
Measurements of the energy band gap and valence band structure of AgSbTe2

V. Jovovic
Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio 43210, USA

J. P. Heremans
Department of Mechanical Engineering and Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

�Received 31 March 2008; published 10 June 2008�

The de Haas-van Alphen effect, galvanomagnetic and thermomagnetic properties of high-quality crystals of
AgSbTe2 are measured and analyzed. The transport properties reveal the material studied here to be a very
narrow-gap semiconductor �Eg�7.6�3 meV� with �5�1019 cm−3 holes in a valence band with a high
density of states and thermally excited �1017 cm−3 high-mobility �2200 cm2 /Vs� electrons at 300 K. The
quantum oscillations are measured with the magnetic field oriented along the �111� axis. Taken together with
the Fermi energy derived from the transport properties, the oscillations confirm the calculated valence band
structure composed of 12 half-pockets located at the X-points of the Brillouin zone, six with a density-of-states
effective mass mda

� �0.21me and six with mdb
� �0.55me, giving a total density-of-states effective mass, includ-

ing Fermi pocket degeneracy, of md
��1.7�0.2me �me is the free electron mass�. The lattice term dominates the

thermal conductivity, and the electronic contribution in samples with both electrons and holes present is in turn
dominated by the ambipolar term. The low thermal conductivity and very large hole mass of AgSbTe2 make it
a most promising p-type thermoelectric material.

DOI: 10.1103/PhysRevB.77.245204 PACS number�s�: 72.20.Pa, 71.20.Mq

I. INTRODUCTION

AgSbTe2 is the paradigm for the class of I-V-VI2 com-
pound “semiconductors” where the group V element is P, As,
Sb or Bi, the group VI element S, Se or Te, and the group I
element can be Cu, Ag or Au,1 or alternatively an alkali
metal.2 Like PbTe, AgSbTe2 crystallizes in the rock-salt
structure3 with a similar lattice constant �a=0.6462 for PbTe
and a /2=0.6076 nm for AgSbTe2�. It is also isoelectronic
with PbTe in which the lead atom has a 2+ valence, and is
replaced in AgSbTe2 by one Ag1+ and one Sb3+. The first
pure ternary I-V-VI2 compounds were identified4 as chal-
copyrites related to zinc-blende structures. By 1957, rock-
salt AgSbSe2 and AgSbTe2 were synthesized,5 and tenta-
tively identified as narrow-gap semiconductors. Arrhenius
plots of the temperature dependence of the resistivity have
yielded energy gap values ranging from 0.6 to 0.2 eV. A
structural study6 of AgSbTe2 identified a complicated micro-
structure in the early samples. An accompanying galvano-
magnetic and thermoelectric study7 showed that some
samples can have positive and some negative Hall coeffi-
cients while maintaining a positive Seebeck coefficient:
Clearly these early materials were inhomogeneous, and the
properties of electrons and holes in intrinsic material were
undetermined. To our knowledge, fundamental studies of the
electronic properties of these semiconductors essentially
came to a halt at that point because of these difficulties in the
sample preparation, and surprisingly little is known about the
simple ternary I-V-VI2 compounds.

Rosi et al.8 recognized the potential of AgSbTe2 as a ther-
moelectric material: It is the bulk p-type thermoelectric with
the highest figure of merit ZT �Ref. 9� of all simple ternary
materials,10 ZT=1.3 at 720 K, a temperature range relevant
to applications in electrical power generation that use solar
heat or fossil fuel combustion as a heat source. Unlike most
materials used in thermoelectric power generation, AgSbTe2

is lead-free and thus environmentally friendly. Alloys of
AgSbTe2 and AgBiTe2 with PbTe,8,11 SnTe �Refs. 8 and 11�
and GeTe �Ref. 12� are well-studied thermoelectric mater-
ials.8 The recently reported AgPbmSbTe2+m bulk alloys13

have ZT=1.7 at 750 K. At first sight,8,11,12 they can be con-
sidered as solid solutions of AgSbTe2 with PbTe, although
this view is clearly oversimplified.14

Very recent band structure calculations15 on AgSbTe2
show the dependence of the energy band structure on the
ordering of the metal �I-V� sublattice. Recent work finds evi-
dence of Ag-Sb ordering;14 and the calculations show that
the lowest energy structure is one where the Ag and Sb at-
oms are ordered, the unit cell is fcc and double that of the
PbTe structure. This structure is calculated to be a semimetal,
with electrons in two sets of PbTe-like ellipsoidal pockets at
the L-point of the Brillouin zone and the holes in two sets of
six pill-box shaped half-pockets near the X-points. All calcu-
lated structures remain semimetallic15 when the Ag-Sb dis-
order is increased. These calculations stand in contrast to the
early experimental studies that identify the material as a
semiconductor with a band gap of 0.2 to 0.6 eV. It must be
noted that the calculations used the density functional theory
which tends to underestimate energy gaps, and that these
calculations do not establish conclusively that AgSbTe2 is
not a narrow-gap semiconductor. The present work addresses
that question experimentally.

