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We study the nonlinear refraction of x rays in highly ionized condensed matter by using a classical model of
a cold electron plasma in a lattice of still ions coupled with Maxwell equations. By employing a group-
theoretical technique, we reduce the governing equations of the system to an integrable set of nonlinear
ordinary differential equations, discussing the existence and stability of nonlinear waves. This allows us to
define the effective Kerr coefficient n2 at x rays. With reference to real-world crystalline materials �B, C, Li,
and Na�, we consider beam self-defocusing and predict that nonlinear processes become comparable to the
linear ones for focused beams with powers on the order of mc3 /r0 ��10 GW�, the classical electron power. As
a consequence, nonlinear phenomena are expected to largely affect imaging experiments in currently exploited
x-ray free-electron lasers and in their future developments.
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I. INTRODUCTION

Understanding nonlinear processes at the smallest acces-
sible spatiotemporal scale is at the frontier of modern re-
search. In this respect, the new generation of x-ray free-
electron lasers �FELs� will open unprecedented possibilities
such as, for example, nonlinear optics in the x-ray region
�see, e.g., Refs. 1 and 2�. The new x-ray FELs are expected
to deliver femtosecond pulses in the wavelength range of
0.05–1 nm with peak power greater than 100 GW �see, e.g.,
Ref. 3�, corresponding to intensities up to 1023 W cm−2 for
beams focused down to 10 nm spot size. Even if we do not
take into account relativistic effects and particle production
�expected at intensities of �1026 W cm−2; see, e.g., Refs. 4
and 5�, the underlying fundamental physical processes are in
many respects unknown and of great interest. Photons at the
atomic-scale wavelength ���0.1 nm� have macroscopic
propagation lengths in condensed materials �even when pho-
toelectric absorption is considered� and are sensitive to the
granular structure of matter.6–11 In this respect, the physics of
high intensity x-ray beams have to take into account nonlin-
ear effects accumulating along large propagation distances in
inhomogeneous environments. From a general perspective,
high-fluence x-ray photon bursts rapidly ionize the material,
and the basic nonlinear processes are due to the hydrody-
namics of the generated electron plasma �see, e.g., Refs. 1, 4,
and 12–15 and references therein�. At hard x-ray wave-
lengths, the linear refractive index �due to plasma� differs
from unity by an amount � that is on the order of 10−5 �see
Sec. II B�.

In this paper, we detail the nonlinear contribution to �,
which is an issue of high relevance in preparation of the
future science of x-ray FEL. In the early days of nonlinear
optics, Jha and Warke13 and Bloembergen6 reported on simi-
lar analyses; here we extend those works in a twofold way:
�i� We largely generalize previous results beyond the lowest-
order approximation by considering realistic aggregates of
atomic systems. �ii� We particularize to real-world experi-

ments with reference to the expected performances of the
modern x-ray FEL in terms of power, losses, and beam di-
vergence.

Within a purely classical formulation, we show that the
nonlinear contribution to the index of refraction, which is
expressed in terms of the effective Kerr coefficient n2 �Ref.
17� as n2I for low intensity I, becomes on the order of the
plasma linear refractive index � for diffraction-limited fo-
cused beams with powers on the order of 10 GW �a basically
wavelength-independent result, even when photoabsorption
is included�. With reference to current experiments per-
formed at FLASH,18 this effect can be observed for tightly
focused beams �even if not at the diffraction limit�. We
evaluate the third-order nonlinear susceptibility of the x-ray
induced plasma, demonstrating the existence of stable non-
linear waves. A realistic experiment is then suggested to
quantify the self-defocusing of an x-ray beam in real crystals
�B, C, Li, and Na�.

