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Light excitation of a semiconductor, known to dynamically polarize the nuclear spins by hyperfine contact
interaction with the photoelectrons, also generates an intrinsic nuclear depolarization mechanism. This relax-
ation process arises from the modulation of the nuclear quadrupolar Hamiltonian by photoelectron trapping and
recombination at nearby localized states. For nuclei near shallow donors, the usual diffusion radius is replaced
by a smaller, quadrupolar, radius. If the light excitation conditions correspond to partial donor occupancy by
photoelectrons, the nuclear field experienced by electrons trapped at shallow donors can be decreased by more
than 1 order of magnitude.
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I. INTRODUCTION

In a semiconductor, the possibility to enhance the nuclear
polarization by the hyperfine contact interaction with spin-
polarized electrons generated by circularly polarized light
excitation is of interest both for fundamental reasons and,
among others, for applications to �i� quantum computing,1

�ii� transfer of nuclear magnetization to biological systems,
as an alternative to adsorption of polarized xenon,2,3 and �iii�
understanding of the fractional quantum Hall effect.4 Further
potential applications of the optical increase of NMR sensi-
tivity include extension to nuclei of single spin investigations
using magnetic-resonance force microscopy at surfaces.5

After the demonstration of optical nuclear polarization in
silicon,6 a number of recent investigations of the optically
enhanced bulk nuclear magnetization have been undertaken
using standard NMR in Si,7 GaAs,8–13 InP,14 and CdTe.15

Some of the results11–13 were used to verify the predictions
of a general theory for nuclear relaxation in solids according
to which the presence of paramagnetic impurities, or local-
ized centers, is crucial for relaxation of the nuclear-spin
system.16–18 Nuclei close to the centers are relaxed by the
hyperfine interaction with the spin-polarized photoelectrons
trapped at these impurities, while the bulk nuclear-spin sys-
tem is relaxed by spin diffusion from the latter minority nu-
clei. A diffusion radius is defined corresponding to the dis-
tance from the impurity separating the two types of
relaxation processes.19

Optical detection of NMR, from the depolarization at
resonance of the luminescence, was first reported for
GaAlAs in 1974 �Ref. 20� and subsequently applied to sev-
eral III-V semiconductors,21–24 as well as two-dimensional
systems8,25 and quantum dots.26,27 For bulk materials, this
technique was shown to only detect nuclei near the sites of
electronic localization, which verifies the existence of a dif-
fusion radius.28 The ratio of the nuclear hyperfine field acting
on the electrons and of the optically measured electronic spin
polarization is consistently smaller than its calculated value.
The corresponding reductions of the nuclear field are found
to be of 0.1 for GaAs,29 0.02 for GaSb,22 and of several
percent for InP.23 Such decreases are likely to significantly
reduce the optical enhancement of the nuclear polarization.

The identification of the relaxation mechanisms respon-
sible for this loss of nuclear polarization remains an open
problem. In the absence of light excitation, the hyperfine
coupling with the unpolarized holes30 or the quadrupolar in-
teraction modulated by lattice phonons31 is negligible at low
temperature. The total hyperfine field of nuclei near shallow
donors is decreased because of the competition between
spin-lattice relaxation and spin diffusion, but only by a factor
3.28 Another possibility is that the averaging caused by spin
exchange between trapped electrons and free electrons re-
duces the effective nuclear field measured experimentally.21

Interestingly, in addition to the dynamic nuclear polarization,
light excitation also creates an intrinsic leakage mechanism
for the same nuclei as the ones which are dynamically polar-
ized. The nuclei close to shallow donors experience a very
strong electric field from the ionized donor. Since the latter
field is modulated by trapping and recombination of photo-
electrons, there results a significant nuclear depolarization.

The present work is devoted to an evaluation of the effi-
ciency of such light-induced nuclear relaxation for the case
of nuclei near shallow donors. In Sec. II, the characteristic
time of the quadrupolar-induced evolution of the nuclear-
spin temperature is calculated using the semiclassical rate
equation for the nuclear-spin-density matrix.32 Quantitative
estimates of the nuclear magnetization as a function of dis-
tance to the donor and of the nuclear field experienced by
electrons trapped at shallow donors are performed in Sec. III
using the known magnitudes of quadrupolar33–36 and hyper-
fine couplings.29 Provided the light power density is such
that shallow donors are partially occupied, the light-induced
quadrupolar relaxation is found to induce a decrease of the
nuclear hyperfine field by as much as 1 order of magnitude.
The corresponding effect in quantum dots and the resulting
dependence of the nuclear field as a function of temperature
and light excitation power will be discussed elsewhere.37

II. LIGHT-INDUCED QUADRUPOLAR NUCLEAR
RELAXATION TIME AND NUCLEAR

POLARIZATION VALUE

In the absence of a trapped photoelectron, the electric
field experienced by nuclei near a shallow donor is given by
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Eoff�r� =
�e�

4���0
.

1

r2 , �1�

where e is the electronic charge, � is the static dielectric
constant, and r is the distance from the donor. Photoelectron
trapping and recombination induce a modulation of the elec-
tric field between Eq. �1� and Eon�r� such that

Eon�r� = Eoff�r��1 − s�r�� , �2�

where the expression for s�r�, found using Gauss’s theorem
and the shape of the electronic wave function, is

s�r� = 1 − �1 +
2r

a0
� +

2r2

a0
�2�e−2r/a

0
*
. �3�

Here a0
� is the electronic Bohr radius. One has s�a0

���0.3
and, in GaAs, Eoff�a0

�� is of the order of 106 V /m. The
modulation amplitude Eoff�r�−Eon�r� induced by photoelec-
tron trapping and recombination is very large. Unlike the
usual quadrupolar relaxation, the corresponding relaxation
process does not rely on phonons for modulation and can be
relevant at low temperature. The present section is devoted to
the calculation of the corresponding relaxation time and of
the resulting decrease of the nuclear polarization.

