� The collective mode gap at �=2+3 /8
from second-order CF diagonalization for N=9,16,25 particles.
The bars indicate the statistical uncertainty arising from Monte
Carlo sampling.
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