This paper is organized as follows: Section II A intro-
duces the nonlinear equations governing the system. Section
II B deals with the calculation of the spectrum of the linear
system by means of a group-theoretical technique. We exem-
plify our spectral analysis for two typical periodic arrange-
ments, the simple-cubic �Sec. II B 1� and the face-centered-
cubic �Sec. II B 2� lattices, deriving a reduced, integrable,
nonlinear set of evolution equations in Sec. II C. Section II D
contains a discussion on nonlinear waves and their stability,
while Sec. II E deals with the nonlinear Kerr coefficient n2
and its implications at x rays. Finally, Sec. II F presents a
realistic experimental realization with a discussion on the
effect of losses.

II. THEORY

A. Governing equations

X-ray propagation is described by Maxwell equations
coupled with the hydrodynamic equations for a plasma of
free electrons:1,12
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� � h = j + �0�te ,

� � e = − �0�th ,

�tn + � · �nv� = 0,

��t + v · ��v +
q

m
�e + �0v � h� = 0, �1�

where e and h are the time-dependent electromagnetic fields,
v is the electron mean velocity, and j=−qnv is the current
generated by the charge density q�n−n0�, with n�r� and n0�r�
as the particle densities of electrons and ions, respectively.
We make the assumption that high-energy photons instanta-
neously �i.e., at attosecond scales� ionize the material, so that
the electromagnetic field propagates in a periodically distrib-
uted cold plasma whose evolution, governed by the last two
equations in Eq. �1�, affects the whole x-ray pulse during
propagation. This implies that in this analysis we neglect
temporal effects due to delayed complete ionization with re-
spect to x-ray pulse arrival �see, e.g., Fig. 1 of Ref. 18�;
indeed we focus here on the role of nonlinear refraction in
the forward beam scattering, which is expected in the prox-
imity of the peak pulse, and we will investigate temporal
effects in a future work. The ion cores with density n0, in
other terms, are assumed to be “frozen;” they only form the
crystal lattice. In our picture, the x-ray free-electron laser
�XFEL� electric-field amplitude is sufficiently high to
heavily perturb the nuclear electric field and induce multiple
ionization.

By generalizing the formalism of the coupled-mode
theory,19 we reduce Eq. �1� to an integrable set of ordinary
differential equations. We begin by expanding the current as
j= jL+ j�, where jL is a linear contribution and j� is an arbi-
trary nonlinear term. In the linear regime j= jL and the Fou-
rier domain ��t→−i��, Eq. �1� is written in the canonical
form

� � H̃ = − i��0�1 −
�	

2

�2�Ẽ, � � Ẽ = i��0H̃ , �2�

with �	
2 =q2n0 /m�0.

B. Normal modes of the canonical structure

Under typical experimental conditions ���0.1 nm and
�n0��1030 m−3, with � � denoting a mean value�, �	

2 /�2

�10−5. The term 1−�, with �=�	
2 /�2, behaves as an effec-

tive periodic dielectric constant �r�r�, whose period is settled
by the crystal lattice constant a. The spectrum of such a
periodic system is then found by applying the Floquet-Bloch
theorem.20 The latter states that the eigenmodes in Eq. �2� are

Bloch modes Ẽk and H̃k, with

H̃k�r� = ũk�r� exp�ik · r� ,

Ẽk�r� = w̃k�r� exp�ik · r� , �3�

where k is the Bloch wave number. Magnetic modes H̃k are
solution of the self-adjoint eigenvalue problem

LHH̃k = ��

c
�2

H̃k, �4�

with

LH = � �
1

�0�r
� � , �5�

and ��k� as the medium dispersion relation. Actually, only

magnetic modes are to be calculated since eigenmodes Ẽk

depend on H̃k via

i��0�rẼk = � � H̃k. �6�

Owing to the lattice periodicity, eigenmode �3� and eigenval-
ues ��k� are periodic in the reciprocal �wave-vector� space
for k=k+G, where G= l ·b is an arbitrary translation in the
reciprocal lattice with l as a vector of integers and b given by
ai ·b j =2
�ij �ai is the vector of the unit cell of the lattice in
the direct space r�. Envelopes ũ�k and w̃�k, conversely, are
periodic for r=r+a. The electromagnetic spectrum S of the

canonical structure is therefore given by S= �H̃k , Ẽk ,��k�	,
with eigenvalues ��k� defining the medium dispersion rela-
tion.