In this paper, we first present results on the longitudinal
and transverse galvanomagnetic and thermomagnetic trans-
port coefficients of polycrystalline AgSbTe2 samples with a
low carrier concentration and high electron mobility. The
samples display two-carrier conduction. Using analysis tech-
niques inspired by work on other semimetals, Bi �Refs. 16
and 17� and doped Bi �Ref. 18� in particular, we show here
experimentally that AgSbTe2 is, in fact, a semiconductor
with a very narrow energy gap, on the order of meV at low
temperature. We then use the quantum oscillations observed
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in the magnetic susceptibility �the de Haas-van Alphen ef-
fect� of a single-crystal sample to determine the cross sec-
tions of the hole Fermi surface at 5 K; these are consistent
with the band structure calculations for the ternary com-
pound with Ag-Sb ordering of type AF-IIb15 shown in Fig. 1.
We do not have enough accuracy in either data or model to
resolve the band parameters’ temperature dependence, even
though it is known that energy gaps in most narrow-gap
semiconductors can change by values on the order of 100
meV between 4 K and 300 K.19

II. EXPERIMENT

Several ingots of AgSbTe2 were prepared using conven-
tional solid-state chemistry similar to the technique used for
PbTe.20 The ingots were polycrystalline, with crystallites ex-
ceeding a few mm on the side; the crystallites tend to grow
preferentially along the �111� axis. An x-ray powder diffrac-
tion spectrum of the ingot used here most is shown in Fig. 1:
The data show no presence of any second phase and a clean
rock-salt structure with the correct lattice constant. The ther-
mopower was uniform along the ingots, with several samples
cut from the same ingot giving a repeatability of 2 to 3%; the
ingot-to-ingot repeatability was 20%. We also have control
over the carrier density in a limited range.

The de Haas-van Alphen oscillations in the magnetic sus-
ceptibility were measured in a superconducting quantum in-
terference device magnetometer at 5 K on the single-crystal
piece cut from the main ingot. One 2�2�1 mm crystallite
was cut from the ingot and oriented along its �111� axis. The
magnetic field was oriented parallel to this axis and varied
from 3 to 5.2 Tesla. The thermal, thermoelectric and thermo-
magnetic transport data were measured using the conven-
tional static heater-and sink method, the galvanomagnetic
data using DC current and a nanovoltmeter on a polycrystal-
line sample. The samples for transport measurements were
cut as parallelepipeds from the ingots using a diamond saw,
and deliberately kept small in order to minimize the effects
of potential inhomogeneities. The typical dimensions of
samples used for thermomagnetic and galvanomagnetic mea-
surements were 1�1�8 mm; two samples cut from one
ingot, and one sample from a different ingot were measured.

The data were very consistent and only one set is reported
here, taken on a sample with dimensions of �1.53�0.01�
� �0.90�0.01�� �8 mm3, with the distance between the
longitudinal voltage probes 4.5�0.2 mm. The electronic
transport properties were taken from 77 to 400 K in magnetic
fields from −2 to 2 Tesla. The cubic symmetry of the samples
implies that polycrystalline samples are adequate for the
analysis and that no Umkehr effects are expected; therefore
the results can be deduced from data taken in both field po-
larities. The transverse effects �Hall and transverse Nernst–
Ettingshausen coefficients� are extracted as the components
that are odd with field, while longitudinal effects �magne-
toresistance and magnetoseebeck effects� are extracted from
the relevant even components. We report the isothermal ther-
momagnetic effects deduced from the measured adiabatic
ones using the conventional methods.21 Further in this text,
we will label as “Nernst coefficient” the isothermal trans-
verse Nernst–Ettingshausen coefficient. The thermal conduc-
tivity data were taken on several samples with a larger cross-
section cut from neighboring regions of the ingot, in order to
maintain thermal conductance around 4 mW/K. The sample
on which the thermal conductivity data are reported here was
3.80�3.75�1.75 mm3, with the distance between the tem-
perature probes 1.75�0.03 mm. While radiative heat ex-
change was minimized by the use of radiation shields to
below 0.4 mW/K, it was not corrected for.