A. Quadrupolar Hamiltonian

The nuclear-spin Hamiltonian, given by H=Z+HIS+HSS
+HQ, is the sum of the Zeeman term Z, of the hyperfine
Hamiltonian HIS, of the nuclear-spin-spin interaction HSS,
and of the quadrupolar interaction HQ. The expressions for
the first three terms can be found in Ref. 29. For a cubic
semiconductor, the expression for the quadrupolar Hamil-
tonian is given in Appendix A for arbitrary magnetic field B
and sample surface orientations. If the magnetic field is per-
pendicular to a �001� sample surface, which is the case of a
wide majority of experimental situations, the quadrupolar
Hamiltonian is simpler,

HQ = FQ�r�	
k=1

2

�AQk + AQk
+ � . �4�

Taking the normal z to the surface as the quantization axis,
the spin operators AQk are given by

AQ1 = sin �ei��−�/2��IzI+ + I+Iz� ,

AQ2 = − i cos � I+
2 , �5�

and the Hermitian conjugate operators AQk
+ are obtained by

replacing i by –i and therefore I+ by I−. Here � is the angle

between z and the direction Z of the electric field E� and � is
the angle between the x direction and the zZ plane. The op-
erators AQk induce transitions between Zeeman spin levels
separated by energies given by

��k = k�	B �k = 1,2� , �6�

where 	 is the nuclear gyromagnetic ratio. It is convenient to
write38,39

FQ�r� =
eR14Q

4I�2I − 1�
E�r� = �	bQE�r� , �7�

where e is the electronic charge and Q is the quadrupolar
moment of the bare nucleus of spin I. The factor R14, which
includes the electrostatic antishielding, is in the present
frame of coordinates Oxyz, the value of the only nonzero
components of the third rank tensor relating the electric-field
gradient to the electric field.33–36 The quantity bQ
=eR14Q�4�	I�2I−1��−1 is the ratio of a magnetic to an elec-
tric field. It is calculated in Appendix A for different com-
pounds and is given in Table I. The Hamiltonian HQ can be
rewritten as the sum of a static and of a modulated part,

HQ = �1 + h�t��F0Q�r� 	 �AQk + AQk
+ � , �8�

where F0Q�r� is given by

F0Q�r� = �1 − s�r�
t�FQ off�r� = �	�1 − s�r�
t�bQEoff�r�
�9�

and 
t is the fraction of the time during which the electron is
present at the donor site. The function h�t� describes tempo-
ral fluctuations due to the trapping and recombination of an
electron at the localized site. This function has a time
average equal to zero and varies randomly between
s�r�
t�1−s�r�
t�−1 and −s�r��1−
t��1−s�r�
t�−1. Its correla-
tion function, as found in Appendix B, is given by

g��� = 
h�t�h�t − ��� =

t�1 − 
t�s�r�2

�1 − s�r�
t�2 e−���/�cQ. �10�

The latter result expresses the fact that the interaction is not
modulated for s=0 or 
t=0 or 
t=1. The correlation time
�cQ for the quadrupolar interaction is the sum of two inde-
pendent contributions,

1/�cQ = 1/�r + 1/�c, �11�

where �r is the recombination time of the electron trapped at
the donor and �c is the lifetime of the ionized donor due to
capture of a free electron.

TABLE I. The quantity bQ, which has the dimension of the ratio
of a magnetic field to an electric field, is given by Eq. �7� and
characterizes the strength of the quadrupolar relaxation. This quan-
tity estimated in Appendix A is given below for several nucleus
and/or semiconductor matrix combinations. Also shown are esti-
mated values of the antishielding factor R14, defined by Eq. �7�.

Nucleus R14�1012 m−1� bQ�10−10 Tm /V�

GaAs75 3.2 2.8

Ga69As 2.8 2.0

Ga71As 2.8 1.9

In115As 4.4 0.7

InAs75 1.9 1.6

Ga69Sb 0.7 0.51

GaSb121 1.9 1.2

In115P �4 �0.60

PAGET, AMAND, AND KORB PHYSICAL REVIEW B 77, 245201 �2008�

245201-2



B. Calculation of the nuclear relaxation time

Following a semiclassical treatment, the quadrupolar-
induced evolution of the nuclear-spin-density matrix �� for
the nuclear-spin system, in the interaction representation and
within the secular approximation, is given by32

d��

dt


Q
= −

i

�
�H0,��� −

�F0Q�r��2

�2

	
k

�AQk,�AQk
+ ,�� − �0��JQ��k� , �12�

where H0 is the total static Hamiltonian and �0 is the steady-
state value of ��. The spectral density function JQ��k�, taken
for �k defined by Eq. �6�, is given by40

JQ��k� = �
−�

+�

e−i�k�g���d� . �13�

Here, we assume that the existence of interactions be-
tween nuclei results in the establishment of a temperature
among the nuclear-spin system. With the latter hypothesis,
justified in Sec. III D, the nuclear-spin-density matrix is, in
the high-temperature limit, of the form29

� � �1 − ��Z + HIS + HQ + HSS��/Tr�1� �14�

where �=1 /kBTn, kB is the Boltzmann constant and Tn is the
temperature of the nuclear-spin system. It is then found that
the nuclear mean spin lies along the direction of the mag-
netic field independently of the relative magnitudes of Zee-
man and quadrupolar interactions.

Since the latter operator � commutes with the static
Hamiltonian, the density matrix in the interaction represen-
tation is ��=� and also the first term of Eq. �12� vanishes.
An equation for evolution of the inverse nuclear-spin
temperature � is obtained, after multiplication of Eq. �12� by
Iz, taking the trace, and using Eq. �14�. Assuming that �
��1−�Z� /Tr�1� �these large magnetic-field conditions are
defined more precisely in Sec. III D�, one obtains

 ��

�t 
Q

= −
1

�2 �F0Q�r�s�r��2 
t�1 − 
t�
�1 − s�r�
t�2�	

k

2Kk����cQ

1 + �k
2�cQ

2 �
�� − �L� . �15�

Here �L=1 /kBTL, with TL being the temperature of the lat-
tice. The numerical, angle-dependent, quantity Kk���, defined
by

Kk��� = Tr�Iz�AQk,�AQk
+ ,Iz���/Tr�Iz

2� , �16�

is calculated in Appendix C. Its value is as expected zero for
I= 1

2 and is given by

K1��� =
2

5
�4I�I + 1� − 3�

Eoff �
2 �r,��
Eoff

2 �r�
, �17�

K1��� + K2��� =
2

5
�4I�I + 1� − 3��1 + 3

Eoff �
2 �r,��
Eoff

2 �r� � ,

�18�

where we recall that the parallel and perpendicular compo-
nents of the electric field, defined with respect to the normal
z to the surface, are equal to Eoff cos � and Eoff sin �, respec-
tively. The quadrupolar relaxation rate is finally given by

1

T1Q�r,��
= 
t�1 − 
t��	bQ�Eoff�r� − Eon�r���2�2K1����cQ

1 + �1
2�cQ

2

+
2K2����cQ

1 + �2
2�cQ

2 � . �19�

Its value is proportional to the square of the amplitude of the
modulated electric field and further depends on the angle �
which defines the direction of the electric field.