Due to the smallness of the dielectric perturbation �	
2 /�2,

the spectrum S= �H̃k , Ẽk ,��k�	 of the canonical structure is
completely determined by the representation theory of space
groups.20,21 The latter has been successfully employed to
solve classification problems in optics,20,22 as well as to cal-
culate the spectrum of scalar operators in solid-state physics,
chemistry, and biology.21,23 Here we generalize these analy-
ses to the vectorial operator LH. The key point of this ap-
proach consists in the representation theorem for groups G
whose symmetry operations commute with the operator to be
diagonalized, say H. This theorem states that a basis for an
irreducible representation of G is provided by the degenerate
eigenvectors of H �see Chap. 6 of Ref. 21�. In this respect,
finding the spectrum of H is equivalent to block diagonaliz-
ing �i.e., reducing� the representations of G and its sub-
groups. We discuss here two specific atomic arrangements
which frequently appear in the study of periodic systems: the
simple-cubic and the face-centered-cubic lattices.

1. Simple-cubic lattice

In this system atoms are placed on the vertices of a cube
of side a. The reciprocal elementary vectors are �b1 ,b2 ,b3	
= 2


a �x̂ , ŷ , ẑ	 and the first Brillouin zone is a cube of side
2
 /a 
Fig. 1�a��. We begin by discussing the group of wave
vectors G�k� of high-symmetry points of the Brillouin zone.
The space group is defined as the set of rotations and/or
translations which keep the cubic lattice unchanged, or
equivalently, which commutes with LH. Since the cubic lat-
tice is characterized by a symmorphic space group �i.e., it
does not commute with screw or glide operations given by
noninteger translations of a�, the group of wave vectors is
equivalent to a point group.21 Table I reports the group of
wave vectors of high-symmetry points of the Brillouin zone.
Figure 1 displays ��k� for the simple-cubic �SC� lattice. Ow-
ing to the small dielectric modulation �	

2 /�2, ��k� can be
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constructed from the free-space relation ��k�=c�k� folded
over itself at each G to fulfill Bloch theorem ��k�=��k
+G�. As seen, no band gaps open in the wave spectrum and
Bloch modes exist for all frequencies �. Each k point defines
a set of degenerate plane waves which possess the same
eigenfrequency ��k� in the absence of periodicity. If prop-
erly combined, these waves form a basis for Bloch modes,
the expression of which is provided by the theory of projec-
tion operators once G�k� is reduced to a combination of irre-
ducible representations. Table II reports the irreducible rep-
resentations of high-symmetry points in the first Brillouin
zone, whereas Table III presents expressions of
z-propagating magnetic Bloch modes for �a /2
c�1 �e.g.,
for ��a�. As observed, the latter are doubly degenerate �i.e.,
they are polarized along either x or y�. This is a general result
and depends on the fact that Bloch modes are constructed
from degenerate eigenwaves of the free space; hence, their
polarization belongs to the transverse plane �x ,y�.

2. Face-centered-cubic lattice

In a face-centered-cubic �fcc� lattice, atoms are placed on
both vertices and faces of a cube of side a
2. The elementary

vectors are b1= 2

a 
−1,1 ,1�, b2= 2


a 
1,−1,1�, and b3

= 2

a 
1,1 ,−1�, while the first Brillouin zone is a truncated

octahedron of height 4
 /a 
Fig. 2�a��. Table IV shows the
group of wave vectors G�k� for high-symmetry points in k
space as well as their irreducible representations. Figure 2
displays the dispersion relation for the fcc lattice, with high-
symmetry points indicated with the reduced wave vector
k2
 /a. Finally, Table V shows the magnetic Bloch modes
for the same conditions assumed for the SC lattice. As seen,
due to the same symmetry group possessed by � and X
points in the fcc and SC lattices, Bloch modes have identical
expressions in these two systems.