The inaccuracy in sample dimensions, particularly in the
distance between the longitudinal probes, is the main source
of experimental inaccuracy. Consequently, the relative error
on the electrical resistivity is on the order of 10%. The Hall
coefficient depends only on the transverse dimension and is
much more accurate �2%�. The magnetoresistance is a rela-
tive value and does not depend directly on the geometry;
however, there is a geometrical magnetoresistance22 induced
by the deflection of the current flux due to the Lorentz force
near the contacts, on the order of a fraction �about 10% in the
geometry used here� of �B ��0.4 for electrons at 300 K in
these samples, see later�, resulting in about a 4% total error.
The two-carrier analysis presented further depends on both
longitudinal and transverse magnetoconductances and thus
carries through both errors on the longitudinal data, for a
total of �10%. This error reflects directly on the properties
of the majority carrier. The inaccuracy is similar for the den-
sity of the minority carriers �electrons� which dominate the
Hall coefficient, but it is larger for the electron mobility. The
Seebeck coefficient does not depend on the sample geometry,
and is thus more accurately measured. The main source of
inaccuracy is the sample uniformity, limiting the accuracy of
the Seebeck coefficient measurement to 3%. The magneto-
seebeck effect is also subject to geometrical effects23,24 again
on the order of 4%. This renders the difference S�B�−S�B
=0� inaccurate; it is reported for completion, but not used in
the analysis. The Nernst data are afflicted by the 10% inac-
curacy in the longitudinal distance between the temperature
probes. The accuracy on the thermal conductivity is again
limited by the geometry, but is somewhat better defined as
the thermocouples were anchored to the top and bottom faces
of the sample, the distance between which is easier to mea-
sure; the accuracy is estimated to be 5%.
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FIG. 1. �Color online� Powder x-ray diffraction spectrum of the
ingot of AgSbTe2 used in this work. The insert shows the AF-IIb
structure �Ref. 15� with ordering of Ag and Sb in metallic
sublattice.
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III. GALVANOMAGNETIC AND THERMOMAGNETIC
TRANSPORT COEFFICIENTS

The galvanomagnetic and thermomagnetic data are shown
as a function of temperature at zero magnetic field in Fig. 2,
and as a function of magnetic field in Fig. 3 at a few selected
temperatures. In Fig. 2, we show the zero-field resistivity and
thermoelectric power or Seebeck coefficient. In Fig. 3 we
show the magnetic field dependence of the magnetoresistive
coefficient, defined as �� /����B� /��B=0�−1, and the
magnetoseebeck coefficient defined as �S /S�S�B� /S�B
=0�−1, where � and S are the longitudinal resistivity

�=�xx�Ex�Bz� / jx and thermoelectric power S=Sxx
�Ex�Bz� /�Tx, with the electric field parallel to the current or
thermal flow direction x, in a transverse magnetic field z.
Also shown in Fig. 3 are the transverse coefficient, the Hall
resistivity �xy and Nernst thermopower Sxy, taken with the
electric field normal to both the current or heat flow, and to
the magnetic field, i.e., by definition �xy �Ey�Bz� / jx and Sxy
�Ey�Bz� /�Tx. The Hall coefficient in Fig. 2 is the zero-field
slope of �xy, and the transverse Nernst coefficient that of Sxy:
RH� limBz→0���xy /�Bz� and N� limBz→0��Sxy /�Bz�.

The analysis of the data follows the classical method used
on galvanomagnetic and thermomagnetic data of semimetals,
such as doped bismuth,18 arsenic,25 and graphite.26 The basic
idea is to use the magnetic field dependence of the resistivity,
magnetoresistance, and Hall effect to determine the partial
electron and hole densities and mobilities. In a second step,
the Seebeck and Nernst effects are used to deduce the Fermi
energies in the electrons and hole Fermi surfaces. From the
relation between these Fermi energies, it is possible to iden-
tify if the material is a semimetal or a semiconductor with a
very small energy gap. The analysis is based on the follow-
ing hypotheses:

�1� From the negative value of the Hall coefficient and
the positive value of the Seebeck coefficient, one can deduce
that the system has coexisting electrons and holes at all tem-
peratures. The electrons most likely reside in one or more
high-mobility low-mass bands that dominate the Hall coeffi-
cient; the holes reside in high-density-of-states mass bands
whose partial Seebeck coefficient dominates the total ther-
mopower. This image is also consistent with the calculated
band structure.15

�2� Simple parabolic bands are assumed rather than Kane
bands,19 because the band structure calculations identify the
potential very narrow energy gap to be indirect between the
L- and X-points.