C. Steady-state nuclear mean spin

The rate equation for the evolution of the nuclear mean
spin along z, neglecting the thermodynamic nuclear and elec-
tronic polarizations in the applied magnetic field as well as
nuclear-spin-lattice relaxation processes other than the hy-
perfine and quadrupolar ones, is given by

d
Iz�r,���
dt

= −
1

T1H�r�
�
Iz�r,��� −

4

3
�I�I + 1��
Sz��

−
1

T1Q�r,��

Iz�r,��� + D�
Iz�r,��� , �20�

where T1H�r�� is the relaxation time due to the hyperfine cou-
pling and 
Sz� is the mean electronic spin along the direction
z of light excitation. The third term of the latter equation
describes spin diffusion due to flip-flops between neighbor-
ing spins.10,16–18,28 Here � is the Laplacian operator and D is
the diffusion constant. Throughout the present work, it will
be considered that the duration of light excitation, although
sufficient to polarize the nuclei close to the donor by spin-
lattice relaxation, is too short to allow this polarization to be
transferred to the bulk nuclei by spin diffusion. As will be
shown in Sec. III C, in the latter case, spin diffusion only
marginally modifies the results of the present section so that
this term will not be considered here. The steady-state value
of the nuclear mean spin under the sole effect of spin-lattice
relaxation is given by


Iz�r,��� = p�r,��
4

3
�I�I + 1��
Sz� =

4

3

f�r,��
1 + f�r,��

�I�I + 1��
Sz� ,

�21�

where 0�p�r ,���1 expresses the reduction of nuclear
mean spin with respect to its maximum value 4

3 �I�I+1��
Sz�.
The quantity f�r ,��, given by
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f�r,�� =
T1Q�r,��
T1H�r�

, �22�

is equal to p�r ,�� in the extreme case where the quadrupolar
relaxation is much more efficient than the hyperfine one. The
relaxation time T1H�r� is given by28

1

T1H�r�
= 
t�	b

e
*�r��2 2�cH

1 + �H
2 �cH

2 . �23�

Here, be
��r� is the instant electronic hyperfine field acting on

the nuclei. The time �cH is the correlation time of the hyper-
fine interaction. The energy ��H, corresponding to the flip-
flop of an electronic and a nuclear spin, is given by

��H � �	e�B � Bn� , �24�

where Bn is the nuclear hyperfine field acting on the elec-
trons, which is added or subtracted to B depending on the
sign of the electronic spin. The latter energy, which depends
on the electronic gyromagnetic ratio 	e, is larger than ��1
and ��2 by about 3 orders of magnitude.

Assuming that �H
2 �cH

2 , �1
2�cQ

2 , and �2
2�cQ

2 are small with
respect to unity, which sets an upper limit to the magnetic-
field value, the quantity f�r ,�� is finally given by

f�r,�� �
�cH

�cQ
.

1

�1 − 
t�
� be

��r�
bQ�Eoff�r� − Eon�r���2

��kKk����−1.

�25�

Note that, since the spatial dependence of the electric fields
Eoff�r� and Eon�r� does not appear explicitly, Eqs. �19� and
�25� are valid for any localized electronic state. For nuclei
near a donor one has

bQEoff�r� = bQEoff�a0
���a0

�/r�2, �26�

be
��r� = be

��a0
��e−2�r/a0

�−1�. �27�

Using Eqs. �2� and �18�, it is possible to separate f�r ,�� into
the product of a radial dependence ��r�, of an angular one,
and of a numerical coefficient f0, which are measures of the
relative strengths of hyperfine to quadrupolar relaxations,

f�r,�� �
f0��r�

1 + 3 cos2 �
, �28�

��r� =
e−4�r/a0

�−1�

s�r�2 � r

a0
��4

, �29�

f0 =
5

2
�4I�I + 1� − 3�−1�1 − 
t�−1�cH

�cQ
� be

��a0
��

bQEoff�a0
��
�2

.

�30�

The implications of the latter equations are discussed in
Sec. III.

III. DISCUSSION

A. Effect of the donor rate of occupation

A key parameter for the value of f0 is the rate of occupa-
tion of the donors 
t by photoelectrons, which depends on
the light excitation power.

�a� The correlation times �cH and �cQ depend on the
free-electron density nf. The time �cQ can be written using
Eq. �11�,

1

�cQ
=

1

�r
+ �cvnf , �31�

where v is the velocity of free electrons and �c is the cross
section for their capture at donors. The correlation time �cH
of the hyperfine interaction is given by

1

�cH
=

1

2�r
+

1

T1
+

1

�ex
� �evnf �32�

as obtained in Appendix B, assuming that the electronic po-
larization is weak with respect to unity. Here T1 is the elec-
tronic spin—lattice relaxation time and �ex are the charac-
teristic times for spin exchange between trapped and free
electrons. In GaAs, for above band-gap light excitation, it
has been found that the latter process is dominant by sev-
eral orders of magnitude, so that �cH has a simple approxi-
mate expression, also given in Eq. �32�, where �e is the
spin-exchange cross section.21

�b� The rate 
t of donor occupation is obtained by
writing the rate equation for the population of electrons
trapped at donors of concentration ND. The latter equation,
given in Appendix D considering above band-gap light exci-
tation, yields


t =
�c�rvnf

1 + �c�rvnf
. �33�

Using Eqs. �28�–�30�, f0 is given by

f0 =
5

2

�c

�e
�4I�I + 1� − 3�−1� be

��a0
��

bQEoff�a0
��
�2 1


t�1 − 
t�

=
f00


t�1 − 
t�
. �34�

Equation �34� has a simple form in which the quantity f00,
which is a measure of the maximum magnitude of the
quadrupolar-induced loss of nuclear magnetization, is in-
dependent of experimental conditions such as excitation
power. The latter dependence is concentrated in the donor
occupation rate 
t. According to Eq. �34�, the
quadrupolar-induced loss of nuclear polarization occurs
when the donors are partially occupied, which can be easily
characterized from the power dependence of the donor lumi-
nescence. For a density of conduction electrons much
smaller than ��c�rv�−1, one has 
t�1 and the quadrupolar
effects are small since the correlation time tcH is large. Con-
versely, if 
t=1, the quadrupolar interaction is not modu-
lated and cannot relax the nuclear spins.
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B. Order of magnitude estimates

