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Starting with an extended version of the Anderson lattice where the f electrons are allowed a weak disper-
sion, we examine the possibility of a Mott localization of the f electrons for a finite value of the hybridization
V. We study the fluctuations at the quantum critical point �QCP� where the f electrons localize. We find that
they are in the same universality class as for the Kondo breakdown QCP, with the following notable features.
The quantum critical regime sees the appearance of an additional energy scale separating two universality
classes. In the low energy regime, the fluctuations are dominated by massless gauge modes, while in the
intermediate energy regime, the fluctuations of the modulus of the order parameter are the most relevant ones.
In the latter regime, electric transport simplifies drastically, leading to a quasilinear resistivity in three dimen-
sional and anomalous exponents lower than T in two dimensional. This rather unique feature of the quantum
critical regime enables us to make experimentally testable predictions.

DOI: 10.1103/PhysRevB.77.245129 PACS number�s�: 71.27.�a, 72.15.Qm, 75.20.Hr, 75.30.Mb

I. INTRODUCTION

Several years of intense experimental studies of quantum
criticality in intermetallic and heavy fermion compounds
have lead to a growing evidence for a violation of the stan-
dard Landau–Fermi liquid theory of the metallic behavior.
Experimental phase diagrams use an external tuning param-
eter, such as the chemical pressure, the hydrostatic pressure,
or the magnetic field, to explore phase transitions at a tem-
perature very close to the absolute zero. These phase transi-
tions exhibit a regime of very strong quantum fluctuations—
the quantum critical regime—where anomalous
thermodynamic and transport exponents are observed. A
heavy fermion compound consists in a lattice of “big” atoms,
such as Ce, U, or Yb, alloyed with a metal. The magnetic
multiplet in the heavy atoms is determined by Hunds rules
and spin-orbit interaction. For example, after spin-orbit inter-
action, the magnetic moment of Ce 4f1 �S=1 /2, L=3� is J
=5 /2, for Yb 4f13 �S=1 /2, L=3� we get J=7 /2, and for
U 5f2 �S=1, L=3+2� it leads to J=4. The degeneracy is then
split by the lattice crystal field effects, finally leading to a
Kramers doublet. The apparent chemical complexity of this
material has to be kept in mind for any investigation of their
anomalous experimental properties. In particular, the Ander-
son lattice model, which is standard in describing those com-
pounds, relies upon the assumption that the Kramers dou-
blets are well formed1 and thus, at low energy, one
effectively considers that the physics is thoroughly described
by f electrons, sitting on the impurity atoms, subjected to
strong Coulomb interactions, and hybridizing with the con-
duction electrons of the metal. The beauty of the experimen-
tal results lies in the fact that, although the compounds are
based on a complex chemistry, very clean anomalous univer-
sal exponents in both transport and thermodynamics are ob-
served. In this paper, we do not detail the experimental result
but rather refer the reader to the various reviews on the
subject.2–5 One of the most famous example of universality is
the linear-in-T resistivity observed in YbRh2Si2 fine tuned to
quantum criticality with a small magnetic field parallel to the
c axis. In this experiment, the linearity of the resistivity per-

sists on three decades of energy, which makes it one of the
most robust anomalous exponents in strongly correlated
materials.6 The coefficient of the specific heat �=C /T is
found to increase when getting closer to the quantum critical
point �QCP� without showing any sign of saturation. A loga-
rithmic law is generally attributed to this increase, but in
several cases, like for YbRh2Si2, a divergence stronger than
logarithmic is inferred from the data.3 Recently, another type
of experiment showing quantum criticality has appeared with
the observation of strong effective mass increase in He3

bilayers.7 In this experiment, one layer of highly compressed
solid He4 is adsorbed on a graphite substrate, then another
layer of solid He4, and on top of it, two layers of He3 are
adsorbed. The first layer of He3 undergoes a transition to-
ward a localized state at a finite filling factor. Measurements
of the specific heat show a strong increase in the effective
mass which is inversely proportional to the coverage, asso-
ciated with a decrease in the coherence temperature in �n
−nc�1.8, as the QCP is reached.

It is fair to say that this increasing body of fascinating
experimental results is, at the present time, still mysterious.
The biggest challenge for the theoretician is to account for
the linear resistivity in three decades of energy in three di-
mensions of space. Such a result calls for a specific scatter-
ing process, from which the lifetime of the conduction elec-
tron would acquire the characteristic linear-in-T dependence.
At the moment, no theory can produce a reasonable scenario
accounting for linear-in-T resistivity down to zero tempera-
ture in three dimensions of space. The present paper, how-
ever, produces a very simple explanation for a resistivity
linear in T but in the intermediate quantum critical regime:
namely, above a finite �although quite small� energy scale.

Since the beginning of the history of heavy fermions,
physicists have been struck by the intense magnetic nature of
these materials. The presence of big atoms and big moments
naively calls for magnetism. Moreover, magnetic interactions
mediated by conduction electrons—called Ruderman–Kittel–
Kasuya–Yosida �RKKY� interactions—are present in these
materials.8 They compete with the formation of the Kondo
singlets responsible for the condensation of the heavy Fermi
liquid phase.9,10 For years, the magnetic nature of the mate-
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rials was so overwhelming that it was a real surprise when
the first heavy fermion superconductor was discovered.11

Similarly, the competition between the magnetism and the
formation of the Kondo singlets has been considered until
recently to be the main physical forces at play in the Ander-
son lattice.12,13 In a completely natural way, the theory has
first focused on QCPs separating a metallic magnetic phase
from a metallic paramagnet.14–16 This is the simplest case of
a QCP for itinerant electrons, usually called spin density
wave �SDW� scenario. Here, the Fermi surface of the con-
duction electrons is destabilized by scattering through mag-
netic modes propagating through the metal: the paramag-
nons. A key concept in this theory is the dynamical exponent
z. Since close to a QCP, quantum fluctuations are always
relevant and the correlation in imaginary time has to be taken
into account, which leads to an effective dimension d+z
larger than the d dimension of space. In practice, z is given
by the structure of the bare paramagnon propagator. In the
case of a transition toward an antiferromagnet �AF�, the para-
magnon propagator has the form D−1�q , i�n�=c��n�+q2,
where c is a constant. Hence, z=2 here. The theory then
integrates the fermions out of the partition function14,15 step,
which is not rigorously justified, to obtain an effective �4

Lagrangian in the d+z dimensions. Since z=2 in the AF
case, one is typically above the upper critical dimension of
the model and the bosonic effective theory can be solved at
the mean-field level. A better treatment of the model does not
integrate the fermions out of the partition function but relies
on an Eliashberg-type theory where the vertices are ne-
glected and self-energies conserved.17,18 This theory is con-
trolled in a rather artificial large N approximation where N
multiplies the number of fermions. However, we use it in this
paper every time we deal with a QCP of itinerant electrons,
since it is the best technique available at the moment in that
it avoids integrating the fermions out of the partition func-
tion, hence not missing any infrared �IR� divergence. Intense
theoretical studies of the SDW scenario lead to the conclu-
sion that some heavy fermion might fall into the universality
class of the three dimensional �3D� AF, such as CeNi2Ge2.19

Paramagnons, however, cannot account for strongly anoma-
lous exponents such as a linear resistivity in 3D.

The search for new QCPs then started. New ideas
emerged, such as the one of “deconfinement” of the heavy
quasiparticle, close to the magnetic phase transition.3 Mean-
while, a phenomenological approach was proposed based on
the observation that one can fit the NMR data for many com-
pounds with two kinds of elementary excitations, which the
authors called “two fluids.”20 Although it is not clear whether
it is really two “fluids” that are the good elementary excita-
tions, the phenomenology looks robust and sets a landmark
in the landscape of the field: the right microscopic theory
should eventually reproduce the two fluid phenomenology.
The first idea that a local mode appears at the QCP was given
in Ref. 21 in the so-called “locally quantum critical sce-
nario.” The strength of this idea is to have been the first to
outline that “something local” has to appear at the QCP. In
this theory, the local mode is of magnetic nature �a local
spin�. Its weakness, however, is that it requires the magnetic
structure of the material to be purely two dimensions.22

Moreover, it appears to be very difficult to set it to the ex-

perimental test because the technique involved is not obvi-
ously transparent. To date, no experimental prediction has
been made which would allow the community to accept or
discard it.

Then, came the idea of a reconstruction of the Fermi sur-
face at the quantum critical point, going with the idea of
deconfinement.3 The first tractable effective field theory il-
lustrating the ideas of deconfinement and of the Fermi sur-
face reconstruction was given in Ref. 23. The authors used
the Kondo–Heisenberg �KH� model and showed that, at
some point in the phase diagram, there is a transition toward
a spin liquid phase, which they called FL�. At the transition,
the Fermi surface reconstructs and one looses half of the
charge carriers in the phase FL�. Another way to look at the
transition is to say that in the heavy Fermi liquid phase, the f
electrons start to conduct, as was beautifully shown in Ref.
24. Apparently, the theory seemed to stand on much more
solid grounds, since there was a tractable model on which to
work. However, the treatment23 suffered some insufficien-
cies. The most dramatic one is the complete lack of plausible
experimental predictions. Apparently, the authors were not
able to reproduce the linear-in-T resistivity, and the expo-
nents they found for the anomalies in the specific heat coef-
ficient did not match the experiments. Moreover, there was
the problem of the phase FL�. To have a “spin liquid” phase
in any heavy fermion, compound appeared to be very un-
likely. The most promising candidate for it was the system of
He3 bilayers, for which intensive numerical studies in the last
decade25,26 have shown with very little doubt that, in its lo-
calized phase, adsorbed He3 layers form a spin liquid.

II. RELATION TO PREVIOUS WORK AND STRUCTURE
OF THE PAPER

This paper details the theory of the “Kondo breakdown”
previously exposed into two letters.27,28 We describe the ex-
citations around a selective Mott transition in the Anderson
lattice using the simplest theoretical tool available, the U�1�
slave-boson gauge theory. Our goal is to cast the theory into
the Eliashberg formalism with a careful treatment of the
gauge invariance. To our knowledge, the Eliashberg tech-
nique is presented for a “deconfined” QCP, where the order
parameter breaks a gauge symmetry �instead of a global
symmetry�. In particular, we present a study of the transport
around such a QCP using the Ioffe–Larkin �IL� composition
rule. We derive as well the most generic Ward identities
�WIs� associated with the gauge symmetry.

First, note that the first study of a phase transition sepa-
rating a spin liquid from a heavy Fermi liquid phase was
performed for the Kondo lattice model with frustrated mag-
netism using the dynamical mean field theory �DMFT�
technique.29 Two other studies exist. Coleman et al.24

showed that, at such a QCP in the KH model, there is a jump
in the transport properties; the residual resistivity jumps at
the QCP and the Hall conductivity as well. This follows from
the fact that the f electrons start abruptly to conduct in the
heavy Fermi liquid phase. These results come naturally in
our formalism we thus agree with.24 Our paper rederives
their results using the simpler formalism of the IL composi-
tion rule.
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The second study was done by Senthil et al.23 The authors
were the first to show that the volume of the Fermi surface
jumps at the QCP. We agree with this result and with their
observation that the thermodynamics, in the vicinity of the
QCP, is dominated by the gauge fields. We disagree with
their findings about the transport. Senthil et al.23 claimed
that, at very low energy, transport is dominated by the life-
time of the holons. One message of our study is that trans-
port is dominated by the conduction electrons in all
regimes.30 This is imposed by the IL composition rule,

� = �c + �� f
−1 + �b

−1�−1, �1�

which states that the resistance of the holons is in series with
the resistance of the spinons and in parallel with the resis-
tance of the conduction electrons.