C. Reduction through Bloch-mode expansion

Once the spectrum S of the canonical structure is known,
the reduction of Eq. �1� is performed by exploiting the fol-
lowing identity 
we let e=E exp�−i�t�+c.c. and h=H
exp�−i�t�+c.c.�:

FIG. 1. �Color online� �a� First Brillouin zone and �b� x-ray
dispersion relation of a SC lattice in the case of an infinitesimal
periodic modulation. High-symmetry points are indicated with their
reduced wave vector k
 /a.

TABLE I. Group of wave vectors G�k� calculated for high-
symmetry points of a SC lattice.

Point k
 / a G�k�


 
0,0,0� Oh

� 
0,0 ,�� D4h

X 
0,0,1� D4h

S 
� ,� ,1� C2v

R 
1,1,1� Oh

T 
1,1 ,1−�� C4v

M 
1,1,0� D4h

� 
1−� ,1−� ,0� C2v

TABLE II. Reduction to irreducible representations of the group
of wave vectors G�r� for various points of the reciprocal space of a
SC lattice.

Pointa Irreducible representation of G�k� b



000� T1u

�
0,0,�� E

X
0,0,1� Eg+Eu

S
�,�,1� A1+A2+B1+B2

R
1,1,1� Eg+Eu+T1g+T1u+T2g+T2u

T
1,1,1−�� A1+A2+B1+B2+2E

M
1,1,0� A2g+A2u+B1g+B1u+Eg+Eu

�
1−�,1−�,0� B1+B2

�
0,0,1+�� E

aHigh-symmetry points are indicated with the reduced wave vector
k
 /a.
bWe label representations according to the Mulliken notation �Ref.
21�.

FIG. 2. �Color online� �a� First Brillouin zone and �b� x-ray
electromagnetic band structure for a fcc lattice.
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� · �E � H̃� + Ẽ� � H� + j� · Ẽ� = 0. �7�

Equation �7� is a form of the reciprocity theorem of Maxwell
equations24 and does not contain any approximation, as it can
be verified by direct substitution. It allows the derivation of
an exact evolution equation for the field. We begin by calcu-
lating the relationship between the current shift j� and E and
H. To this aim, we solve the plasma fluid equations by an
iterative expansion in the field components:

n = n0 + n�1�e−i�t + n�2�e−2i�t + c . c.,

v = V�1�e−i�t + V�2�e−2i�t + c . c. �8�

The overall current contribution with frequency � can be
written as

j = 
j�1� + j�3��e−i�t, �9�

where

j�1� = jL = �iq2n0/�m�E ,

j�3� = − qn�2�
V�1��� − q
n�1���V�2�, �10�

the latter accounting for the third-order nonlinearity. By sub-
stituting Eqs. �8�–�10� into the last two equations in Eq. �1�,
we obtain after straightforward algebra

V�1� =
− iq

�m
E, n�1� = −

q

�2m
� n0 · E , �11�

V�2� =
iq2

4�3m2 � E2, �12�

n�2� =
q2

2�4m2�� · �E2 � n0� +
1

4
� · �n0 � E2�� , �13�

with E2�E ·E. The nonlinear current oscillating at � is
therefore expressed as

j�3� = − i
q4

2�5m3E��� · �E2 � n0� +
1

4
� · �n0 � E2��

+ i
q4

4�5m3 
�n0 · E� � E2. �14�

The second-order current contribution oscillating at 2�,
which contains terms with the products of n�1�V�1� and
n0V�2�, can be neglected as far as the input direction does not
satisfy phase-matching conditions;14 correspondingly, the
phase effect in the forward scattering is negligible.