For As75 in GaAs, the efficiency of the quadrupolar relax-
ation process comes from the fact that the spin-exchange
cross section ��e�910−16 m2� �Ref. 21� is 3 orders of
magnitude larger than the one for electron capture at donors
��c=5.110−19 m2�.41 Using Table I and Ref. 29, we obtain
be

��a0
��=1.5 mT�5.2bQEoff�a0

�� and we find f00�210−3

and f0�10−2 for 
t=1 /2. As found from Eq. �28�,
f�a0

� ,� /2��10−1 and f�a0
� ,0��210−2, so that the nuclei at

the Bohr radius are depolarized by the quadrupolar relax-
ation.

Nuclei such as In115 in InP and Sb121 in GaSb are believed
to exhibit stronger quadrupolar effects because of their larger
spin values �9/2 for In115 and 5/2 for Sb121�. However, as
seen in Table I, the quantity bQ is smaller than for As75 in
GaAs. Using Table I and Eq. �34� and assuming that both �c
and �e scale like the Bohr radius, so that their ratio is inde-
pendent on material, we estimate that f00 is equal to 9.4
10−3 and 1.210−2 for In115 in InP and Sb121 in GaSb,
respectively. This implies that the latter materials should also
exhibit nuclear polarization losses of quadrupolar origin, al-
though slightly smaller than for GaAs.

C. Radial and angular dependences of the nuclear
polarization: Quadrupolar diffusion radius

Shown in Fig. 1 are the radial dependences of p�r ,0� and
p�r ,� /2� using f0�10−2. Close to the donor position, one
has p�r ,��=1, as the quadrupolar relaxation is inefficient be-
cause s�r�� 4

3 �r /a0
��3 so that the electric field is not modu-

lated. As a function of distance, although the quadrupolar
rate first increases and then decreases, f�r ,�� exhibits a
monotonic, decreasing behavior. The nuclei are depolarized
above a distance to the donor corresponding to f =1. As seen
in Fig. 1, this distance is smaller in the direction z of the

magnetic field �0.25a0
�� than in the perpendicular directions

�0.45a0
��.

For calculation of the nuclear field experienced by trapped
electrons, two approximations will be made. First, we shall
use for simplicity the angular average of the nuclear polar-
ization, defined as 
p�r��=�sin �p�r ,��d�d� /�sin �d�d�.
As found using Eqs. �21� and �28�, this quantity is given by


p�r�� =
f0��r�

�3�1 + f0��r��
arctg� �3

�1 + f0��r�
� �35�

for which the radial dependence, also shown in Fig. 1, is
intermediate between those of p�r ,0� and p�r ,� /2�. The sec-
ond approximation consists in replacing 
p�r�� by a step
function at r=�Q such that


p��Q�� =
1

2
. �36�

The nuclear hyperfine field, defined by Bn

=4Bn0a0
�−3�0

�r2e−2r/a0
�


p�r��dr,29 is approximated by

Bn � Bn0s��Q� , �37�

where Bn0 is the nuclear field value for a homogeneous
nuclear polarization and s�r� is defined in Eq. �3�. The latter
approximation implies that the quadrupolar relaxation is in-
efficient for distances smaller than �Q and dominant for
larger distances �f =0�. Such approximation is usual in analy-
ses of nuclear polarizations near shallow donors16–18 and re-
sults in defining a sphere around the donor inside which the
nuclear polarization is not affected by the quadrupolar relax-
ation. The radius of this sphere, which will be called the
quadrupolar radius, replaces the usual diffusion radius for the
estimate of the nuclear hyperfine field. Shown in Fig. 2 are
the variations of �Q and of s��Q�, as a function of f0. For
f0=10−2, one finds �Q�0.35a0

� which leads to Bn=0.03Bn0.
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FIG. 1. Dependence of the normalized nuclear polarization, de-
fined by Eq. �21�, �a� along the magnetic-field direction and �b�
along the perpendicular direction, as a function of distance to the
donor. Also shown is the radial dependence of the angular average
of the nuclear polarization, defined by Eq. �35�. The relative mag-
nitude f0 of hyperfine and quadrupolar relaxations, given by Eq.
�30�, is taken as equal to 10−2. The distance at which the magneti-
zation is equal to 0.5 is of �a� 0.25a0

� in the direction of the magnetic
field, �b� 0.45a0

� in the perpendicular direction, and �c� �Q=0.35a0
�

after angular averaging.
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FIG. 2. Dependence of the quadrupolar radius �Q and of s��Q�,
which expresses the quadrupolar-induced nuclear field decrease, on
the relative magnitude f0 of hyperfine and quadrupolar relaxations.
If no light-induced quadrupolar relaxation is present, the quadrupo-
lar radius is replaced by the usual diffusion radius �D,of the order of
the Bohr radius. For f0=10−2, the quadrupolar radius is 0.35a0

�, and
the nuclear field is further decreased by about 1 order of magnitude.
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We now discuss the effect of spin diffusion between
neighboring spins, which appears as the third term of Eq.
�20� and has so far been neglected. A diffusion radius �D is
defined, corresponding to the distance from the donor at
which the efficiencies of direct relaxation and of spin diffu-
sion are equal. This radius is given by

1

T1Q��D�
+

1

T1H��D�
=

D

�D
2 . �38�

At a distance smaller than �D, all the considerations of the
present work are valid, since spin diffusion does not affect
the nuclear polarization. On the other hand, for nuclei situ-
ated beyond �D, the polarization is strongly decreased be-
cause of the efficient diffusion toward the bulk nuclei. In the
absence of quadrupolar relaxation, the maximum value of the
reduced nuclear field is s��D�. Since a value �D�1.4a0

� has
been found,28 we obtain s��D��0.5. As seen from Eq. �38�,
the quadrupolar relaxation results in a decrease of �D. For
f0=10−2 and using the value of D of Ref. 28, we calculate a
modified diffusion radius �D value close to a0