Moreover, as already mentioned in Refs. 27 and 28, the
general structure of the QCP is much richer than what was
found in Ref. 23. This is depicted in Fig. 1. The first over-
looked point is that the QCP is multiscale. By this, we mean
that an intermediate energy scale is present at the QCP, sepa-
rating two quantum critical regimes of universal exponents.
The second overlooked point is that, in the intermediate en-
ergy regime, electrical conductivity simplifies, and one ob-
tains a resistivity quasilinear in T in 3D. This regime is of
main importance because it enables us to connect to experi-
mental results and make predictions to test the theory. A first
application of this regime to He3 bilayers has already been
given.31 The third overlooked point is that, at the mean-field
level, a modulated solution of the heavy Fermi liquid state
exists, analogous in structure to the modulations found for
Fulde-Ferell-Larkin-Ovchinnikov �FFLO� superconductiv-
ity.32 An analogous state was found in the study of

Chromium.33 This state may be of relevance for the myste-
rious phase observed in CeCoIn5 where the magnetic field is
applied in the �ab� axis. Last, it appears that, in the case of
the more physical model of the Anderson lattice with a small
dispersion of the f electrons, the Kondo breakdown QCP
coincides with a Mott transition of the f electrons.28

The main advantage of this viewpoint is to simplify the
discussion and to connect with other techniques available,
such as dynamical mean field theory. DMFT studies can now
be performed which will confirm or infirm in the short term
the mean-field findings of a selective Mott transition in the
periodic Anderson lattice model �PALM�. Selective Mott
transition has been previously studied in the context of mul-
tiorbital Hubbard models,34–36 where transitions for various
bands have been found.37 This model differs from the PALM
because of the absence of hybridization between the bands.
Recent DMFT studies38–41 of the PALM tend to say that the
selective Mott transition indeed exists, but the studies are not
completely conclusive yet.

The second advantage is to link the discussion with the
physics of high temperature superconductors.42–45 It is noto-
rious that the conduction electrons undergo a Mott transition
in the phase diagram of high Tc. Take a model with no frus-
tration like the KH model on the square lattice. One can
show formally that, in the localized phase, the model is
equivalent to a Heisenberg antiferromagnet and that its
ground state is an antiferromagnet. This point was actually
made in Ref. 23. Although this statement is formally simple,
it is very difficult to obtain within the slave-boson technique.
In two dimensions, for high Tc superconductors, one can
advocate that the spin liquid naturally reconfines under the
effect of gauge fluctuations.45 We do not have this latitude in
3D where gauge fluctuations are benign and can be treated
within a noncompact formalism. A better route toward the
AF ground state is probably to allow the system to have both
AF order and spin liquid and then study the issue of recon-
finement in that case. Similar studies have been performed in
the early days of high Tc �Ref. 46� but have not yet been
done for the Anderson lattice.

On the theory side, the Kondo breakdown QCP suffers as
well from its own weaknesses. We outline the main one, in
our view, which is that this fixed point relies on the presence
of a spin liquid at the transition. This spin liquid is described
in terms of the massless spinons, and the model is very sen-
sitive to the Fermi surface of the spinons. To be precise, the
exponents obtained using, for example, the uniform spin liq-
uid are different from the ones obtained using a nodal spin
liquid. Whether the linear-in-T resistivity found in the inter-
mediate phase survives the “spinonology” is still an open
question. A related question is to ask whether the U�1� gauge
theory used in the description of the Kondo breakdown is the
adequate tool to describe the approach to a Mott transition.
Are the elementary excitations correctly captured within this
technique? This question is of broad interest and is as well at
the heart of the physics of high temperature superconductors.

The paper is organized as follows. In Sec. III, we recall
the model and introduce the slave-boson effective Lagrang-
ian. Sections IV and V are devoted to the mean-field approxi-
mation. Precisely, in Sec. IV, we describe the mean-field ap-
proximation, showing the presence of the QCP at T=0. In

E*

T0

Regime II

Regime I

QCP V

Localized f−electrons heavy Fermi liquid

FIG. 1. �Color online� Schematic phase diagram for the selec-
tive Mott of the f electrons in the Anderson lattice. On the right,
when the holons condense, is the heavy Fermi liquid phase, also
called in this paper as the Higgs phase. On the left, where the
holons are not condensed, is the localized phase for the f electrons.
We do not analyze here the magnetic character of this phase but
rather characterize it only by the fact that the f electrons localize.
The QCP is multiscale as is shown by the scale E�. Two regimes are
of interest: �i� for T�E�, the exponents depend on the shape of the
Fermi surface, while �ii� for T�E�, the exponents are universal and
show quasilinear resistivity in D=3. T0 is the upper energy cutoff,
above which the entropy R ln 2 per site is released.
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Sec. V, we recall the possibility of another mean-field solu-
tion: a modulated order parameter in the heavy Fermi liquid
phase. In Secs. VI and VIII, we study the fluctuations. We
first start, in Secs. VI and VII, by introducing the amplitude
and gauge fluctuations within a “naive” random-phase ap-
proximation �RPA�. In Sec. VIII, we expose the Eliashberg
formalism which links self-consistenly the amplitude and
gauge fluctuations and is the best available tool to study
QCPs of that type. Precisely, in Sec. IV, we study the fluc-
tuations of the amplitude of the order parameter, showing the
different regimes of quantum criticality. In Sec. VII, we in-
troduce the gauge fluctuations, give the form of their propa-
gator, and detail the gauging out of the theory. In Sec. VIII,
we recall the principles of the Eliashberg theory and recast
our study of the fluctuations in this framework. We then turn
to electrical transport. In Sec. IX, we compute the IL com-
position rule for the conductivity around the QCP and derive
the various transport lifetimes in the low temperature regime.
In Sec. X, we focus on the intermediate regime and give the
arguments for the quasilinear resistivity in D=3. In Sec. XI,
we give a summary of the thermodynamics and transport in
this model. Finally, in Sec. XII, we present the conclusions
and a criticism of the work.

Appendixes A and H are devoted to some technical de-
tails. Precisely, in Appendix A, we give the calculation of the
integrals used at the mean-field approximation. In Appendix
B, we give the details of the evaluation of the vertices, which
justify the Eliashberg treatment. In Appendix D, we give an
alternative, very simple derivation of the IL composition
rules. In Appendix E, we give the evaluation of the bosonic
polarization used in the form of the gauge propagator as well
as in the holon transport lifetime. In Appendix F, we give a
field theoretic treatment of the Ward identities of this gauge
theory, relating any p-leg vertex to a �p-1�-leg one. We show
as well in the most general way how the gauge symmetry
protects the masses of the gauge fields in the Coulomb phase
and how the mass is generated in the Higgs phase. In Appen-
dix G, we give a direct check of the cancellation of the mass
in the Coulomb phase at the first order in the perturbation
theory. Last, in Appendix H, we give the derivation of Im �c
and particularly show that the logarithm in D=3 has a ther-
mal origin.

III. MODEL

In order to study the Mott localization of the f electrons in
the Anderson lattice, we must first allow them to disperse. A
small dispersion of the f electrons is naturally present in the
most physical models for heavy fermions. The reason why it
is rarely included in the starting Hamiltonians10 is that, in the
study of the heavy Fermi liquid phase, the f electron disper-
sion is irrelevant compared to the formation of the Kondo
singlets, and one can safely approximate the narrow band by
a flat one. We thus start with the Anderson lattice model,
with a small dispersion of the f band,

H = �
i,j	

�ci	
† tijcj	 + f̃ i	

† �
tij + E0�ij� f̃ j	� + �
i,	

��Vf̃i	
† ci	 + H.c.�

+ Uñf ,i
2 + Ufcñf ,inc,i� , �2�

where 
 is a small parameter, 	 is a spin index belonging to

the SU�2� representation, tij = t is the hopping term taken as a
constant, V is the hybridization between the f and c bands,

and E0 is the energy level of the f electrons. ñf ,i=�	 f̃ i	
† f̃ i	

and nc,i=�	ci	
† ci	 are the operators describing the particle

number. We first study Eq. �2� in the limit of very large
on-site Coulomb repulsion U. Ufc accounts for the Coulomb
interaction between the f and c electrons; although Ufc�U,
it must be taken into account in the derivation of the effec-
tive theory. Here, we go beyond the treatment of Ref. 28 and
include as well in the model the RKKY interactions mediated
by the conduction electrons. The starting Hamiltonian writes

H = �
i,j	

�ci	
† tijcj	 + f̃ i	

† �
tij + E0�ij� f̃ j	�

+ �
i,	

��Vf̃i	
† ci	 + H.c.�� + �

�ij�
	J0
S̃ f ,i · S̃ f ,j −

nfinf j

4
��

+ �
�ij�

�JRKKY�S̃ f ,i · S̃ f ,i · Sc,j�� , �3�

where J0 and J1 are determined by the second order pertur-
bation theory in large U / �
t� and Ufc / �
t� and JRKKY is
determined by second order perturbation theory in small
V /D, where D is the bandwidth of the conduction electrons.
One obtains J0=2�
t�2 /U, J1=2�
t�2 /Ufc, and JRKKY=�0V2

where �0 the density of states of the conduction electrons.

S̃ f =�
 f̃

†	� 
 f̃ �Sc=�
c


†	� 
c� and 	� is the Pauli matrix.
The summation over �ij� can run on first nearest neighbors as
well as second, third, etc., nearest neighbors. Here, we sim-
plify the discussion by restricting all spin interactions to first
nearest neighbors only, hence restricting our attention to the
commensurate AF case. It has to be kept in mind that this is
not the most generic situation and that frustration naturally
appears in this model.

We then take the U→� limit of Eq. �3�. We account for
the constraint of no double occupancy through a Coleman47

set of bosons �b† ,b� enslaved to a constraint on each site,
�	f i	

† f i	+bi
†bi=1. We make at each site the transformation

f̃ i	 → f i	bi
†, �4�

where the f†-creation operators are called “spinons” and the

b† “holons.” The physical electron f̃ splits into a holon and a
spinon under transformation �4�. We notice that, upon this
transformation, the slave boson drops out of all bilinear
products of fields at the same site. Indeed, one can explicitly
show that at site i

f i	
† bibi

†f i	�0� = f i	
† f i	�0� = 0, �5�

f i	
† bibi

†f i	�	� = f i	
† f i	�	� = nf ,i	�	�

Another way to see this is to apply the constraint inside the
operator,

f i	
† bibi

†f i	 = �1 − nb�f i	
† f i	 = nfif i	

† f i	 = f i	
† f i	. �6�

The last line is obtained by observing that the constraint of
no double occupation is equivalent to nfi

2 =nfi.
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The effective Lagrangian is then

L = �
i,j	

ci	
† ����ij + tij� j	 + f i	

† �bi
tijbj
† + ��� + E0 + �i��ij�f j	�

+ �
i

bi
†��� + �i�bi − � + �

i,	
�Vfi	

† bici	 + H.c.�

+ �
�ij�

�JS f ,i · S f ,j + J1S f ,i · Sc,j� , �7�

where the constraint has been implemented through a
Lagrange multiplier �i. Note that the spin operator S f
=�
f


†	� 
f is now expressed solely in terms of the spinons
and thus is insensitive to the slave bosons.