In the following we will focus on the direct beam by
retaining only those terms inducing self-phase modulation in
the input propagation direction. The reason for this choice is
twofold:

�i� In the final expression of j, Eq. �14�, the terms includ-
ing �n0, accounting for the nonlinear Bragg scattering at
directions other than the propagation direction of the incident
beam, are quite small �they depend on the modulation of n0�.
Nonlinear dynamical effects associated with these terms re-
quire a much higher intensity with respect to terms describ-
ing scattering parallel to the input direction;

�ii� Our findings are not limited to periodical samples but
can be extended to the nonperiodic case; indeed the features
of the crystal lattice mainly influence diffracted orders, while
the nonlinear effects on the forward propagating beam are
expected to be observed for samples with comparable spa-
tially averaged charge density �n0�.

TABLE III. Expression of Bloch modes for high-symmetry
points of the Brillouin zone of a simple-cubic lattice.

Point Representation Bloch mode Hk

�
0,0,�� E
�
x̂ exp
i
 / a ��z��
ŷ exp
i
 / a ��z��

	

X
0,0,1� Eg �
x̂ sin�
 / az�
ŷ sin�
 / az�

	

X
0,0,1� Eu �
x̂ cos�
 / az�
ŷ cos�
 / az�

	

�
0,0,�+1� E
�
x̂ exp
i
 / a ��z��
ŷ exp
i
 / a ��z��

	

TABLE IV. Group of wave vectors G�k� calculated for high-
symmetry points of a fcc lattice.

Pointa G�k� Irreducible representation



0,0,0� Oh T1u

�
0,0,�� D4h E

X
0,0,1� D4h Eg+Eu

S
�,�,1� C2v A1+A2+B1+B2

U
1/4,1/4,1� C2v A1+A2+2B1+2B2

L
1/2,1/2,1/2� D3d Eg+Eu

K
3/4,3/4,0� C2v A1+A2+2B1+2B2

�
�,�,0� C2v B1+B2

aHigh-symmetry points are indicated with the reduced wave vector
k2
 /a.

TABLE V. Expression of Bloch modes for high-symmetry
points of the Brillouin zone of a fcc lattice.

Point Representation Bloch mode Hk

�
0,0,�� E
�
x̂ exp
i
 / a ��z��
ŷ exp
i
 / a ��z��

	

X
0,0,1� Eg �
x̂ sin�
 / az�
ŷ sin�
 / az�

	

X
0,0,1� Eu �
x̂ cos�
 / az�
ŷ cos�
 / az�
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We therefore retain only longitudinal scattering terms in
Eq. �13� and obtain

j�3� =
− iq4�n0�
8�5m3 E��2E2. �15�

We consider a z-propagating beam with frequency below the
first turning point of the band structure �see Fig. 2 for a /�
�1�; in this case the treatment is simplified by the fact that
only one Bloch function is involved. By exploiting Table III,
the field can be written as

E = 
2�0A�z�ŷeikz, H = − 
2/�0A�z�x̂eikz, �16�

where �0=
�0 /�0 is the vacuum impedance. Bloch func-
tions are normalized such that 4�A�z��2 yields the beam in-
tensity; correspondingly, Eq. �7� becomes

dA

dz
= i�A�e−2ikz d2

dz2 �A2e2ikz� , �17�

where �=�0
2q4�n0� /8m3�5. We remark that Eq. �17� differs

from the standard self-phase modulation �SPM� equation
�see, e.g., Ref. 16� and holds true for rapidly varying ampli-
tudes A�z�.