�. Since the
latter value is still larger than �Q, spin diffusion is generally
negligible with respect to spin-lattice relaxation for the nu-
clei which contribute to the nuclear field experienced by
trapped electrons.42

Spin diffusion should, however, be taken account of into
two extreme cases concerning the light excitation power. In
the case of a very weak efficiency of the overall spin-lattice
relaxation, Eq. �38� does not have a real solution so that spin
diffusion becomes predominant at all distances from the do-
nor. Since the efficiencies of both the hyperfine and quadru-
polar relaxation processes are proportional to 
t, such case is
obtained for a weak light excitation density. �For As75 in
GaAs, we estimate that this situation corresponds to a thresh-
old characterized by 
t�0.15.� This situation is outside the
scope of the present work and is not considered here. Con-
versely, for a high light excitation power, if 
t�1, the qua-
drupolar radius �Q increases because the quadrupolar spin-
lattice relaxation becomes negligible with respect to the
hyperfine one. When �Q is larger than �D, since the polariza-
tion of nuclei at a distance larger than �D is decreased by
spin diffusion toward the bulk nuclei, the nuclear field is
obtained by replacing �Q by �D in Eq. �37�. Thus, the maxi-
mum nuclear field obtained for a negligible quadrupolar re-
laxation is given by Bn0s��D�. As a result, the relative de-
crease of the nuclear field produced by the light-induced
quadrupolar relaxation is s��D� /s��Q� which, in the condi-
tions of Fig. 1, is of the order of 15.

D. Magnetic field effects

The present section is devoted to the justification of three
hypothesis made in Sec. II B, for which the validity depends
on the magnetic-field value.

�1� The zero magnetic-field expression of the
quadrupolar-induced decrease of nuclear magnetization has
been used in Eq. �25�. With the values of the cross sections
�c and �e given in Sec. III B and taking nf =1021 m−3, one
finds that �H�cH=1 for B=20 T. The same magnetic-field
value gives �1�cQ=1, further taking �r�1 ns.43 It is con-

cluded that Eq. �25� is valid up to very large magnetic-field
values.

�2� It has been assumed that the heat capacity of the Zee-
man reservoir is larger than those of the quadrupolar and
spin-spin ones. Such assumption is obviously not valid at
very low magnetic field. The lower magnetic-field limit is
obtained by expressing the heat capacities of the various res-
ervoirs using the following relation:29


Z�
B2 =


HSS� + 
HQ�
BL

2 + BQ
2 = −

1

kBTn

I�I + 1�
3

�	��2, �39�

where the electronic field acting on the nuclear spins has
been neglected. Here BL is the local field. For a magnetic
field larger than BL, only flip-flops between nuclei of the
same isotopic species are energetically allowed. In the par-
ticular case of As75 in GaAs, this leads to BL�0.03 mT.29

The local field of quadrupolar origin BQ, equal to zero for
I= 1

2 , is given by

BQ
2 =

3 Tr
HQ
2 �

I�I + 1��2I + 1��	��2

=
4

5
�bQEoff�2�1 − s
t�2�4I�I + 1� − 3� . �40�

We conclude that the high-field limit discussed in Sec. II B is
valid provided

B2 � BL
2 + BQ

2 . �41�

Thus, the effective local field is larger than the spin-spin local
field. For a magnetic field along the z direction, assuming for
simplicity 
t=0 and taking r�0.5a0

�, we calculate BQ
�1.6 mT which is more than 1 order of magnitude larger
than BL.

�3� The hypothesis made in Sec. II B of a nuclear-spin
temperature gives an independent low magnetic-field limit
for the validity of the present model. In the absence of qua-
drupolar couplings, there is no doubt that there exists a spin
temperature since the time T2 of establishment of the nuclear
temperature is of the order of 1 /	BL�300 �s. The inclu-
sion of quadrupolar interactions does not change the latter
picture provided the following condition is fulfilled:

�E = ���QEm
i − �QEm−1

i � − ��QEm�+1
j − �QEm�

j �� � �	BL,

�42�

where �E is the energy balance of a difference between tran-
sition energies, expressed as a function of the quadrupolar-
induced shift �QEm

i of the level m of spin i. Here, j is the
nearest neighbor of nucleus i of the same isotopic specie.
There are two distinct reasons for which the latter condition
is likely not to be fulfilled.

�i� For a homogeneous electric field, although the quadru-
polar shifts of nuclei i and j are the same, one has
�QEm

i ��QEm�
j for m�m�. This may prevent some flip-flops

PAGET, AMAND, AND KORB PHYSICAL REVIEW B 77, 245201 �2008�

245201-6



between neighboring nuclei and therefore induce a decrease
of the local field. Following Abragam,44 it is found that such
effect leads to a decrease by only 15%, so that quadrupolar
interactions weakly affect the time T2 of establishment of a
nuclear-spin temperature.

�ii� Near a donor, flip-flops between nearest neighbors
may be prohibited because of the strong spatial dependence
of the electric field so that �QEm

i ��QEm
j for a given quantum

number m. Since the effect of distinct quadrupolar shifts of
states with distinct m values has been examined in �i� above,
we replace Eq. �42� by ��QEm

i −�QEm
j ���	mBL, which states

that, for a fixed m, the difference in quadrupolar shifts of
neighboring nuclei is smaller than the Zeeman energy in the
local field. The latter condition allows us to estimate the
characteristic radius rQ of the zone outside which a spin tem-
perature exists, using the following value of �QEm

i , obtained
by second-order perturbation,

�QEm
i = �	bQĒ�ri�

2mbQĒ�ri�
B � Ē�

2 �ri,��

Ē2�ri�
�4I�I + 1� − 8m2

− 1� −
Ē�

2�ri,��

Ē2�ri�
�2I�I + 1� − 2m2 − 1�� , �43�

where Ē�ri�= �1−s�r�
t�Eoff�ri� is the time average of the
electric field. Due to the presence of the magnetic field B at
the denominator of the latter equation, the radius rQ de-
creases with increasing magnetic field. Derivating Eq. �43�
with respect to distance, we find for rQ an expression of the
type

rQ = �B−1/5. �44�

The radius rQ is largest when the electric field is parallel to z,

when 
t�1 so that Ē�ri��Eoff�ri� and for m=3 /2 in the case
of I=3 /2. In the latter case, taking into account of the fact
that in GaAs the i-j direction is along the �110� crystal axis,
and using the known interatomic spacing, we find �
�3 nm T1/5. It is concluded that, at a distance r from the
donor, the hypothesis of nuclear-spin temperature is valid
provided

B � BQ� = ��
r
�5

. �45�

Since most of the effects discussed above occur for distances
larger than r=a0

� /2, BQ� is evaluated to �0.09 T. Although
much larger than BL and BQ defined by Eq. �41�, the latter
value is smaller than magnetic fields used in most experi-
ments.