In the following, we consider a “large N” extension of
Lagrangian �7� by enlarging the spin group from SU�2� to
SU�N�. The indices 	 now belong to the SU�N� group.

IV. MEAN-FIELD APPROXIMATION

In the mean-field approximation, we minimize the effec-
tive action with four fields: �, b, �0, and 	0, where a static
and uniform approximation is made on all fields. �0 is the
uniform spin liquid parameter, which decouples the short
range AF interaction JS f ,i ·S f ,j→�0�i,	�f i	

† f i	+H.c.�
−N�0

2 /J. 	0 is the uniform field which decouples the induced
Kondo-type interaction J1S f ,i ·Sc,j→	0�i,	�f i	

† ci	+H.c.�
−N	0

2 /J1. The minimization of the free energy leads to the
following mean-field equations:

T �
k,	,�n


�kGf f +
V

b
�

k,	,�n

Gfc + � f − E0 = 0,

T �
k,	,�n

Gfc + N	0/J1 = 0,

T �
k,	,�n

��k/D�Gf f + N�0/J = 0,

b2 + T �
k,	,�n

Gf f = N/2,

where �k is a typical dispersion of the conduction electrons,
� f =E0+�, and the dispersion of the spinon band is taken to
be �k

0= �
b2+ ��0 /D���k+� f. We have the following Green’s
functions:

Gf f =
i�n − �k

�i�n − �k��i�n − �k
0� − �Vb + 	0�2 ,

Gfc =
Vb + 	0

�i�n − �k��i�n − �k
0� − �Vb + 	0�2 ,

Gcc =
i�n − �k

0

�i�n − �k��i�n − �k
0� − �Vb + 	0�2 . �8�

The mean-field equations are solved in the case of a linear-
ized bandwidth and for N=2; energy scales extracted from
the mean-field studies are as well written for N=2. The sum-

mations over �k ,�n� can then be performed analytically and
are given in Appendix A; the set of resulting equations is
then solved numerically. Since the interaction J1S f ,i ·Sc,j gen-
erates some additional Kondo coupling, it is not obvious that
a Mott transition-a point in the phase diagram where b=0
occurs at finite V. However, this is what happens, the addi-
tional Kondo coupling 	0 being itself driven to zero at the
transition. The result is displayed in Fig. 2.

We can study analytically the nature of the fixed point by
expanding the mean-field �Eq. �8�� around

	0 = 0,

b = 0,

��0� = cJ, c � 0.1. �9�

From the first equation, we get that

� fc�0� + �� f − E0�/V2 � 0,

where

� fc�0� = T �
k,�n,	

1

�i�n − �k��i�n − �k
0�

. �10�

Using, for the conduction electrons and the spinons, linear-
ized dispersions of the form �k=vF�k−kF� and �k

0=v0�k−k0�,
with v0=2�0 /kF, one obtains

� fc�0� = N�0
log�
��
�1 − 
��

, �11�

with


� = 
b2 + �0/D . �12�

One can convince oneself that the fixed point occurs when
�0=D exp�

E0

N�0V2 �. One recognizes here the typical Kondo
scale of the problem.48,49 Hence,
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FIG. 2. �Color online� Effective hybridization Vb �black curve�,
the f-band chemical potential � f =E0+� �blue curve�, and 20�0 �red
curve�, as a function of V. The electron bandwidth is D=1000. The
chemical potential �=0, the ratio of f and c masses is 
=0.1. �0 is
evaluated self-consistently around finite RKKY value of 10−3D. The
f-energy level is E0=−500. The mean-field equations are solved for
N=2. The effect of the field 	 is negligible, hence not shown in the
figure.
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Jcrit = D exp	 E0

N�0V2� . �13�

One sees that the location of the QCP in the phase diagram
depends crucially on the spin liquid parameter J. Moreover,
it is important for the stability of the mean-field equations
that the bandwidth stays finite when b→0. This is achieved
with the uniform spin liquid parameter �0 being finite at the
transition. The mean-field equations are of little help to de-
termine the nature of the localized phase where b=0. In the
simplified scheme we have taken, this phase is a uniform
spin liquid—�0 being finite and uniform. The spinons can,
however, have some other symmetries, and it would be use-
ful, for example, to determine the location of the transition
when spinons with a nodal Fermi surface are used. One can
as well allow for AF order in the localized side and study the
stability of the phase diagram. This is the program for future
work.

V. MODULATIONS OF THE ORDER PARAMETER

In Sec. IV, we have naturally considered that the order
parameter b was ordering at q=0. This issue has to be recon
�sidered keeping in mind the nature of the spinon Fermi
surface. In this section, we review for completeness the re-
sults obtained in Ref. 27. At the QCP, the effective mass of
the order parameter writes

Db
−1�q,0� = mb,

mb�q� = �0�− E0 + V2� fc�q�� , �14�

where � fc�q� is the static fc polarization, taken at finite mo-
mentum q but zero frequency. At the QCP, the minimum of
the effective mass determines the ordering wave vector. Two
situations are to be considered. First, if both the f and c
bands are electronlike, � fc�q� obtains its minimum at q0=0.
Note that in that case, the curvature of the Fermi surface has
to be included to see the minimum. Second, if one band is
electronlike but the other one is holelike, then the situation is
analogous to the FFLO ordering in superconductors32or to
change density waves in Ref. 33. At the QCP, the ordering
wave vector is at q0�1.2q�, where

q� = �kF − k0� �15�

is the difference between the Fermi wave vectors of the two
species. The determination of the ordering wave vector in-
side the ordered phase is much more involved than at the
QCP. It led to a full literature in the case of FFLO
superconductivity.32 One generally expects a first order tran-
sition toward a uniform order inside the ordered phase. Here,
the situation is rather more complex than in the FFLO case
because the order parameter b carries one quantum of gauge
charge. Gauging out the theory, even at the mean-field level,
is required to deduce the observable quantities. This study
definitely deserves more work. Particularly, it would be

interesting to see what kind of superconductivity occurs in a
Kondo phase where the hybridization is modulated in space.

VI. AMPLITUDE FLUCTUATIONS

In Secs. VII and VIII, we describe the RPA evaluation of
the amplitude and gauge fluctuations. The fluctuations are
studied in the case of the order parameter condensing at q
=0. The fluctuations of the amplitude of the order parameter
are more complex than what was considered in Ref. 23 since
the order parameter is coupled to two types of fermions: the
f spinons and the conduction electrons. Neglecting for the
moment the effect of gauge fluctuations, within the RPA, the
polarization is similar to a Lindhard function, but with two
different types of fermions,

f

c

Πfc =
b

Db
−1�q,i�n� = �0�− i�n + � + aq2 + � fc�q,i�n�� , �16�

with a=−N log�
�� / ��1−
��2kF
2�, the bosonic mass �=−E0

comes from the mean-field equations, and �0 is the density of
states of the conduction electrons. Note that, in our defini-
tion, � fc is the “dynamical” polarization, corresponding to
the IR sector. In the text, we use this definition for every
polarization. Let us here evaluate � fc. There are two cases of
interest, as shown in Fig. 3. Depending whether the Fermi
surface of the spinons and conduction electrons intersect or
not, we have two forms for the amplitude propagator. Let us
start with case �a� where there is a gap between the spinon
and electron Fermi surfaces. Using linearized bands, the po-
larization can be computed analytically and we get at T=0

Case b)

c

f

Case a)

c

f

q0

FIG. 3. Illustration of the two typical cases of interest. In case
�a�, the two Fermi surfaces of the spinons and conduction electrons
are centered and there is a gap between them; in case �b�, the two
Fermi surfaces intersect.
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� fc�q,i�n� =
N�0

4�
� d�d�d cos �

1

�i� + i�n − � − vFq cos ���i� − 
� − 
vFq��
,

=
− �0

2vF
�q�1 − 
��
�− 
�i�n + 
�vF�q − q���log�− i
��n + 
�vF�q − q��� − �− 
�i�n + 
�vF�− q − q���

�log�− i
��n + 
�vF�− q − q��� − �− i�n + 
�vF�q − q���log�− i�n + 
�vF�q − q��� + �− i�n + 
�vF�− q − q���

�log�− i�n + 
�vF�− q − q���� . �17�

We see that an additional scale q� naturally emerges from the
polarization. q� is the difference between the Fermi wave
vectors of the f spinons and c electrons. Here, we have taken
both the spinon Fermi surface and the electron Fermi surface
to be spherical and centered with respect to each other;
hence, q� is isotropic. We define the energy scale for N=2 by

E� = 0.1
�D
q�

kF
�3

. �18�

We can expand Eq. �17� in four different regimes.

�i� For q�q� , ��n��E�, we have

Db
−1�q,i�n� � �0	�̃ + aq2 − N

i�n


�vFq�� , �19�

with �̃=−E0+�0V2 log 
� / �1−
��.
�ii� For q�q� ,E�� ��n�, we have

Db
−1�q,i�n� � �0	�̃ + aq2 + N

log��n�

�vFq�� . �20�

�iii� For q�q� ,
�vFq� ��n��vFq, we have

Db
−1�q,i�n� � �0	�̃ + aq2 + N

log��n�

�vFq

� . �21�

�iv� For q�q� ,vFq� ��n�, we have

Db
−1�q,i�n� � �0	�̃ + aq2 + N

��n�

�vFq

� . �22�

Note the peculiar form of the boson propagator, where the
different sectors are not in the same footing in large N.50 We
do not know anyway how to avoid this problem within the
Eliashberg theory, and that is why we call it a large N ex-
pansion rather than a large N limit. We refer the reader to
Refs. 18 and 51 for further details about this and to Sec. VII,
just msentioning here that the merit of the Eliashberg theory
is to capture all the frequency divergences within the leading
and second leading orders in 1 /N. To each regime, one can
associate a different dynamical exponent. In regime �i�, the
dynamical exponent is z=2 and the propagator corresponds
to an undamped bosonic mode. In regime �ii�, the dynamical
is exponent z=�. In regime �iii�, we get z=1. Finally, regime
�iv� has z=3. It was shown that the spectral weight in the
�� ,q� space is most entirely centered in regime �iv� where
z=3.27 This feature is illustrated in Fig. 4.

Physical arguments enable us to simplify the discussion.
At low momentum and low energy, the particle-hole con-
tinuum is gapped due to the mismatch of the two Fermi
surfaces. There is propagation of a single boson mode with
exponent z=2 �Eq. �19��. At high momentum and high en-
ergy, one can neglect the mistmatch of the two Fermi sur-
faces; the two fermion species behave as if they were iden-
tical. The polarization behaves like a Lindhard function �Eq.
�22�� with z=3; this form is typical of a q=0 phase transi-
tion.