�3� The samples being large and of good quality, elec-
trons are assumed scattered by acoustic phonons, resulting in
an energy-dependence of the relaxation time �=�0E� with a
scattering exponent �=−1 /2.

�4� The following partial properties are defined for the
electrons and holes, respectively: densities n and p �all posi-
tive�, mobilities �e and �h �positive�, electrical conductivi-
ties 	e and 	h �positive�, partial Seebeck coefficients Se
�negative� and Sh �positive�. The low-field transverse partial
coefficients are partial Nernst coefficients27 Ne and Nh, and
partial Hall coefficient given by RHe=−1 /ne and RHh=1 / pe.
The latter formulation is an approximation which neglects
the effect of the scattering exponent on the Hall coefficient
and the anisotropy of the carriers’ Fermi pockets, but its
numerical effect on PbTe-type semiconductors is less than
10%, and will be accepted here by analogy.

�5� Unlike the case of the elemental group V semimetals
�Bi, Sb and As� or graphite, AgSbTe2 cannot be assumed to
have an equal number of electrons and holes �n�p� as the
ratio between the group I-B and group V element, or nons-
toichiometries between the sum of these and the chalcogen,
will result in excess electrons or holes. In practice, all the
samples produced to date are dominantly p-type, which is
most likely due to Ag vacancies.15 The samples are expected
to behave like doped semiconductors or semimetals.18
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FIG. 2. �Color online� Experimental temperature dependence of
the zero-field resistivity and Seebeck coefficients ���, and of the
low-field Hall and Nernst ��� coefficients of one sample of
AgSbTe2. The lines are guides to the eye.

0 1
B(T)

0.00

0.01

0.02

0.03

0.04

∆ρ
/ρ

0

0.02

0.04

∆S
/S

-4

-2

0

ρ x
y

(Ω
m

)

0

4

8

12

16

20

S
xy

(µ
V

/K
)

0 1 2
B(T)

T=85K
205

405

300

200

205

200

85

80

400

400

405

300

305

305

T=80K

FIG. 3. Experimental magnetic field dependence of the relative
magnetoresistance �� /�, magnetoseebeck effect �S /S, transverse
Hall resistivity �xy, and transverse Nernst thermopower Sxy. The
data are only shown at the few selected temperatures indicated.

MEASUREMENTS OF THE ENERGY BAND GAP AND… PHYSICAL REVIEW B 77, 245204 �2008�

245204-3



�6� The carriers will be assumed to have density-of-states
effective masses md

� defined in such a way as to include the
degeneracy of the Fermi pockets.

A. Analysis of the galvanomagnetic coefficients

In the presence of a transverse magnetic field along the
z-axis, Bz=B, the longitudinal electrical resistivity �xx�B� and
transverse �Hall� resistivity �xy�B� are the diagonal and off-
diagonal elements of the equivalent conductivity elements
	xx�BZ� and 	xy�BZ� are given by

�xx =
	xx

	xx
2 + 	xy

2 , �xy =
	xy

	xx
2 + 	xy

2 , �1�

where, in the presence of two types of carriers, electrons and
holes, we have, with B=Bz:

	xx =
ne�e

1 + �e
2B2 +

pe�h

1 + �h
2B2 , 	xy =

− ne�e
2B

1 + �e
2B2 +

pe�h
2B

1 + �h
2B2 .

�2�

A Taylor expansion of the magnetoresistance �� /� and of
the Hall coefficient RH around B=0, and valid for the
intermediate-field regime where �B
2, gives:

��

�
�B� �

�xx�B�
�xx�0�

− 1 = AB2 + CB4, A =
�n�e + p�h��n�e

3 + p�h
3� − �− n�e

2 + p�h
2�2

�n�e + p�h�2 ,

C =
− �n�e + p�h��n�e

5 + p�h
5� − �n�e

3 + p�h
3�2 + 2�− n�e

2 + p�h
2�

�n�e + p�h�2

−
n�ep�h��e

2 + �h
2 + 2�e�h���− n�e

2 + p�h
2� − 2�n�e + p�h��n�e

3 + p�h
3�	

�n�e + p�h�4 , �3�

and:

�xy�B� = RHB + DB3, RH � lim
Bz→0

���xy/�Bz� =
− n�e

2 + p�h
2

�n�e + p�h�2 ,

D = −
�− n�e

4 + p�h
4�

�n�e + p�h�2 −
�− n�e

2 + p�h
2���− n�e

2 + p�h
2�2 − 2�n�e + p�h��n�e

3 + p�h
3�	

�n�e + p�h�4 . �4�

Fitting at each temperature �=�xx�B=0� and RH from Fig. 3,
as well as A, C, and D deduced from Fig. 3, makes it pos-
sible to deduce n, p, �e, and �h and thus the partial electron
and hole conductivities at B=0:

	e = ne�e, 	h = pe�h, 	 = 1/� = 	e + 	h. �5�

The results are shown Fig. 4. At room temperature, the
sample has about n�1017 cm−3 high-mobility ��e
�2200 cm2 /Vs� electrons that are most likely thermally ac-
tivated. It also contains p�5�1019 cm−3 low-mobility ��e
�11 cm2 /Vs� holes. The hole density at 77 K is �4
�1019 cm−3 and extrapolates to 3�1019 cm−3 at 0 K,
where the electrons freeze out. This charge unbalance must
be due to a departure from stoichiometry, possibly related Ag
vacancies as discussed above. While in nondegenerate semi-
conductors it would be possible to deduce an energy gap
from the temperature dependence of the “intrinsic” carrier
density ni defined by ni�
np, applying that analysis to the
present data would give Eg=0 meV, which invalidates the
assumption that the semiconductor is nondegenerate: The
thermoelectric and thermomagnetic data contain experimen-

tal information that will enable the determination of the
Fermi level and the energy gap.

B. Analysis of the thermomagnetic coefficients

In two-carrier systems, the Seebeck coefficient is given as
a function of the partial electron and hole Seebeck coeffi-
cients by:28

S =
Se	e + Sh	h

	e + 	h
�6�

and the low-field Nernst coefficient by:

N =
�Ne	e + Nh	h��	e + 	h� + �Sh − Se��RHh	h − RHe	e�	e	h

�	e + 	h�2 .

�7�

Expressions for the partial Seebeck and Nernst coefficients
are given as functions of the Fermi energy in the conduction
and valence bands, EFe and EFh. They have the form of the
well-known transport integrals, which for parabolic bands
are given as a function of the Fermi integral Fj���:29
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Fj��� � �
0

� xjdx

1 + exp�x − ��
,

Se = −
kB

e
�� 5

2 + ��F3/2+���e�

� 3
2 + ��F1/2+���e�

− �e ,

Sh =
kB

e
�� 5

2 + ��F3/2+���h�

� 3
2 + ��F1/2+���h�

− �h ,

Ne =
kB

e
�� 5

2 + 2��F3/2+���e�

� 3
2 + 2��F1/2+���e�

−
� 5

2 + ��F3/2+���e�

� 3
2 + ��F1/2+���e�

 ,

Nh =
kB

e
�� 5

2 + 2��F3/2+���h�

� 3
2 + 2��F1/2+���h�

−
� 5

2 + ��F3/2+���h�

� 3
2 + ��F1/2+���h� . �8�

In these expressions, � is the scattering exponent represent-
ing the energy-dependence of the relaxation time, defined by
�=�0E�. In the following analysis, we assume that acoustic
phonon scattering ��=−1 /2� dominates at all temperatures,
in order to minimize the number of adjustable parameters.
The reduced Fermi energies are given by ��EF /kBT, EFe
and �e for electrons as measured from the bottom of the
conduction band and EFh and �h for holes, as measured from
the top of the valence band. If the material is a semimetal,
the conduction and the valence band overlap each other by a
small overlap energy Eo; the electron and hole Fermi ener-
gies are related by:

EFe = − �EFh + Eo�, �e = − �h −
Eo

kBT
. �9�

If, on the other hand, the material is a semiconductor with an
energy gap Eg, we have:

EFe = − EFh + Eg, �e = − �h +
Eg

kBT
, �10�

i.e., Eg=−Eo and we can use the relations �9� and �10� to
determine the nature of the material from the sign of Eo.