For smaller magnetic fields, the evolution of the mean

nuclear-spin value 
I��, calculated using Eq. �12� and 
I��
=Tr��I��, is found to be nonexponential as a function of time
so that the calculation of the steady-state nuclear magnetiza-
tion becomes intricate. However, qualitatively, the decrease

of the steady-state nuclear magnetization is still expressed by
an equation of the same type as Eq. �25� with distinct nu-
merical factors, so that the magnetization is still strongly
reduced. Furthermore, because of the very weak magnetic-
field dependence of rQ, the conclusions of the present work
are still qualitatively correct for B�BQ� : For a magnetic field
equal to BQ� /3, one has rQ�0.6a0

�. As seen using Eq. �37�,
such increase is of moderate impact on the nuclear field
value since the relative increase of the nuclear field when rQ
increases between 0.5a0

� and 0.6a0
�, of 50%, is much smaller

than the decreases found in the present work, of more than 1
order of magnitude.45

E. Nuclear field dependence on light excitation power
and doping

Here we summarize the results of Secs. III A, III B, and
III D and obtain the value of the nuclear field Bn using Eq.
�37� and further considering the various processes on which
depends Bn. The shallow acceptor concentration NA is as-
sumed to be larger than the donor one so that the donor
levels are unpopulated in the absence of light excitation. As
shown in Appendix D, the donor occupancy factor 
t, on
which depends the quadrupolar radius �Q, is related to the
excitation power density P by

P =
P0

�1 − ��2�
t + �
NA

ND
� , �46�

where

P0 = Lh�kNAND, �47�

� =
k

�cv


t

1 − 
t
. �48�

Here h� is the photon energy �assumed to be above band
gap� and L is the electron diffusion length. The quantity k is
the coefficient for bimolecular electron-hole recombination.

Shown in Fig. 3 is the specific case of As75 in
GaAs, using for illustration purposes ND=1022 m−3,
NA=51022 m−3, L�5 �m,46 k�110−14 m3 /s,47 and
k /�cv�10−1, which corresponds to T�40 K.41 Shown in
curve a is the dependence of 
t as a function of light excita-
tion power, obtained using Eq. �46�. The light excitation
power range P�0.2P0 corresponds to 
t�0.15 and is not
considered here because, as discussed in Sec. III C, spin dif-
fusion becomes dominant. Shown in curve b of Fig. 3 is the
power dependence of the quantity s��Q�, obtained using Eqs.
�3� and �34�–�36�. Immediately, apparent is the fact that, in a
relatively broad power range near P0, corresponding to 
t
=0.5, the nuclear field is decreased with respect to the maxi-
mum value of 0.5 imposed by spin diffusion by a factor of
about 20. Note that, at high power, the light-induced quadru-
polar relaxation still decreases the nuclear field because,
as seen from Eqs. �46� and �47�, 
t, equal to �1+k /�cv�−1,
is smaller than unity. In the present case, one finds
P0=2.4106 W /m2, a realistic value.
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The effective nuclear field, measured experimentally from
its effect on the electronic polarization, is further modified by
the efficient spin-exchange processes between free and
trapped electrons considered in Sec. III A and is equal to the
average of the nuclear fields experienced by the two elec-
tronic species. Such effect does not modify the quadrupolar
radius, but only the multiplicative factor Bn0 defined by Eq.
�37�. Assuming, as performed throughout the present work,
that the bulk nuclei are weakly polarized, the nuclear field
experienced by free electrons is very small so that Bn0 is
proportional to 
tND / �nf +
tND� where the concentration of
free electrons is given by Eq. �D6�. One has finally

Bn = �nbn0
S0� , �49�

where bn0 does not depend on light power and doping. Since
the common mean spin 
S0� of free and trapped electrons can
be measured from the luminescence polarization, the quan-
tity �n, given by

�n =

tND

nf + 
tND
s��Q� �50�

is the reduced nuclear field for which we now consider the
power dependence.

Shown in curve c of Fig. 3 is the light excitation depen-
dence of nf /NA, obtained using Eq. �D6� and assuming ND
=NA /5. Shown in curve d is the light excitation dependence
of �n. For P�P0, the dominant mechanism for nuclear field
reduction is the light-induced quadrupolar relaxation. The
nuclear field reduction due to spin exchange becomes signifi-

cant for P�P0 since nf increases while 
t is nearly constant
and induces an overall decrease of the nuclear field with light
excitation power.48

The effect of a change of doping of the quadrupolar-
induced reduction of nuclear field is limited to the sole varia-
tion of the quantity P0. As a result, an increase of acceptor
and donor doping levels simply shifts curve b of Fig. 3 along
the X axis by a similar factor without any change of shape.
As seen from Eq. �50�, this is still true if one includes the
effect of spin exchange, provided the ratio NA /ND remains
constant. Note finally that resonant excitation of donor states
might enable to increase the nuclear field value: As seen
from Eqs. �23�, �32�, and �50�, the subsequent decrease of the
free-electron concentration should induce an increase of the
efficiency of the hyperfine relaxation and a decrease of the
effect of spin exchange.