As we have shown above, an energy scale E� is present in
the quantum critial regime, separating two regimes with uni-
versal exponents. In the low energy regimes T�E�, the fluc-
tuations of the amplitude are gapped and thermodynamics is
dominated by gauge fluctuations. For T�E�, the thermody-
namics is in the universality class of the ferromagnet with
z=3.

On can ask the question “why is E� so low.” To answer it,
we give an estimate of E�. One can first identify 
�D with
the temperature T0 at which the entropy R ln 2 is released in
the Anderson lattice. This scale is seen experimentally in

0 5 10 15 20
momentum q

0

2

4

6

8

10

E

FIG. 4. Spectral weight of the � fc polarization in the �q ,��
plane. We have taken q�=1, vF=1, and 
�=0.01. We see that the
weight is concentrated in regime II �z=3� for q�q�, where one has
particle-hole damping.
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every compound as a bump into the thermodynamic and
transport observables. For T�
�D, the spinons loose their
dispersion; hence, one can consider that they behave as free
spins and that the entropy R ln 2 is released. This observa-
tion fixes the scale T0 to be roughly 24 K for a compound
such as YbRh2Si2 and 50 K for CeCoIn5. We see from Eq.
�18� that even for very large q�, E� is already an order of
magnitude lower than T0, which makes it a small scale al-
ready. Next, depending on the form of the spinon Fermi sur-
face, q� can be as small as 0.1kF, in which case the scale E�

is of the order of 10 mK, which means it is not experimen-
tally reachable. The fact that E� relies on the imponderable
form of the spinon Fermi surface is assuredly the weak point
of this theory.

To illustrate this point, we look at the more generic case
�b�, where the spinon Fermi surface and the electron Fermi
surface intersect in two “hot lines.” Since the anisotropy is
broken, we define a new q� as

q� = max��,����kF − k0�� , �23�

where the maximum is taken over angular variables on the
Fermi surface. In this case, regime �iv� is unchanged, but
regime �i� is different, since the particle-hole continuum is
not gapped. The boson propagator in regime �i� is now

Db
−1�q,i�n� � �0	�̃ + aq2 + Nc

��n�

�vFq0

� , �24�

where q0 is the modulus of the wave vector at which the two
Fermi surfaces intersect and c is a coefficient depending on
the shape of the Fermi surfaces. We see that the propagator
still has the dynamical exponent z=2, but it is now damped;
hence, in the same universality class as a 3D antiferromag-
netic SDW QCP. We note that the change in the spinon Fermi
surface between case �a� and case �b� did not affect the re-
gime for T�E�. Although we cannot prove that this result is
general, we illustrate it with considering a third case where
the f-spinon Fermi surface is nodal in two dimensions, as
shown in Fig. 5. This case is interesting because it is the
exact analog to the description of the one band Hubbard

model within the U�1� or SU�2� slave-boson gauge
theory.42,45 One can show that the amplitude propagator is
formally equivalent to case �a�, where the two Fermi surfaces
are gapped. Hence, in that case as well, the regime with T
�E� is unaffected by the form of the spinon Fermi surface,
although E� is supposedly bigger that in case �a�, since q�

and kF are of the same order of magnitude. In conclusion, the
regime T�E� depends on the existence of the spinon Fermi
surface but not on its shape.

VII. GAUGE FLUCTUATIONS

The order parameter of our phase transition is not a mac-
roscopic order parameter but relies on the condensation of a
gauge boson carrying one quantum of charge of the gauge
invariant theory. We study here the U�1� local invariance of
the Lagrangian. For clarity, we start with the evaluation of
the polarization of the gauge fields within RPA. The WIs
constraining the masses are given in Appendix F. We start
with the version of Eq. �3� after having performed the
Hubbard–Stratonovich transformation,

L = �
i,j	

ci	
† ����ij + tij�cj	 + f i	

† �bi
tijbj
†

+ ��� + E0 + i�i��ij�f j	� + �
i

bi
†��� + i�i�bi − i�i

+ �
i,	

��Vbi + 	i�f i	
† ci	 + H.c.� +

N

J
�
�ij�

��ij�2 +
N

J1
�	i�2

+ �
�ij�	

�f i	
† f i	�ij + �ij

� f j	
† f j	� . �25�

Under the gauge transformation,

f i → f ie
−i�i,

bi → bie
i�i,

	i → 	ie
i�i,

�i → �i + ���i,

�ij → �ije
i�i−�j , �26�

Lagrangian �25� acquires a total derivative L���→L���
− i�i����i� which is a multiple of 2i� and thus leaves the
Lagrangian invariant. The above Lagrangian is thus invariant
under a U�1� local—or gauge—symmetry. In the mean-field
treatment above, we have considered that the Hubbard–
Stratonovich fields can be taken at their saddle points �	i�
=	0, ��i�= i�, �bi�=b, and ��ij�=�0, and we have neglected
the fluctuations of the phases of the field as well as of the
amplitudes. It is safe to assume that the amplitude fluctua-
tions of �ij are gapped since �0 does not vanish through the
phase diagram. At the QCP, however, the amplitude fluctua-
tions of bi and 	i become massless. Another issue is the
phase of the gauge fields. In order to study them, it is con-
venient to take the continuum limit in Lagrangian �25�. For
this, we write �ij =�0eiaij and now the second and third terms

c

f−node

Case c)

FIG. 5. �Color online� The third case of interest, where the
spinon f Fermi surface is nodal, like for the U�1� gauge theory of
the one band Hubbard model, in D=2. This is in the same univer-
sality class as case �a�.
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in Eq. �25� describe spinons and holons in the presence of
the fictitious electromagnetic field B associated with the vec-
tor potential a with �ri

rja ·dl=aij.
42,45 We then coarse grain

Lagrangian �25� to obtain the continuous limit

L�r,�� = �
	
� drc	

†
�� −
�2

2m
− ��c	

+ f	
†
�� −

�� + iea/c�2

2mf
+ � f + ia0� f	

+ b†
�� −
�� + iea/c�2

2mb
+ � + ia0�b +

N

J1
	�r�2

+
N

J
�0

2 + �
	
� dr��Vb + 	�f	

†c	 + H.c.� . �27�

When the order parameter b+	 /V condenses, the gauge field
a acquire a gap proportional to �b+	 /V� according to the
rules for the condensation of a Higgs boson.52 This phenom-
enon is responsible for the Meissner effect in the case of a
superconductor. In Appendix F, we derive the generation of
the mass using the Ward identities associated with the gauge
invariance.

A nontrivial issue is the gauging out of the theory. The
slave-boson representation required the use of additional
fields, hence the field theory is redundant and some gauge
fluctuations can be factorized out of the partition function.
Since one deals with a U�1� gauge theory, one gauge fixing
constraint only is required. When gauging out the theory, it is
convenient to chose the radial gauge for the Higgs phase—
also called here as “heavy Fermi liquid,” which follows pre-
vious studies of the Kondo impurity47,53 and of the Kondo
lattice.9 Namely, we choose the order parameter to be real,
with, for example,

b + 	/V = �b + 	/V� . �28�

This constraint is alternatively called the “physical gauge” in
field theory, since the gapping of the gauge fields in the
Higgs phase is transparent in this gauge.52 When the order
parameter vanishes, in the so-called Coulomb phase, it is
clever to use the Coulomb gauge imposing the condition

� · a = 0, �29�

so that the vector fields become purely transverse. In the
Coulomb gauge, the scalar fields ��=0� and vector fields
decouple; the scalar fields are massive, which are nothing
than the density-density correlation function, while the mass
of the vector fields remains massless �see Eq. �E9��. The
polarization of the vector fields gives rise to a Reizer
singularity54 described below. Of course, formally all gauge
fixings should be equivalent, and there is no deep reason to
choose one constraint rather than the other. However, if, for
example, one tries to work with the radial gauge in the Cou-
lomb phase, lots of divergences appear which have to cancel
at the end for physical quantities. The reason is that radial
coordinates are ill-defined when the radius vanishes �here,
the radius is the modulus of the order parameter �b+	 /V��.
Some divergences are then hidden in the Jacobian of the

transformation. We are not aware of any field theoretic treat-
ment of this case for condensed matter systems.

At the QCP, we thus work in the Coulomb gauge where
the vector fields have the purely transverse form,

Dij
−1�q,i�n� = ��q,i�n���ij − qiqj/q2� , �30�

with

��q,i�n� = −
1

2
�T��J f ,i�r,��J f ,j�0,0��� + �ij

�0

2mf
��r�����

−
1

2
�T��Jb,i�r,��Jb,j�0,0��� + �ij

�0

2mb
��r����� .

�31�

The first term in Eq. �31� corresponds to the paramagnetic
contribution, while the second term is the diamagnetic part.
J f is the current operator defined as J f = i / �2m0��f†� f
− ��f†�f� and Jb= i / �2mb��b†�b− ��b†�b�. After Fourier
transforming, the polarization can be written as

�ij�q,i�n� =
Tn

2mf
2 �

k,	,�n

�k + q/2�i�k + q/2� j �

�Gf f�k + q,i�n + i�n�Gf f�k,i�n� + �ij
� f

2mf

+
T

2mb
2 �

k,�n

�k + q/2�i�k + q/2� j � Gb�k + q,i�n

+ i�n�Gb�k,i�n� + �ij
nb

2mb
.

The vector field propagator has the form

Dij
−1�q,i�n� = �� f + �b���ij − qiqj/q2� , �32�

where at the QCP and at T=0,

� f�q,i�n� =
N

2mf
	���n�

vFq
+ �q/kF�2� ,

�b�q,i�n� =
1

2mb
	�fd��n�

q
+ �q2�/�2mb�� , �33�

with fd=��q2 /d�d�d−1�qf0�q� / �2��d−1 and f0�q� is a UV
cutoff.50 The evaluation of �b is given in Eq. �D4�. Pictori-
ally, the polarization can be written as

Πf + Πb =
aµ aν

f

f

+
aµ aν

b

b

+
aµ aν

+
aµ aν

When the bosons condense the gauge fields, propagators be-
come massive. Note that the two-leg vertices in a�-a� are
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protecting the mass sector.55 This is shown in Appendix F
using again the Ward identity associated to the gauge invari-
ance of the problem. It is checked as well in Appendix G by
a direct evaluation at the first order.