D. Nonlinear waves

Equation �17� is integrable and its solution is found as
A�z�=A0 exp�iknlz�, where knl is the nonlinear contribution to
the wave vector satisfying

knl +
q4�0

2A0
2

2�5m3 �k + knl�2 = 0. �18�

Equation �18� always has two real-valued solutions, as
shown in Fig. 3. At variance with standard SPM, the largest
solution �continuous line in Fig. 3� does not linearly grow
with the power A0

2 and asymptotically tends to −k from
above. This wave is forward propagating. Conversely, the
other solution provides k+knl�0 �dashed-dotted line in Fig.
3�, representing a backward propagating wave. These two
solutions at large powers have the same wave vector; this can
involve a nonlinear coupling between them, which strongly
relies on the material lattice and will be considered in future
work.

The stability of the two nonlinear waves is found by add-
ing a small perturbation a1 to the solution,

A�z� = 
A0 + a1�z�� exp�iknlz� , �19�

with a1�z� as a complex-valued function. At the lowest order
in a1�z�, we obtain

2�A0
2d2a1

dz2 + i
1 + 8�A0
2�k + knl��

da1

dz
+ a1

�
knl + 8A0
2�k + knl�2�� + 4��k + knl�2a1

� = 0. �20�

While looking for exponentially amplified solutions a1
� exp�	z�, straightforward algebra leads to the conclusion
that 	 is zero or purely imaginary for any value of A0. The
found solutions are therefore always stable.

E. Nonlinear Kerr index n2 and the classical electron power

The existence of stable nonlinear plane waves allows us
to identify an effective refractive index n, which depends on
the beam intensity. The coefficient n can be written as

n = 1 − �/2 + i� + knl/k , �21�

where � is the absorption coefficient. The last term knl /k in
Eq. �21� accounts for the nonlinear wave vector and, at the
lowest order in the intensity, for the forward propagating
solution, it reads

knl/k = − �n2�I = − �kI , �22�

with n2=−k��0 as the effective Kerr coefficient. To deter-
mine the values of I for which nonlinear effects become rel-
evant, a noticeable figure of merit is the ratio between n2I
and � /2 that, after simple algebra, is written as

N �
2�n2�I

�
=

1

4


�2I

P0
, �23�

where P0=mc3 /r0�8.8 GW is the classical electron
power and r0=q2 /4
�0mc2 is the electron radius. Equation
�23� states that if a beam of power P0 is focalized down to
the diffraction limit �spot area on the order of �2 /2
�, then
N�0.5; i.e., the plasma nonlinear contribution is of the
same magnitude as the linear one. This implies that nonlinear
effects could be observed in the current FLASH experiments
at DESY �Refs. 6 and 18� �where P� 10 GW� for tightly
focused beams �waist �100 nm�, and certainly they will be
observable with the next generation of x-ray FELs.

F. Experimental realization and the role of losses

We estimate the magnitude of nonlinear effects in the di-
rect beam propagation with reference to the simple case of
beam self-defocusing. We consider a linearly polarized for-
ward z-propagating beam with spatial profile E�exp
��−r�

2 /w0
2� focused onto a sample �here r�

2 =x2+y2 and w0 is
the beam waist�. The field is expected to display a power-
dependent divergence in the far field. For an input beam
intensity such that

A0
2�r�� = I0 exp�−

2r�
2

w0
2 � , �24�

the output beam acquires an additional transverse nonlinear
phase profile given by

FIG. 3. �Color online� Solution of nonlinear dispersion relation
�17�: The continuous �dashed-dotted� line is the forward �backward�
propagating wave; the horizontal dashed line corresponds to the
asymptotic value knl=−k.
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�nl�r�� = �
A0�r���L , �25�

where L is the sample length. To the lowest order in the
beam peak intensity I0, the forward propagating solution of
Eq. �18� gives

� � − 4k2�A0
2�r�� . �26�

Since the most pronounced nonlinear effects are in the prox-
imity of the beam axis, one has