We now discuss the possibility of experimental demon-
stration of the light-induced quadrupolar relaxation. In order
to separate the contribution to the nuclear field value of the
light-induced quadrupolar relaxation from that of spin ex-
change with free electrons, it is crucial to analyze the depen-
dence of the nuclear field as a function of light excitation and
donor concentration. However, among the experimental
works which have estimated the leakage factor f ,22,23,29 none
of them has performed the latter analysis, so that experimen-
tal proof of the present mechanism is lacking. Such analysis
is beyond the scope of the present paper and will be pub-
lished elsewhere for the case of quantum dots.37

IV. CONCLUSION

We now summarize the main results of the present work.
�a� The effect of the light-induced quadrupolar relaxation

is evaluated assuming that there exists a temperature among
the nuclear-spin system. The latter hypothesis implies that
the external magnetic field is sufficiently large to decrease
the difference between the quadrupolar shifts of neighboring
nuclei so that flip-flops are allowed. In the latter case, the
time evolution of the nuclear-spin temperature is found to be
exponential, so that a relaxation time can be defined. The
latter time T1Q, within numerical factors, depends on the
product of the square of the modulation amplitude and of the
correlation time of the modulation. Comparison of T1Q with
the relaxation time due to the hyperfine contact interaction
gives the expression for the nuclear polarization as a function
of the distance to the donor under the combined effects of
quadrupolar and hyperfine relaxations.

�b� Near shallow donors in semiconductors, the angular-
averaged effect of the quadrupolar relaxation is to replace the
diffusion radius �D up to which the nuclei are spin-polarized
by a smaller, radius called the quadrupolar radius �Q.

�c� The quadrupolar-induced decrease of the nuclear field
occurs in conditions of light excitation corresponding to par-
tial donor occupancy by photoelectrons. This should induce a
decrease of the nuclear field by more than 1 order of magni-
tude in GaAs and by slightly smaller factors for InP and
GaSb. In addition, the effect of averaging of the nuclear field
between free and trapped electrons, due to spin exchange,
produces a further decrease of the nuclear field for larger
light excitation powers.
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1 10

Light excitation power
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Maximum

Quadrupolar

Spin
Exchange

FIG. 3. For As75 in GaAs, dependence of the nuclear field on
light excitation. The latter quantity is expressed in units of P0 given
by Eq. �47�, which depends on doping. The donor and acceptor
concentrations are taken as 1022 and 51022 m−3, respectively.
Curve a shows the rate 
t of donor occupation. Curve b shows the
variation of the quantity s��Q� which expresses the quadrupolar-
induced decrease of the nuclear field with respect to its maximum
value, estimated using Ref. 28, set by the presence of spin diffusion.
Curve c shows the free-electron concentration in units of NA. Curve
d shows the dependence of the reduced nuclear field �n, given by
Eq. �50�, which further takes into account the decrease caused by
spin exchange between free and trapped electrons. The hatched area
marks the zone where the present model is not valid because of spin
diffusion �see Sec. III C�.
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APPENDIX A: FORM AND MAGNITUDE OF THE
QUADRUPOLAR HAMILTONIAN

We consider here the general case, described by Fig. 4,
where both the electric-field direction Z and the magnetic-
field one Z� do not coincide with a crystal axis z, taken
perpendicular to the crystal surface. The quadrupolar Hamil-
tonian HQ of a given nucleus at position r� is related to the
components of the electric-field gradient by38,39

HQ�r�� =
eQ

4I�2I − 1��VZ�Z��r���3IZ�
2 − I�I + 1��

+ VX�Z��r���IZ��I+� + I−�� + �I+� + I−��IZ�� − iVY�Z��r��

�IZ��I+� − I−�� + �I+� − I−��IZ�� +
1

2
�VX�X��r��

− VY�Y��r����I+�
2 + I−�

2 � − iVX�Y��r���I+�
2 − I−�

2 �� , �A1�

where the quantization axis Z� is the magnetic-field direc-
tion, the spin operators I�� are equal to IX�� iIY�, and

Vij�r�� =
�2E�r��

�Xi� � Xj�
, �A2�

and Xi� stands for X�, Y�, or Z�. These directions are distinct
from the xyz directions of the cubic crystal lattice, z being
also the normal to the sample surface. The components of the
electric-field-gradient tensor in the X�Y�Z� frame are ob-
tained by using elementary rules for tensor transformation
and are given by35

�
VX�X�

VY�Y�

VZ�Z�

VY�Z�

VX�Z�

VX�Y�

� = R14�
− sin 2�� sin �� − sin 2�� cos �� cos2 �� sin 2��

0 0 − sin 2��

sin 2�� sin �� sin 2�� cos �� sin2 �� sin 2��

cos �� cos �� − cos �� sin �� sin �� cos 2��

cos 2�� sin �� cos 2�� cos ��
1

2
sin 2�� sin 2��

− sin �� cos �� sin �� sin�� cos �� cos 2��

��Ex

Ey

Ez
� , �A3�

where, as shown in Fig. 4, � and � are the angles between Z
and z and between x and the zZ plane, respectively, and ��
and �� are the angles between z and Z� and between x and
the zZ� plane, respectively. Here, R14 is the sum of an ionic
contribution �which depends on the ionicity of the solid, on
�2-n, where n is the infrared optical index, and on the anti-
shielding factor� and of the covalent contribution �which fur-
ther depends on the band-gap value�.33

The expression of the quadrupolar Hamiltonian is then
obtained from Eqs. �A1� and �A3�. For an arbitrary orienta-
tion of the magnetic field, this expression is intricate and
depends both on �� and ��. If the magnetic-field B direction
coincides with a �100� crystal axis z���=��=0�, the only
nonzero components of Vij in the xyz frame are

Vxy = R14E�r��cos � ,

Vyz = R14E�r��sin � cos � ,

Vzx = R14E�r��sin � sin � . �A4�

Equation �4� is readily obtained.
In order to estimate bQ, it is necessary to determine R14.

One of the first determinations was performed for GaAs,
where the effect of application of an electric field along the
�111� direction on the quadrupolar splitting of the NMR line
was studied.33 Here, we take the more recent measurements
of Ref. 36, which give slightly larger values, arguing that the
smaller values obtained in Ref. 33 were due to sample inho-

x

y

z

E�

�

B�’

�’

Z Z’

FIG. 4. Geometry of the magnetic-field and electric-field con-
figurations. For clarity, the X �X�� axis, which lie in the zZ �z�Z��
plane, and the Y �Y�� axis, which lie perpendicular to this plane,
have been omitted.
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mogeneities. For GaAs, InAs, and GaSb, independent esti-
mates of R14 were obtained using the broadening of the
nuclear acoustic resonance.34 For GaAs, they differ from the
latter value by about a factor of 3–4. As a result, for a
nucleus � of InAs or GaSb, we have chosen to determine R14

�

according to the following scaling involving Refs. 36 and 34:

R14
� = R14

� �Ref . 34� .
R14

As�Ref . 36�
R14

As�Ref . 34�
. �A5�

For In115 in InP no estimate of R14 has to our knowledge
been published. However, R14 of In115 in InP should not dif-
fer from that of In115 in InAs by more than a factor of 50%
since the ionicities of InAs and InP are identical and since
the effect of band gap should be similar to the ratio of the R14
values of As75 between GaAs and InAs. The final results are
shown in Table I.