VIII. ELIASHBERG THEORY

Our QCP corresponds to a q=0 transition. In Secs. VI and
VII, we have treated the fluctuations within the RPA, for
which the polarization is evaluated at the first loop order. A
self-consistent treatment of the fluctuations is needed to con-
trol the results. Integrating the fermions out of the partition
function is a dangerous uncontrolled step for such transi-
tions. A better approach is the Eliashberg theory, controlled
in a large N expansion. For the details, we refer the reader to
the extensive review of this technique given in Ref. 18. For
completeness, we recall here the reasoning and the main re-
sults. The Eliashberg theory relies on three steps. The first
step is to neglect the renormalization of the vertices as well
as the momentum dependence of the self-energy. In the sec-
ond step, the Dyson equation is used to evaluate self-
consistently the boson polarization and the fermion’s self-
energy. Then, one checks that the approximation is correct.
Here, we have two types of fermions and two type of mass-
less bosons as well—the order parameter and the vector
gauge fields; the time gauge field a0 being massive. The
coupled Dyson equations are represented below with Feyn-
man diagrams,

Gf
−1�k,�n� = i�n − �0 + i� f��n� ,

Gc
−1�k,�n� = i�n − �k + i�c��n� ,

Db
−1�q,�n� = �0�− i�n + � + aq2 + � fc�q,�n� − �b��n�� ,

Dij
−1�q,�n� = �0��q/kF�2 + � f�q,�n� + �b�q,�n����ij

− qiqj/q2� , �34�

where

Σf(ωn) =
f c

b, aµ

;

Σc(ωn) =
c f

b, aµ

;

[ ] −1 = [ ] −1 + [ ] −1;

Σb(Ωn) =
b

aµ

;

Πfc(q, Ωn) = b

c

f

;

Πf (q, Ωn) =
aµ aν

f

f

;

Πb(q, Ωn) =
aµ aν

b

b

;

Note that, in the above diagrams, the lines are full by con-
struction, but the evaluation of the diagram does not change
if the fermion propagators are taken to be bare. The bosonic
“self-energy” �b and the polarization �b are given in Appen-
dix E.

The crucial point in the Eliashberg theory is to check if
the three-leg vertices are small. We recall that, in the regime
T�E�, the dynamical exponent is z=3. This exponent char-
acterizes as well the ferromagnetic QCP18 and the U�1�
gauge theories,51 which have been studied in the literature. In
both cases, the Eliashberg theory is controlled in the same
way using the combined effects of the large N expansion and
the curvature of the Fermi surface. We recall here the results.

There are two types of vertices depending on the incom-
ing momentum and frequency. The static vertex,

Γ(0, 0) =
0, 0

kF , 0

obtained for vanishing incoming frequency, is small in the
large N limit, going like ��0,0��N−1/2. The dynamical ver-
tex, however, obtained in the limit of nonvanishing, but still
small frequency when ��n��vFq, is dangerous. Note that
within our model, it is impossible to form the mixed fc ver-
tex at the first order. Hence, we form it at the second order
but evaluate each loop separately in Appendix B,

Γ(q, Ω) =
0, 0

kF , 0

For bare fermion legs, it behaves as ��q ,�n���n
�3−d�/3 �for
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d=3, we get ��q ,�n��−�n log��n��, hence showing strong
anomalies in the frequency dependence in the infrared sector.
Fortunately, in the Eliashberg theory, the fermion legs are not
bare but dressed with their proper self-energy. For z=3, the
spinon and electron self-energy behave as ���n�
���n��d−3�/3 �with for d=3, ���n��−�n log��n��. Dressing
the fermion legs effectively kills the divergence in frequency.
A subtle point is that, with a linearized Fermi surface, the
resulting vertex is of order 1, with no small parameter. In-
cluding the curvature of the Fermi surface changes this situ-
ation. In the case where qy

2 /m��v fqx, where m� is the cur-
vature mass, we finally get ��q ,�n��2 log 2, with
m� / �Nm��1. As we see, the justification of the Eliashberg
theory in the case of a z=3, q=0 QCP is not simple; it
requires both the presence of the curvature and an additional
large N expansion �N being here the number of species of
fermions�, which is rather artificial. An additional caveat is
that the large N limit cannot be rigorously taken since, if we
did this, we would not include the diagrams corresponding to
the fermionic self-energy, which scale like N−1/3 in D=2,
hence are subleading in the large N limit. The Eliashberg
theory thus relies on a large N “expansion” rather than on a
“large N limit.” This remark follows the similar observation
made in Sec. VII, which the form of the boson propagator is
not homogeneous in N.

Another regime of interest is the case where z=2 for in-
tersecting Fermi surfaces. The theory is equivalent to the AF
QCP whose Eliashberg spin fermion treatment is reviewed in
Ref. 17. We refer the reader to this paper to get convinced of
the smallness of the vertices.

The two regimes �ii� and �iii� of the boson propagator are
not physically relevant since the boson propagator has only a
small spectral weight in this regime compared to regime �iv�.
We still must check that the vertices are small. Let us check
regime �ii� where the frequency part has a characteristic
logarithmic-logarithmic dependence. In both two dimensions
and three dimensions, we find that the static vertex scales
like ��0,0��1 /N. Curvature is needed to regularized the
dynamical vertex, which goes like ��q ,�n�
���n log�log��n��� / log��n�. Hence, large N is not needed for
the smallness of the dynamical vertex in this regime. Details
of the vertex calculation are given in Appendix B.

Last, the reader may wonder whether the analogous of the
singularities discovered by Belitz–Kirkpatrick–Vojta
�BKV�56 exists in this theory. This issue lies beyond the
Eliashberg theory but is of importance for the stability of q
=0 QCPs. It has been shown by Belitz, Kirkpatrick, and
Vojta56 that singularities appear in the static sector, in the
computation of the static, and temperature dependent polar-
ization. Indeed, close to a q=0 QCP of ferromagnetic type,
the static polarization,

Π(q, T ) = S

c

c
vanishes at the first loop order. Technically, one can check

that, with zero incoming frequencies, poles of the fermion
lines are in the same half-plane; hence, the static polarization
vanishes at one loop. To get a nonzero result, one must in-
clude the first vertex correction.

In our case, it is worthwhile to notice first that the one-
loop polarization has temperature dependence at lower ener-
gies due to the fact that we have two fermion species. In-
deed, we find by direct computation an activated behavior in
the case of gaped Fermi surfaces,

� fc�T� = N
�0

�1 − 
��
nF	 
�vFq�

�1 − 
��
� ,

where nF is the Fermi distribution function. This activated
behavior is quite small. We have as well a source of damping
coming from the gauge fields and leading to the temperature
dependence �see Appendix E�,

�b�T� � T�d+2�/2.

However, the BKV singularity comes from inserting vertices
and self-energy �beyond Eliashberg theory� in the polariza-
tion bubble. It is dangerous because the first insertion leads
to a contribution with negative sign, hence destabilizing the
QCP. Here, we first observe that there is no first order vertex
correction to the polarization � fc; the diagram simply cannot
be formed. At the first order, one has only self-energy inser-
tions of the type

Π
(1)
fc (T ) =

b b
+

b b

We find, in the intermediate regime, in D=3

� fc
�1� � − N−2/3T4/3.

We argue that this contribution is smaller than E� and can be
neglected. In the low energy regime, we find that the mis-
match between the two Fermi surfaces protects the system,
independently of whether the Fermi surfaces intersect or not.

The first vertex correction comes at the two loop order as
depicted below. Note that, contrarily to the nematic case,18

there is no cancellation between the vertices and self-energy
insertions. This is due to the fact that we have two fermion
species, hence the cancellation is spoiled, even though the
transition is in the charge channel. We find that this correc-
tion behaves as

� fc
�2� � �N
��−2/3T5/3

in the intermediate regime in D=3 and has a positive sign. It
is thus not dangerous.

Π
(2)
fc (T ) =

b b ∼ (Nα′)−2/3T 5/3

Note that the fermion lines are full in the computation of
these diagrams. The interested reader can find more details
about this discussion in Appendix C where we comment as
well on D=2.
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IX. IOFFE–LARKIN COMPOSITION RULES

In this section, we start the study of transport properties of
this quantum critical gauge theory. A previous study exists,24

but here we recast the formalism in terms of the Ioffe–Larkin
composition rules for the resistivity and enlarge the discus-
sion to the temperature dependence of the resistivity. It is
known from the seminal paper of Ioffe and Larkin57 that in
the Coulomb phase of a gauge theory, both spinons and ho-
lons participate to transport and the total conductivity is con-
strained by the IL composition rules. In order to derive them
for our model, we must expose the system to an external
electromagnetic field A. A is attached to the conduction elec-
trons and to the holons b.58 The system is as well subjected
to the internal fictitious gauge field a �Eq. �27��. a is attached
to the fields carrying the gauge charge, hence to the holon b
and the spinon f	. We work in the Coulomb gauge, ensuring
that � · �A+a�=0. The system is invariant through

A → A + ��A, a → a + ��a,

c → c exp�i�A� f → f exp�i�a� ,

b → b exp�i�A − i�a� . �35�

In order to derive the IL composition rules, we expand the
action for minimal coupling with the vector gauge fields.
Note that the composition rules are completely general �see
Appendix D�; the expansion in minimal coupling is a matter
of convenience,

S =� d��
k

f†Gf
−1�a��f + c†Gc

−1�A��c + b†Db
−1�A�,a��b ,

�� d��
k

�f†G0,f
−1 f + c†G0,c

−1 c + b†D0,b
−1 b + f†v f · af

+ c†vc · Ac + b†vb · �a + A�b� , �36�

where the vertices v f, vc, and vb are determined from the
expansion of the effective Lagrangian to the first order in a,
A.59 After integrating out the matter fields f , c, and b, the
effective action for minimal coupling to the gauge fields
reads

SA,a� =
T

2
� ddk

�2��d�
�n

�A
��,k��c

��,k�A

+ �A
 − a
��b

��,k��A − a�

+ a
��,k�� f

��,k�a� . �37�

The polarization bubble ��� ,k� can be decomposed into its
longitudinal and transverse parts,

�
 = 
�
 −
k
k
k2 ��1 +

k
k
k2 �2. �38�

Following IL, we integrate over the fictitious gauge field a in
Eq. �2� to get the effective action for the external electric
field,

SA,a� =
T

2
� dk�

�

A
��,k���c + ��b
−1 + � f

−1�−1�A.

�39�

Hence, the total polarizability of the system is

P1 = �c + �� f
−1 + �b

−1�−1. �40�

Using the Kubo formula

	 =
i����
�

, �41�

we get for the conductivity

	 = 	c + �	 f
−1 + 	b

−1�−1. �42�

Note that the composition rule for the conductivity can be
derived in a simpler way using solely the constraint attached
to the gauge symmetry; this calculation is given in Appendix
D. The composition rules �Eq. �40�� are powerful enough to
allow a complete discussion of the electrical transport close
to the QCP. One observes that the holons are “sandwiched”
between the spinons and the conduction electrons. If �b

−1

dominates � f
−1, then it is very unlikely that �b will dominate

�c since �c already dominates � f. Hence, we infer from the
simple form of Eq. �40� that �c is the most important part.
The transport is dominated the conduction electrons.