The next step is to fit the experimental Seebeck and
Nernst coefficients using the partial conductivities from Fig.
4 and relations �6�–�9�. In order to further limit the number
of adjustable parameters, we assume that Eg has no tempera-
ture dependence, even though we know this to be a very
rough approximation: The energy overlap in Bi varies by 100
meV between 77 and 300 K.19 This leaves one adjustable
parameter at each temperature, EFe�T�, and one parameter to
be adjusted for all temperatures, Eo or Eg. Numerically, less
importance is to be given to the Nernst coefficient than to the
Seebeck coefficient, because the Nernst coefficient is known
with only a 10% accuracy, and also is the transport coeffi-
cient that is most sensitive to the scattering exponent �. The
results of the fit are shown in Fig. 5, where we give the
resulting values of Se, Sh, Ne, Nh and the calculated values of
S and N. S fits the data very well, as it was used to determine
the Fermi energies EFe and EFh at each temperature. The
optimal fit through N corresponds to an energy gap of Eg
=7.6�3 meV. We conclude that AgSbTe2 is a semiconduc-
tor with a very narrow, almost zero, energy gap. The band
structure calculations15 show Eg is indirect with electrons at

100 200 300 400
T(K)

0

5000

10000

15000

20000

σ
(Ω

-1
m
-1
)

1x1015

1x1017

1x1019

n,
p
(c
m
-3
)

10

100

1000

10000

µ
(c
m
2 /V
s)

σh

σe

n

p

µe

µh

σh+σe

FIG. 4. �Color online� Fitted electron �dashed lines� and hole
�dotted lines� densities �n , p�, mobilities ��e ,�h� and partial electri-
cal conductivities �	e ,	h� as a function of temperature. Also shown
are the total calculated conductivity compared to experimental val-
ues ���.

100 200 300 400
T(K)

-200

0

200

400

S
(µ
V
/K
)

Sh

Se

-40

-20

0

20

40

N
(µ
V
/K
T)

Nh
Ne

FIG. 5. �Color online� Fit of the zero-field Seebeck and of the
low-field isothermal Nernst coefficients: the partial electron �dashed
lines� and hole �dotted lines� thermopowers and Nernst coefficients
are shown, alongside the calculated total �full lines�, which can be
compared to the data points ���. The fit assumes that only acoustic
phonon scattering is present at all temperatures, and that the energy
gap is temperature-independent; therefore the Nernst coefficient,
which is very sensitive to the scattering mechanism, is reproduced
with only moderate accuracy.

MEASUREMENTS OF THE ENERGY BAND GAP AND… PHYSICAL REVIEW B 77, 245204 �2008�

245204-5



the L-points and holes near the X-points of the Brillouin
zone. The Fermi energy extrapolates to EFh�T=0 K�
=15 meV into the valence band at zero temperature.

The hole density is a function of the density-of-states ef-
fective mass md

� and the Fermi energy EFh; in degenerate
statistics:

p =
�2md

�EFh�3/2

32�3 . �11�

It is possible to deduce the total density-of-states effective
mass md

� from EFh�T=0 K� and the hole density extrapolated
to 0 K of 3�1019 cm−3, to obtain md

�=2.2�0.6me, where
me is the free electron mass. This value includes the degen-
eracy of the hole Fermi surface pockets. We show in para-
graph 4 that the hole mass value deduced here is confirmed
by the de Haas-van Alphen oscillations. The same procedure
applied at 77 K to the minority electrons using Fermi inte-
grals gives a density-of-states mass of �0.02me, but this is
not accurate because the electron partial Seebeck coefficient
contributes only �20% to the total Seebeck coefficient. Nev-
ertheless, the product of the electron and hole density-of-
states masses would give �0.05me

2, which is consistent with
the calculated intrinsic carrier density ni at 77 K, and the
ratio of the hole mass to the electron mass is close to the
inverse of that between the mobilities, a factor of 100–300.
The electron density-of-states mass must be about two orders
of magnitude smaller than the hole density-of-states mass.

C. Electronic and ambipolar thermal conductivity

The simultaneous presence of electrons and holes strongly
suggests the presence of an ambipolar electronic thermal
conductivity ��AMBI�. In semimetals, a substantial amount of
heat can be carried by this term: For example, up to 60% of
the electronic thermal conductivity in the semimetal Bi is of
this origin.17 The ambipolar term arises because the heat flux
carried by each carrier pocket is the sum of a thermal con-
ductivity term and a Peltier term. In the presence of a tem-
perature gradient, each carrier pocket gives rise to a partial
Seebeck coefficient. When two or more carrier pockets are
present, they can be considered connected in parallel, and the
two unequal partial Seebeck voltages give rise to an electri-
cal current flux “circulating” between the two-carrier pock-
ets, which in turn creates partial Peltier heat fluxes in each.
The balance of these partial Peltier heat fluxes adds to the
thermal conductivity: Even though the electrical fluxes bal-
ance each other exactly to zero, the thermal fluxes always
add, and flow along the temperature gradient, because the
Peltier and Seebeck coefficients have the same sign. The
ambipolar thermal conductivity is given by:17

�AMBI = T
	e	h

	e + 	h
�Sh − Se�2 �12�

and is readily calculated from the data in Fig. 5. The value at
room temperature, �AMBI=0.128 W /mK, is a significant
fraction of the experimental thermal conductivity in the
sample studied.