APPENDIX B: CORRELATION FUNCTIONS OF THE
QUADRUPOLAR AND HYPERFINE INTERACTIONS

The modulation of the quadrupolar interaction is de-
scribed by the function h�t�, given by Eq. �8�. This function
is of zero average and takes two discrete values h� �where
�=1,2� given, respectively, by h1=s
t�1−s
t�−1 and
h2=−s�1−
t��1−s
t�−1, with respective probabilities w1=
t
and w2=1−
t. The correlation function is written under the
form

gQ��� = 
h�t�h�t − ��� = 	�
h�w�	�

h�P����� , �B1�

where P����� is the conditional probability that h=h� at time
� under the condition that h=h� at time t=0.

Assuming that the fluctuation process is Markovian and
stationary, the quantity P����� is given by49

dP��

dt
= 		

��	,��P���t� , �B2�

where ��	 ,�� is a numerical factor, equal for 	�� to the
probability per unit time that h�t� goes from the value h	 to
the value h�. The quantity ��� ,�� is the probability that h�t�
goes from f� to the other value. One has ��1,2�=�1

−1,
��2,1�=�2

−1, ��2,2�=−�1
−1, ��1,1�=−�2

−1, where �� is the
lifetime of state �. �With the definitions of Sec. II A, one has
�1=�r and �2=�c.� Using the latter values, resolution of Eq.
�B2� yields

P11 = �1 − 
t� + 
t exp�− t��1
−1 + �2

−1�� ,

P21 = �1 − 
t� − �1 − 
t�exp�− t��1
−1 + �2

−1�� ,

P12 = 
t − 
t exp�− t��1
−1 + �2

−1�� ,

P22 = 
t + �1 − 
t�exp�− t��1
−1 + �2

−1�� . �B3�

The result of Eq. �10� is obtained after replacing P�� by their
latter values in Eq. �B1�.

The same procedure can be applied to calculate the cor-
relation function for the hyperfine interaction. Here three

states, labeled +1, −1, or 0 are considered, depending on the
absence or presence of an electron of a spin equal to +1 /2 or
−1 /2. In addition with the recombination time �r, the corre-
lation time also depends on the spin-lattice relaxation time T1
and of the characteristic time �ex due to possible spin-
exchange processes with delocalized electrons. The final ex-
pression for the correlation function, valid in the limit of
small electronic polarizations �i.e. �ex

−1+T1
−1��r

−1�, is

gH��� = 
te
−���/�cH, �B4�

where �cH is given by Eq. �32�. Equation �B4� expresses the
fact that, unlike for the quadrupolar coupling, the hyperfine
relaxation is inefficient in the only case where the probability

t of occupation of the localized state is zero.

APPENDIX C: EXPRESSION OF Kk(�) DEFINED
BY EQ. (16)

Applying the relations Tr�ABC�=Tr�BCA� and
Tr�A�B , �C ,D���=Tr��A ,B��C ,D��, where A, B, C, and D
are spin operators, one obtains

Tr�Iz�AQ,k,�AQ,k
+ ,Iz��� = Tr��Iz,AQ,k��AQ,k

+ ,Iz�� . �C1�

One finds

Tr�Iz�AQ,2,�AQ,2
+ ,Iz��� = sin2 �

Tr��I+I−�2 + 2I−I+Iz�
Tr�Iz

2�
,

�C2�

Tr�Iz�AQ,3,�AQ,3
+ ,Iz��� = 4 cos2 �

Tr��I+I−�2 + 2I−I+Iz�
Tr�Iz

2�
.

�C3�

The calculation proceeds using the following relations,
where m is the quantum number of Iz,

I�I��m� = �I�I + 1� − m�m � 1���m� , �C4�

Tr�Iz
2� =

1

3
I�I + 1��2I + 1� , �C5�

Tr�Iz
4� =

1

5
I�I + 1��2I + 1��I�I + 1� −

1

3
� , �C6�

and gives the results shown in Eqs. �17� and �18�.

APPENDIX D: CALCULATION OF THE RATE �t

OF DONOR OCCUPATION

Complete calculation of 
t requires considering the kinet-
ics of generation and recombination for the conduction band,
the valence band, and the donor and acceptor levels. Al-
though tractable, such calculation leads to intricate results.
We assume here, for simplicity and for illustration purposes,
that the kinetics of generation and recombination of acceptor
levels and of valence holes are similar. Such assumption is
reasonable because donor-acceptor recombination, which is
specific to holes trapped at shallow acceptors, is known to be
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less efficient than band to band or exciton recombination.50

As a result, we consider only one hole specie, for which the
total concentration p is the sum of those of valence holes and
of neutral acceptors. In steady state, the rate equations for the
concentrations nf of free electrons and 
t ND of electrons
trapped at donors are, respectively,

0 = g − �cv�1 − 
t�NDnf −
nf

�r
, �D1�

0 = �cv�1 − 
t�NDnf −

tND

�r
. �D2�

Equation �33� is readily obtained using Eq. �D2�. The recom-
bination time �r of free and trapped electrons is given by

1

�r
= kp , �D3�

where k describes the bimolecular electron-hole recombina-
tion. Writing further that the total concentrations of photo-

created holes and electrons are equal, one obtains succes-
sively

nf + 
tND = p − NA, �D4�

g = nf���cv�1 − 
t� + k
t�ND + k�nf + NA�� , �D5�

nf = �
tND + NA�
k
t

�cv�1 − 
t� − k
t
. �D6�

The excitation power density P corresponding to a given
value of g is given by

P = gLh , �D7�

where L is the electron diffusion length and h is the photon
energy. The latter equation assumes that the diffusion length
is larger than the optical absorption length and that the sur-
face recombination velocity is negligible. Equation �46� is
readily obtained using Eqs. �D5�–�D7� and assuming that
ND�NA.
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