Let us first examine the limit of zero temperature. On the
heavy Fermi liquid side, the holons b are perfect conductors
and the spinons are massless fermions so that

�b =
nbe2

mb
, � f =

nfe
2

mf

− i�� f

�1 − i�� f�
, �43�

where we have used a Drude formula60 for the polarization
of the f spinons and � f is the scattering lifetime of the
spinons,61 which writes � f

−1��0
−1+T2 in the heavy Fermi liq-

uid. Note that we have taken into account the effect of im-
purities in the scattering time of the spinons. This corre-
sponds to dressing the spinon lines with disorder, but
neglecting the vertex corrections. In the limit of low frequen-
cies, �b

−1+� f
−1 is fully dominated by the second term; hence,

the holons do not affect the residual conductivity. We get, on
the heavy Fermi liquid side and in the limit of low frequen-
cies,

�1 � �c + � f , �44�

with

�c =
nce

2

mc

− i��c

�1 − i��c�
. �45�

In Eq. �44�, the effect of impurities is implicitly taken into
account in the scattering lifetime of the conduction electrons
�c

−1��0
−1+T2. In the limit of zero frequencies, we get

	1 =
nce

2�c

mc
+

nfe
2� f

mf
, �46�

while, on the localized side of the transition, only the con-
duction electron conducts. The residual conductivity thus
jumps at the transition; on the heavy Fermi liquid side, the f
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spinon starts abruptly to conduct. This result is in agreement
with the study of Ref. 24. Note, however, that the jump in the
conductivity obtained in this model is very unlikely to be
detectable, since mc�mf.

61

We turn next to the temperature dependence of the con-
ductivity at the QCP. We first focus on the low temperature
regime, already studied in Ref. 23, saving the study of the
intermediate temperature regime for Sec. X. As in Sec. VIII,
there are two cases of interest. In case �a�, there is a gap in
the continuum of the particle-hole excitations. Because of the
gap, the electron and spinon lifetime are not affected by the
scattering with the holons, and we get the standard Landau–
Fermi liquid law, � f

−1��c
−1��0

−1+T2. The damping of the
holons does not come from the particle-hole continuum but
only from the gauge fields �b. This damping of the holons
itself produces a finite bosonic lifetime. The polarization
writes �see Appendix E�

�b =
e2

mb
�− i��b� , �47�

with

�b � − log T in = 2,

�b � T5/4 in D = 3. �48�

One sees that, in that case as well, the sum � f
−1+�b

−1 is
dominated by �b

−1 for D=2 and by � f
−1 for D=3. Neverthe-

less, in both cases, the conductivity is dominated by the con-
duction electrons as can been seen from Eq. �40�. The resis-
tivity thus varies like T2 at the QCP,

� � �0 + T2 in D = 3. �49�

This result contradicts the previous study.23 In our view, the
contribution of the conduction electrons to the conductivity
was overlooked in Ref. 23.

The second case of interest is when the two Fermi sur-
faces intersect, called case �b�. Here, the particle-hole con-
tinuum has no gap, hence the bosons are not perfect conduc-
tors anymore but are damped by the particle-hole continuum.
We write �see Appendix E�

�b =
e2

mb
�− i��b� , �50�

where �b carries the temperature dependence of the polariza-
tion. We find for z=2

�b � − log T in D = 2,

�b � �T in D = 3. �51�

Now in the Eliashberg theory, damping from the gauge fields
leads to � f

−1��0
−1+� f�T� with

� f�T� � � T2/3 for D = 2

− T log T for D = 3.
�

One sees that, in that case as well, the sum � f
−1+�b

−1 is
dominated by �b

−1 for D=2 and by � f
−1 for D=3. Neverthe-

less, in both cases, the conductivity is dominated by the con-

duction electrons. Since the regime is characterized by z=2,
the conduction electrons have the inverse scattering lifetime
�c�T3/2 in D=3. Since the backscattering processes are
naturally present in the model �see Sec. X�, this regime is
equivalent to the AF SDW scenario, with

� � �0 + T3/2 in D = 3. �52�

A last remark for this section is that we recover the result
of Ref. 24 that although the gauge fields are gapped in the
Higgs phase, the external electromagnetic field is not, which
prohibits—thank goodness—Meissner effect in the heavy
Fermi liquid phase. The easiest way to see it is to make the
change in variable a�� =a�+A� in Eq. �36�. The fictitious
gauge fields are now a�� and the external gauge fields are
decoupled from the holons,

Sint = b†vb · a�b + c†vc · Ac + f†v f · �a� − A�f . �53�

One now follows Appendix F and writes the Ward identity
related to the external gauge field. Since the source terms can
be set to zero �only the holons get a nonvanishing source
term�, the mass of the electromagnetic field vanishes like

− iq��A�A�
= 0. �54�

X. QUASILINEAR RESISTIVITY

We examine here the transport in the intermediate regime.
This regime differs from the low temperature one by its dy-
namical exponent which is now z=3. In this regime, the IL
composition rules are still valid, with

�b � − log T for D = 2,

�b � T1/3 for D = 3, �55�

hence the holons still do not participate to the transport. As
before, the conductivity is dominated by the conduction elec-
trons. In this section, we examine in more detail the Drude
form assumed in Eq. �44�. The arguments have been given in
a previous work, and we recall them here for clarity.27 The
main idea is that the Drude form is valid, with the scattering
lifetime of the conduction electrons given by

�c
−1 � − T log T �56�

in D=3. Equation �56� is the typical scattering lifetime for a
z=3 QCP, such as, for example, a ferromagnet. The impor-
tant question is “how does the current decay in this special
q=0 phase transition.” The unique feature of this QCP is that
the current naturally decays through the lattice of f electrons.
Contrarily to a usual ferromagnetic QCP or nematic QCP
where translational invariance is not broken at the phase
transition, here translational invariance is naturally broken
since the f electrons are on the brink of localization. Hence,
there is no need for external translation invariance breakers,
such as impurities, to break translational invariance. Um-
klapp processes are naturally present, which decay the cur-
rent. In this sense,
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�tr � �QP, �57�

where �tr is the transport time, while �QP is the quasiparticle
lifetime. For z=3, D=3, it has the standard form

�QP
−1 � T . �58�

Our claim is that the electric transport in this phase is cor-
rectly described by the Drude polarization

Πc =
Jc Jc

+
Jc Jc

where here we have used bare lines. More precisely, using
the Kubo formalism, one can first show that the conduction
electron polarization is unaffected by coupling to the bosons
and the f fermions. The coupling to f and b is protected by
gauge invariance. Pictorially, we mean that

Jc Jf
+

Jc Jb
+

Jc Jb
+

Jc Jf
= 0

This comes from the fact that ���−1=� f +�b. The next ob-
servation is that the vertex corrections are negligible in this
regime; namely, the next leading order to the Drude formulas
is of order �
��2 and 1 /N, as shown in the diagram below,

Jc Jc ≃ [(α′)2/N ]

Hence, in this regime, the transport is simple and electrical
conductivity can be expressed through the simple Drude for-
mulas. The evaluation of the inverse scattering time in D
=3 is given in Appendix H. We get

�tr � T log�T/E��in D = 3,

�tr � T2/3 in D = 2. �59�

Note that the logarithm in D=3 has a thermal origin; it dif-
fers from the logarithm which appears in the real part of the
self-energy in D=3.

XI. SUMMARY OF THERMODYNAMIC AND
TRANSPORT

To summarize transport and thermodynamics close to the
QCP, we distinguish regime I for T�E� and regime II for

T�E�. The exponents for transport and thermodynamics in
regime I depend on the form of the spinon Fermi surface. If
there is a gap between the spinon and electron Fermi sur-
faces, as shown in Fig. 3 for case �a�, then the anomalous
exponents for the effective mass—appearing in Cv– are due
to the massless gauge fields with z=3. The electrical resis-
tivity is dominated by the conduction electrons, and since the
scattering with the spinons is gapped, it follows the usual T2

law characteristic of the Landau–Fermi liquid. The suscepti-
bility does not couple directly to the critical modes, hence
here again the Fermi liquid law is recovered. The exponents
are summarized in Table I.

We see that the situation is peculiar in the sense that the
Landau–Fermi liquid paradigm is broken for the thermody-
namics only. The resistivity behaves as T2 even though the
residual resistivity jumps at the Fermi surface. There is no
trace of anomalous exponents for the dynamic spin suscep-
tibility, a fact which poorly fits the experimental observa-
tions.

The second case is when T�E�, but the spinon and elec-
tron Fermi surfaces intersect. We call this regime I�. In that
case, the particle-hole continuum goes down to T=0 with hot
regions at the intersection of the two Fermi surfaces. The
situation is analogous to the AF SDW QCP, except that the
critical modes are solely in the charge channel. The results
are summarized in Table II.

In our view, the most interesting regime is for T�E�. In
that case, the exponents do not depend on the shape of the
spinon Fermi surface, but the very existence of this regime
requires the presence of a spinon Fermi surface at the QCP.
Here, the transport is simpler than closer to the QCP. The
resistivity shows a quasilinear behavior in D=3 and a sub-
linear exponent in D=2. The results are summarized in Table
III. Note that the temperature dependence of the spin suscep-
tibility, although departing from the standard Landau–Fermi
liquid law, still does not show anomalous exponents.

XII. CONCLUSIONS

In this paper, we have given the simplest consistent treat-
ment of a selective Mott transition in the Anderson lattice

TABLE I. Transport and thermodynamic exponents in the low
temperature regime when the particle-hole continuum is gapped.

T�E� �Regime I� Cv ���T� ��T�

D=3 −T log�T� T2 �0

D=2 T2/3 T2 �0

TABLE II. Transport and thermodynamic exponents in the low
temperature regime, where the spinon and electron Fermi surfaces
intersect.

T�E� �Regime I�� Cv ���T� ��T�

D=3 −T log�T� T3/2 �0

D=2 T2/3 −T log T �0
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using a U�1� slave-boson technique associated with an
Eliashberg treatment of the vertices. We find that the QCP
exists and has a multiscale character. At the QCP below E�,
the exponents for thermodynamics and transport depend on
the shape of the spinon and electron Fermi surfaces. When
the particle-hole continuum is gapped, the anomalous trans-
port scattering is gapped as well, and the resistivity follows
the Landau–Fermi liquid law.62,63 The effective mass is
dominated by the fluctuations of the transverse gauge fields
showing a Reizer singularity.54 If the spinon and electron
Fermi surfaces intersect, the particle-hole continuum is gap-
less and the transport and thermodynamics are anomalous
down to the lowest temperature, with z=2 for T�E�. Above
the energy scale E�, the resistivity does not depend on the
shape of the spinon Fermi surface, and we get a universal
quasilinear resistivity in D=3. In our view, the important
question raised by our study is the question of the presence
or not of a selective Mott transition in the Anderson lattice.
Said in general words, one can reasonably ask whether we
believe that the anomalous properties observed in heavy fer-
mions are due to a Mott localization of the f electrons. If we
believe that it is the right answer, then the U�1� slave-boson
gauge theory is the most straightforward approach to such a
phenomenon. It would be very interesting to have studies
from other techniques, such as DMFT, to first confirm the
presence of the transition and, if it there, to give more details
about the elementary excitations.