The partial electron and hole thermal conductivities can
be obtained by applying the Wiedemann–Franz law to the

electron and hole partial electrical conductivities. The Lorenz
ratios can be estimated from the Fermi integrals assuming
acoustic phonon scattering; since the reduced Fermi energies
are −2��h�0.7 and 0.4��e�2.6, the calculated Lorenz
ratios are on the order of 0.8 to 0.9 of the free electron value
L0=2 /3�kB /e�2. This value is of the same order as that of
the PbTe, where the experimental value is 0.6 to 0.8 L0.29 For
that reason, and because the electronic thermal conductivities
represent only a small contribution to the total, a value of
L�0.7L0 will be used further, giving electron and hole par-
tial thermal conductivities of �el=0.015 W /mK and �h
=0.058 W /mK at 300 K. The calculated temperature-
dependent values of the different electronic terms are shown
in Fig. 6. As was the case in Bi, the ambipolar thermal con-
ductivity represents over 60% of the total electronic thermal
conductivity at room temperature. The difference between
the total thermal conductivity and the electronic contribu-
tions is attributed to the lattice, and is on the order of 0.65
W/mK at 300 K, in good agreement with the literature.30 The
lattice properties of this class of semiconductors will be dis-
cussed in a separate article.31

IV. ANALYSIS OF THE DE HAAS-VAN ALPHEN
OSCILLATIONS

Figure 7 �bottom frame� shows the magnetic field depen-
dence of the oscillations in magnetic susceptibility of the
single-crystal sample in a magnetic field aligned with its
�111� axis, after the diamagnetic background is subtracted.
The data are periodic when plotted versus inverse magnetic
field �1 /B�; a Fourier transform of such plot gives the am-
plitude of the Fourier components as a function of a “fre-
quency” 1 /��1 /B	, the inverse of a period ��1 /B	. The Fou-
rier transform, shown in the upper frame of Fig. 7, identifies
two frequencies, labeled a and b, at 1 /��1 /B	a=25.9 and at

100 200 300 400
T(K)

0.01
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1
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0.3

κ
(W
/K
m
)

Electrons

Holes

Ambipolar

Total electronic

Lattice

FIG. 6. �Color online� Experimental temperature dependence of
the thermal conductivity of an AgSbTe2 from the same ingot as was
used for Figs. 2 and 3 ���. The ambipolar thermal conductivity
�dashed-dotted line� dominates the total electronic contribution �full
line�, which contains estimates of the electron �dashed line� and
hole �dotted line� contributions. The crosses are the difference be-
tween the experimental data points and the electronic contributions,
and represent the lattice thermal conductivity.
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1 /��1 /B	b=62.0�T�. These correspond to oscillations of
holes in quantized orbits on the Fermi surfaces and give
Fermi surface cross-sections AF normal to the �111� direction
via:

AF =
2e

�

1

��1/B	
, �13�

to yield AFa=2.47�1017 m−2 and AFb=5.93�1017 m−2.
These experimental values can be compared to the Fermi-

surface cross sections estimated from the band structure
calculations, using the Fermi level position deduced from
the thermomagnetic data in paragraph 3, to EFh�T=0 K�
=15 meV. The hole Fermi surfaces corresponding to the
band structure calculations of K. Hoang et al.15 are shown in
Fig. 8 �after K. Hoang32�; the two pockets in Figs. 8�a� and
8�b� centered near the X-point of the Brillouin zone are filled
in the sample studied here, while the third pocket centered on
the �� point partially along the X-� axis is some 70 meV

below the Fermi energy. Effective masses calculated32 from
the bending of the dispersion relations15 along the X-W and
X-� directions are given in Table I; given the rounded pill-
box shape of the Fermi surfaces, an estimate for the density-
of-states effective mass mda