�nl�r�� � − 4k2�LI0�1 −
2r�

2

w0
2 � , �27�

which implies that the sample acts as an effective thin lens
with negative focal length,

f = −
w0

2

16k�I0L
. �28�

Correspondingly, the acquired divergence angle � is given by

tan��� =
w0

�f �
=

16k�I0L

w0
. �29�

At any order in I0, conversely, we have

�f � =
2w0

2�

L�1 + 8� − 
1 + 16��
, �30�

where ��k�I0. Therefore, the divergence tan��� can be ex-
pressed as

tan��� =
L�1 + 8� − 
1 + 16��

2w0�
. �31�

Note that for small � one has

�w0 = 16k�I0L , �32�

which implies that if the waist is reduced �e.g., I0 is in-
creased�, � increases �Fig. 4�. For large �, tan��� saturates at
about 0.6L /w0, which defines the largest attainable diver-
gence.

In the future generation of x-ray FELs, peak intensities on
the order of 100 GW with source size of 60 �m and diver-
gence of 3 �rad will be at our disposal.3 A beam with wave-
length in the range of 0.1–10 nm and intensity of
�1022 W cm−2 �spot size �100 nm� displays a linear diver-
gence on the order of 2 mrad. In order to have an observable
nonlinear defocusing, in the following we determine the in-

tensity needed to induce a comparable beam divergence. For
small divergence angles, owing to the linear relationship
�w0=16k�I0L between I0 and the sample length L, the inten-
sity needed to acquire a nonlinear divergence greater than the
linear one is independent of the beam waist; this figure is
therefore a good indicator for quantifying nonlinear effects.
In real materials the available effective length for the self-
defocusing is compelled by photoelectric absorption and/or
other material losses, whose strength strongly depends on the
atomic number Z. In order to account for these effects, we
consider the intensity needed to obtain a divergence compa-
rable with the linear one on the sample characteristic loss
length, which is determined by two leading mechanisms: ab-
sorption 
Figs. 5�a� and 5�b�� and electron-ion collisions

Figs. 6�a� and 6�b�� �electron-electron collisions are known
to be negligible�.4 Figure 5�a� displays the intensity needed
to induce a nonlinear divergence of 2 mrad for waist w0
=100 nm �or equivalently 20 mrad and for w0=10 nm� by
including material absorption, the latter quantified in terms
of the characteristic absorption length of the considered
media,25 as displayed in Fig. 5�b�. We estimated the average
density of electrons as

�n0� = ZNaDMm
−1, �33�

where Na is the Avogadro number, D is the material density,
and Mm is the molar mass, thus obtaining �n0��1030 m−3

for all of the considered materials. Figure 6�a� deals with
electron-ion collisions described by the conductivity �coll
=3�KT�3/2 /2Z
m /3
q2, where K is the Boltzmann constant
and T is the plasma temperature. The effects of the absorp-
tion due to electron-ion collisions give the absorption length
reported in Fig. 6�b�. By comparing Figs. 5 and 6, one finds

FIG. 4. Divergence vs input peak intensity I0 in dimensionless
units.

FIG. 5. �Color online� �a� Atomic-loss-limited intensity for non-
linear defocusing and �b� material absorption length versus
wavelength.

FIG. 6. �Color online� �a� Electronic-loss-limited intensity for
nonlinear defocusing and �b� absorption length due to electron-ion
collisions versus wavelength.
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that electronic losses are dominant for wavelengths below 1
nm, while atomic losses govern the nonlinear dynamics for
��1 nm.

III. CONCLUSIONS

We predict that x-ray self-phase modulation is observable
within the reported expected performances of future x-ray
FEL sources for wavelengths of 1–10 nm and in the current

FLASH experiments at DESY. Even if the diffraction limit
�i.e., a beam waist comparable with the wavelength� is not
reached, we find that as far as the involved powers are on the
order of P0=mc3 /r0�10 GW, if tightly focused beams are
used for retrieving structural information �e.g., in the single
molecule diffraction experiments�, distortion due to nonlin-
ear refraction is observable and influence the interpretation
of the scattering pattern. This result is expected to be inde-
pendent of the specific structure of the molecule.
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