It is reasonable to ask whether the U�1� slave-boson
theory, although being the simplest description of the Mott
transition, is the appropriated tool. This question is of rel-
evance as well for the cuprate superconductors, where gauge
theories, with sometimes bigger algebra like SU�2�, have
been extensively used to describe the approach to the Mott
state.42,45 It is clear from the above study that this approach
suffers from what we would call spinology. Fermionic
spinons with a finite Fermi surface are needed at the QCP for
the QCP to exist at all. One can reasonably question this
feature and wonder whether under more powerful tech-
niques, this feature would survive. Nevertheless, before dis-
carding the U�1� slave-boson gauge theory for the Anderson
lattice, one must consider that it gives a very interesting re-
gime with a quasilinear scattering and transport lifetime in
3D. This unique feature is not easily obtained within any
theory and the good point is that it does not depend on the
shape of the spinon Fermi surface, but only on its presence at
the QCP—hence, it is a direct consequence of the “fraction-
alization” of the heavy electron at the QCP. We can use this
regime for making experimentally testable predictions. A
first application to He3 bilayers has been performed.31 We

can as well make predictions for the thermal transport in this
regime and call for experimental confirmation or invalida-
tion.
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APPENDIX A: EVALUATION OF THE INTEGRALS FOR
THE MEAN-FIELD

At T=0, the calculation of the integrals used in the mean-
field treatment is analytical for linearized bands: We call

A = T �
k,	,�n

Gf f�k,i�n� ,

B = T �
k	,�n

Gfc�k,i�n�/�bV + 	0� ,

C = T �
k,	,�n

�kGf f�k,i�n� .

We diagonalize the 2x2 matrix10 which accounts for the hy-
bridization of the f and c bands,

X1 =
1

2
��k

0 + �k − ��� ,

X2 =
1

2
��k

0 + �k + ��� ,

� = ��k
0 − �k�2 + 4�	0 + bV�2.

The integrals are all performed in the same way, first by
summing over the Matsubara frequencies and second by do-
ing the momentum integration. The momentum integration is
done by linearization of the band,

A = NT�
k,�n

�i�n − �k�
�i�n − X1��i�n − X2�

= N�0�
−D

D

d�� − nF�z�
2i�

�z − ��
�z − X1��z − X2�

dz ,

where the contour is on the whole complex plane,

TABLE III. Transport and thermodynamic exponents in the
maginal Fermi liquid regime around the Kondo breakdown QCP.
The exponents are in agreement with those of Ref. 27.

T�E�

�Regime II�
Cv ���T� ��T�

D=3 T log�T /E�� T log�T /E�� T4/3

D=2 T2/3 T2/3 −T log�T�
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=N�0�
−D

D

d�
nF�X1��X1 − �k�
�X1 − X2�

−
nF�X2��X2 − �k�

�X1 − X2� �
=

N�0

2
�

−D

�m

d�
− y + �y2 + 4�bV + 	0�2

�y2 + 4�bV + 	0�2

−
N�0

2
�

−D

�p

d�
− y − �y2 + 4�bV + 	0�2

�y2 + 4�bV + 	0�2
,

with �m and �p as the Fermi levels for the upper and lower
bands, respectively.

�m = �− � f + 
�� − ��� f + 
���2 + 4
��bV + 	0�2�/�2
�� ,

�p = �− � f + 
�� + ��� f + 
���2 + 4
��bV + 	0�2�/�2
�� ,

with the conditions

− D � �m � 0, 0 � �p � D ,

and


� = 
b2 + �0/D .

One obtains

A =
N�0

2�1 − 
��
�− 2y−D + ym − �ym

2 + 4�bV + 	0�2 + yp

+ �yp
2 + 4�bV + 	0�2� ,

ym = �1 − 
���m − � f − � ,

where

yp = �1 − 
���p − � f − � ,

y−D = − �1 − 
��D − � f − � .

We proceed in the same way for B and C to find

B =
N�0

�1 − 
��
log	 ym + �ym

2 + 4�bV + 	0�2

yp + �yp
2 + 4�bV + 	0�2 � ,

C =
N�0

2�1 − 
��2	− 2�� f + ���y−D� + y−D
2 + 2�bV + 	0�2

�log
 ym + �ym
2 + 4�bV + 	0�2

yp + �yp
2 + 4�bV + 	0�2 � + �� f + ��ym + ym

2

− �ym/2 + � f + ���ym
2 + 4�bV + 	0�2 + �� f + ��yp + yp

2

− �yp/2 + � f + ���yp
2 + 4�bV + 	0�2� .

APPENDIX B: EVALUATION OF THE INTEGRALS FOR
THE VERTICES

In this appendix, we focus on the evaluation of the verti-
ces for regime II where we have logarithmic frequency de-
pendence of the polarization. We call ḡ=V2�0 with V as the
coupling constant between the soft modes and the f and c
electrons and �0 as the density of states of the c electrons.
Note that although it is not possible to form the vertex cor-
rection at the first loop, we still evaluate the fictitious one-
loop vertex below, knowing that the two-loop vertices be-
have as products of the one-loop ones. We start with the
static vertex

Γ(0,0) =
0,0

kF ,0

��0,0� =
ḡ

− N log�
��� ddqd�

�2��d+1

1

q2 − a log ��n�
1

�i�n + 
�vFq cos ���i�n − vFq cos ��
,

=
ḡ

N log�
���1 − 
��� q2dqd�

�2��3

1

− i�n�q2 + a log��n��
 − 1

vFq
�log	 vFq − x


�vFq − x
�

x=−1

x=1

,=
ḡ�− log 
�

N�1 − 
��12�2��2EF
,

with a=1 / log�
��. Hence, the static vertex is small in 1 /N.
We next evaluate the dynamical vertex, with linearized Fermi surfaces
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Γ(q,Ω) =
q, Ω

kF ,0

��q,�n� =
ḡ

− N log�
��� ddqd�

�2��d+1

1

q2 − a log��n�
1

�i�n + 
�vFq cos ���i�n + i�n − vFq cos � − vFQx�
,

=
ḡ

− N log�
���2��3

i

i�n − vFQx
�

−�n

0

d� log
�− log 
��
log ��n�

,

�
ḡ

− N log�
���2��3 �
i

i�n − vFQx
��n log log��n� − Li�− �n�� . �B2�

We see from Eq. �B1� that for Qx=0, the vertex has a log log singularity. It is not small.
The same evaluation with the curvature of the Fermi surface gives

��q,�n� =
ḡ

− N log�
��� ddqd�

�2��d+1

1

q2 − a log��n�
1

�i�n − 
�vFq cos � − 
�q�
2 /�2m��

1

�i�n + i�n − vFq cos � − vFQx − q�
2 /�2m��

,

=
ḡ

− N log�
��2�2��3�
−�n

0

�− id��
1

�QxvF + �1 − 
��log��n�/log 
��
log
− log 
�

log��n� �
�

ḡ

− N log�
��2�2��3

i�n log�− log��n��
�1 − 
� log��n�/log 
��

We see now that the curvature regularizes the vertex both in
large N and in the infrared frequency sector.

APPENDIX C: INSTABILITIES BEYOND THE
ELIASHBERG THEORY

In this section, we evaluate diagrams beyond Eliashberg
theory, but those are potentially dangerous for the static sec-
tor of any q=0 QCP. As mentioned in the main text, such
singularities were discovered by BKV56 and are typical of
the type of problems coming from the presence of a finite
Fermi surface in the theory. Precisely, we want to evaluate

Π
(1)
fc (T ) =

Π
(1)
a

+
Π

(1)
b

We first note that the two diagrams are proportional, �a
�1�

=
��b
�1�, and that there is no corresponding vertex insertion

at the first order. One can check that, in the low energy
regime T�E�, the two diagrams are not singular, since the
average gap between the spinon and electron Fermi surfaces
protects it. Here, we want to check the stability in the inter-
mediate regime for T�E�. We have z=3 in the boson propa-
gator. To understand the source of the problem, it is instruc-
tive to compare the following four-field diagrams,

gFf f

c

c

and

g4

where g4 is a mode-mode coupling constant, coming, for
example, from the term −J0ninj /4 in Eq. �3�. The g4 mode-
mode coupling is standard in a �4 theory and provides cor-
rection to scaling extensively studied in, for example, chap-
ter 42 of Ref. 64. If g4�0, the �4 theory is stable and, close
to a QCP, the corrections to scaling follow the law

mb(T ) =

b

g4

b

∼ T (d+z−2)/z

One sees that, in a fermionic theory, one can form correc-
tions to scaling from the fermion vertex gF which leads to
our two diagrams, �a

�1� and �b
�1�. The difference between gF

and g4 is that the fermion loop is dangerous and can change
the sign of the vertex. According to the value of z, it can as
well lead to a more relevant term than the standard �4 cor-
rections to scaling.

We turn to the computation of the diagrams. With ḡ
=8kF

2V2 /�0 and c=�0N / �
�vF�.
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�a
�1��T� = Nḡ�0T �

n,m�0
� ddq

�2��dd�kDb�q,�m�Gc
2�k,�n�Gf�k,�n�Gf�k + q,�n + �m� ,=N�0ḡT�

n,m
� ddq

�2��dd�k
1

c��m�/q + aq2

�
1

�i�n + i�c��n� − �k + ��2

1

�i�n + i� f��n� − 
��k − � f�
1

�i�n + i�m + i� f��n� + i� f��m� − 
��k − 
�vFqx − � f�
.

We have sgn�� f ,c��n��=sgn��n�.We perform first the integration over �k, noticing that the integral is nonzero if the poles are
in the same half-plane. To fix the ideas, we take �n�0 while �n+�m�0 �the result is identical to the other choice�. We then
close the contour in the upper half-plane to catch the pole coming from the last factor. We obtain, after neglecting the terms
proportional to 
� and neglecting i�n compared to i� f ,c��n� in the Green’s functions,

�a
�1��T� = N
�ḡ�0T �

m�0,−m�n�0
� ddq

�2��d

1

c��m�/q + aq2

2i�

�i� f��n� − 
�vFqx�
1

�i� f��n� + i� f��n� − 
�vFqx − � f�2 .

Keeping only the dependence in �n in the integrand, we get

=N
�ḡ�0T�
m
� ddq

�2��d

i�m

c��m�/q + aq2

1

�i� f��m� − 
�vFqx�3 .

�C1�

The calculation in D=2 and D=3 differs at this point.

1. D=3

Since there is only one pole in the last factor, the integra-
tion over qx lead to a typical qx of the order of � f �it is the
reason why full fermion lines can be safely replaced by bare
ones in the Eliashberg theory�. One possibility is that the
integration over qx does not vanish due to the branch cut in
the boson propagator qx�q����m�1/3. It is what happens in
D=3. We find

�a
�1��T� � − T4/3. �C2�

Note that the minus sign is of importance. We argue though,
that since we are in the intermediate regime where T�E�,
the correction in T4/3 is irrelevant, just giving an extra UV
cutoff for the intermediate regime. The stability of this re-
gime is thus ensured in D=3.

2. D=2

In D=2, the situation is more complex. The branch cut at
qx�q����m�1/3 would lead to �a

�1��T��−T, but there is a
stronger singularity first discovered in Ref. 18. Indeed, we
suppose qy�qx and expand q=�qx

2+qy
2��qy�+qx

2 / �2�qy��. We
find

�a
�1��T� = N


�ḡ�0

�2��2 T �
m�0

�
�qx�

�

dqy
i�m

c��m�� dqx��qy�

+ qx
2/�2�qy���

1

�i� f��m� − 
�vFqx�3 ,

as the integration over qy now leads to a logarithmic singu-
larity in qx,

Ising =� dqx

qx
2 log��/�qx��

�i� f��m� − 
�vFqx�3 .