� and mdb
� of pockets �a� and �b�

can be made and is also given in Table I. Finally, the Fermi-
surface cross sections normal to the �111� axis of each set of
three �a� and �b� pockets are degenerate, and can be approxi-
mated by an ellipse with a cyclotron mass mC

� given in Table
I. Using the Fermi energy �EFh�T=0 K�=15 meV	 deduced
from the Seebeck coefficient, it is finally possible to calcu-
late the cross-sections AFa and AFb of the two pockets in the
sample measured, also shown in Table I. These cross sections
compare very well to the ones deduced from the de Haas-van
Alphen measurements, thus confirming the entire picture for
the valence band. One more verification can be made: From
the calculated values of the density-of-states mass mda

� and
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FIG. 7. De Haas-van Alphen oscillations in the magnetic field
dependence of the magnetic susceptibility, with the diamagnetic
background subtracted, of a 4 mm3 crystal of AgSbTe2 oriented
with the magnetic field along the �111� axis at 5 K �bottom frame�.
The top frame shows the Fourier component amplitude of the os-
cillations plotted as a function of the inverse magnetic field fre-
quency, identifying two frequencies at 25.9 and 62.0 Tesla.
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FIG. 8. �Color online� Calculated hole Fermi surfaces for AgSbTe2 per Ref. 32 with Ag and Sb atoms ordered on the metal sublattice,
case AF-IIb. The small pockets around �� are not populated in the sample studied here; the masses for the other pockets are given in Table
I along the directions indicated.

TABLE I. Calculated hole effective masses �in units of the free
electron mass me� of the two pockets �a� and �b� shown in Fig. 8
along two directions. From these, the density-of-states mass mda

�

and mdb
� of the different pockets are deduced, and the cyclotron

mass mC
� that corresponds to an elliptical orbit normal to the �111�

direction of cross section equivalent to that of the actual pocket.
The hole Fermi surface cross-sections AF �in units of 1017 m−2� of
pockets �a� and �b� are calculated from m

C
* using a Fermi energy of

15 meV, and is compared to the experimental cross-section deduced
from the de Haas-van Alphen oscillations.

Mass Pocket a Pocket b

mX�
� a 0.109�0.003 0.144�0.004

mXW
� a 0.332�0.004 1.36�0.02

md
� per pocket 0.21�0.01 0.57�0.02

mC
� �111� 0.25 0.52

AF �EF=15 meV� 3.02 6.2

AF experimental 2.47 5.93

aReference 32.

MEASUREMENTS OF THE ENERGY BAND GAP AND… PHYSICAL REVIEW B 77, 245204 �2008�

245204-7



mdb
� of each pocket, and given a degeneracy factor of 3 for

each pocket type, we can calculate a total density-of-states
mass for the valence band as m

d
*=32/3�mda

�3/2+mdb
�3/2�2/3

�1.5�0.2me, quite consistent with the value of 2.2�0.6me
deduced from the Seebeck and Hall coefficients. Since the
accuracy of the de Haas-van Alphen measurements is supe-
rior to that of the transport measurements, and the cyclotron
masses correspond quite well to the calculated masses, we
attach more weight to the quantum oscillation experiments
and determine a density-of-states hole mass of md

�

=1.7�0.2me.

V. CONCLUSIONS

In conclusion, AgSbTe2 is a semiconductor with a very
narrow energy gap ��7 meV�, highly mobile electrons that
dominate the Hall measurements, and holes in a heavy band
that dominate the thermoelectric power. Since the gap energy
becomes comparable to the thermal energy kBT for tempera-
tures above 100 K, AgSbTe2 can in practice be considered as
an indirect zero-gap material above that temperature. Pre-
liminary values for the density-of-states effective mass for
holes is md

�=1.7�0.2me, consistent with the calculated

bands of the AF-IIb structure, with FCC symmetry, of Hoang
et al.,15 and suggest that Ag and Sb atoms order in the metal
sublattice. In the AF-IIb band structure, the hole Fermi sur-
face is expected to consist of two sets of threefold degenerate
rounded pillboxes near the X-point of the Brillouin zone. The
high density of excess holes ��3 to 4�1019 cm−3� is pre-
sumably due to vacancies on the metal sites �Ag?� in our
samples; the low and very temperature-dependent electron
density is thermally excited across the gap. The thermal con-
ductivity is dominated by the lattice but can have an impor-
tant ambipolar contribution. The low lattice thermal conduc-
tivity and the large density-of-states hole mass make the
material a promising p-type thermoelectric semiconductor.
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