Ising is performed by continuation in the upper half-plane if
�m�0 and in the lower half-plane if �m�0 so that to avoid
the pole in the Green’s function. Changing variables in qx
= iz, we get

Ising = − �
0

�

idz sgn��m�
�− iz�2�log�− iz� − log�iz��
�− i�3��� f��m�� + 
�vFz�3 ;

=
− i� sgn��m�

�
�vF�3 log
 �

�� f��m��� .

Setting things together, we get

�a
�1��T� = N


�ḡ�0

�2��2 T �
m�0

i�m

c��m�
− i� sgn��m�

�
�vF�3 log
 �

�� f��m��� ,

since T�−�/T
�/T 1=Cst, we find that the T dependence of the

above comes from the m=0 term only. Finally,

�a
�1��T� = −


�ḡ�0

�2��2

�

c�
�vF�3T log
�
T
� . �C3�

This result sets the intermediate regime in a fragile situation.
This term is of negative sign and dominant compare to E�; it
has the potential to destabilize the regime. Note that in D
=2, corrections to scaling coming from the g4 interactions
have the same temperature dependence �−T log T� but with a
positive sign. Corrections to scaling hence compete with �a

�1�

and tend to stabilize the fixed point. We have reached here
the limit of the Eliashberg theory. Whether the intermediate
regime is stable or not in D=2 depends on whether we have
strong enough corrections to scaling of positive sign. This
requires, for example, strong enough ferromagnetic short
range fluctuations �J0�0 in Eq. �3��. The stability of the
intermediate regime is a matter of prefactors between the two
terms.
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APPENDIX D: IOFFE–LARKIN COMPOSITION RULE
FROM THE CONSTRAINT

We can recover simply the IL composition rules by apply-
ing the constraint nf +nb=1. The external current is associ-
ated to the conduction electrons and to the bosons b,

J = Jc + Jb, �D1�

but introducing now the fictitious field e and the external
field E, we get

Jc = 	cE ,

Jb = 	b�E + e� ,

J f = 	 fe . �D2�

We apply J f +Jb=0 to Eq. �D2� and get

e =
− 	b

	 f + 	b
E , �D3�

which leads to

	 = 	c +
	 f	b

	 f + 	b
. �D4�

APPENDIX E: EVALUATION OF THE POLARIZATION
AND SELF-ENERGY OF THE BOSONS AT THE

QUANTUM CRITICAL POINT

1. Self-energy

Σb(Ωn) =
b

aµ

;

This self-energy captures the effect of the gauge fields on
the boson propagator. This effect is subdominant in all re-
gimes but in regimes I where, because of the gap in the
particle-hole continuum, the only source of damping for the
bosons are the gauge fields. We evaluate �b in regime I
where T�E� and the particle-hole continuum is gapped. Re-
naming c→N� / �2mfv f� and a→1 / �2mfkF

2�, we have

�b��n� = T�
n
� ddq

�2��d

q2

2dmb
2

1

− i�n + aq2

1

c��n + �n�/q + aq2 .

�E1�

Performing the analytical continuation and integrating over
the two branch cuts �n=0 and �n+�n=0, we get for �n
�0,

=� d�

4i�
coth
 �

2T
� ddq

�2��d

q2

2dmb
2� 1

�− � + aq2 − i��
1

�c�− i� + �n�/q + aq2�
−

1

�− � + aq2 + i��
1

�c�i� − �n�/q + aq2�� ,

=� d�

4i�
coth
 �

2T
� ddq

�2��d

q2

2dmb
2 �i����− � + aq2�

2aq2

a2q4 − �ic�/q − c�n/q�2 �
− 1

2
� ddq

�2��d

q2

2dmb
2coth
aq2

2T
� 2aq2

�icaq − c�n/q�2 .

Since this integral is dominated by large q, we get

�b��n� �
1

2
��n��d+2�/2�

�2T

� ddx

�2��d

a

2dmb
2

x6

�ix2 − 1�2

= �A + iB���n��d+2�/2,

A = Re	�
0

� ddx

�2��d

a

4dmb
2

x6

�ix2 − 1�2� ,

B = Im	�
0

� ddx

�2��d

a

4dmb
2

x6

�ix2 − 1�2� , �E2�

in the limit where T→0. We use in Appendix F the short-
hand notation,

�b��n� = f0

��n�
,


 = �d + 2�/2,

f0

 = A + iB

. �E3�

2. Polarization

In the following, we evaluate the polarization bubble of
the bosons in the three possible regimes at the QCP.

Aµ Aν

b

b

= Πb(q, iΩn)

The generic form of the bosonic polarization is

�b�Q,i�n� = T�
�n

� ddq

�2��d

q2vb
2

d
Db�q,i�n�Db�q + Q,i�n

+ i�n� , �E4�

with vb the vertex defined in Eq. �36�.

3. T=0: Form used in the gauge propagator

We evaluate here the bosonic polarization contributing the
the gauge fields propagator. Here, vb=1 /mb. At T=0, only
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undamped holons contribute to the damping of the polariza-
tion,

�b�Q,i�n� =� d�� ddq

�2��d

q2

2dmb
2

�
1

− i� + aq2

1

− �i� + i�n� + aq2 + qQ cos �/mb
,

with a=1 / �2mb�

=
2i�

− i
� �d−1qddqd cos �

�2��d

q2

2dmb
2

− �n + iqQ cos �/mb

�n
2 + �qQ cos �/mb�2 ,

where �d−1 is the solid of dimension d-1

=� �d−1qd−1dq

�2��d−1

q2

2dmb

���n�
Q

.

4. TÅ0: Form used in transport

a. Regime I: There is a gap between the two Fermi surfaces

The form of the boson propagator is given by Eq. �34�
with � fc given by the frequency dependence of Eq. �19� and
�b given by Eq. �E3�. We see that the particle-hole contribu-
tion � fc to the polarization is undamped in this regime; the
only source of damping �b comes from the gauge fields. For
the Kubo formulas, we evaluate the polarization at q→0, we
need only to retain the damping part of the polarization �b.
The boson polarization then writes �with c=1 and a
=1 / �2mb�, vb=1 /mb�

�b�0,i��

= T�
n
� ddq

�2��d

q2

2dmb
2

1

f0

��n�
 + aq2

1

f0

��n + �n�
 + aq2 .

Considering the two branch cuts at �n=0 and �n+�n=0, we
get

=� d�

4i�
coth
 �

2T
� ddq

�2��d

q2

2dmb
2� 1

f0

�− i��
 + aq2

1

�f0

�− i� + �n�
 + aq2�

−
1

f0

�i��
 + aq2

1

�f0

�− i� + �n�
 + aq2�

+
1

f0

�− i��
 + aq2

1

�f0

�i� + �n�
 + aq2�

−
1

f0

�i��
 + aq2

1

�f0

�i� + �n�
 + aq2�� ,

=� d�

4i�
coth
 �

2T
� ddq

�2��d

q2

2dmb
2	 1

f0

�− i��
 + aq2 −

1

f0

�i��
 + aq2�	 1

f0

�− i� + �n�
 + aq2 +

1

f0

�i� + �n�
 + aq2� .

We expand the second factor in �n and take the part proportional to ��n� �since the constant part cancels with the tadpole
diagram�. We get

�b�0,i�n� � � d�

4i�
coth
 �

2T
� ddq

�2��d

q2

2dmb
2
��n�

2i sin�
�/2�f0

�


�f0

�
 cos�
�/2� + aq2�2 + �sin�
�/2�f0


�
�2�3 − 2�
−1 cos��
 − 1��/2�

��f0

�
 cos�
�/2� + aq2�2 − �sin�
�/2�f0


�
�2� − 2i�
−1 sin��
 − 1��/2��− i sin�
�/2�f0

�
��f0


�
 cos�
�/2�

+ aq2�� . �E5�

From the above formulas and using 
= �d+2� /2, we extract
�b in all dimensions to get

�b � − log T in D = 2,

�b � T5/4 in D = 3. �E6�

b. Regime I�: The two Fermi surfaces intersect each other

We start now from Eq. �24� �where we have renamed
�0c / �
�vFq0�→c and �0a→a, vb=1 /mb�. We take �n�0,

�b�0,i�n� = T�
n
� ddq

�2��d

q2

2dmb
2

1

c��n� + aq2

1

c��n + �n� + aq2 ,

considering the two branch cuts at �n=0 and �n+�n=0, we
have
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=� d�

4i�
coth
 �

2T
� ddq

�2��d

q2

2dmb
2� 1

�− ci� + aq2�
1

�− c�i� − �n� + aq2�
−

1

�ci� + aq2�
1

�− c�i� − �n� + aq2�

+
1

�− ci� + aq2�
1

�c�i� + �n� + aq2�
−

1

�ci� + aq2�
1

�c�i� + �n� + aq2�� ,

=� d�

4i�
coth
 �

2T
� ddq

�2��d

q2

2dmb
2

2ic�

c2�2 + a2q4

2c�n + aq2

c2�2 + �c�n + aq2�2 .

Since the bosonic mass cancels out with the tadpole diagram
�see Appendix F or Eq. �G14��, we have to extract the part
proportional to �n to get

�� d�

�
coth
 �

2T
� ddq

�2��d

q2

2dmb
2

c2��n

�c2�2 + a2q4�2 .

From the above formulas, we extract �b in all dimensions to
get

�b � − log T in D = 2,

�b � T1/2 in D = 3. �E7�

c. Regime II: Both cases

In this regime, we start with Eq. �22� for the boson propa-
gator, showing z=3 �with the renaming �0 / �
�vF�c→c and
�0a→a�. We take as well �n�0. Here, vb is a both more
complete since we have to expand ��n� / ��q+a�� in the first
order in the vector field a to find vb. We get

vb = 1/mb − c�n/q3. �E8�

Since in the integral below

�b�0,i�n�

= T�
n
� ddq

�2��d

q2vb
2

2d

1

c��n�/q + aq2

1

c��n + �n�/q + aq2 ,

considering the two branch cuts at �n=0 and �n+�n=0,

=� d�

4i�
coth
 �

2T
� ddq

�2��d

q2vb
2

2d
� 1

�− ci�/q + aq2�
1

�− c�i� − �n�/q + aq2�
−

1

�ci�/q + aq2�
1

�− c�i� − �n�/q + aq2�

+
1

�− ci�/q + aq2�
1

�c�i� + �n�/q + aq2�
−

1

�ci�/q + aq2�
1

�c�i� + �n�/q + aq2�� ,

=� d�

4i�
coth
 �

2T
� ddq

�2��d

q2vb
2

2d

2ci�/q
�c/q�2�2 + a2q4

2c�n/q + aq2

�c/q�2�2 + �c�n/q + aq2�2 ,

and taking the part proportional to �n, we get

�� d�

�
coth
 �

2T
� ddq

�2��d

q2vb
2

2d

�c/q�2��n

��c/q�2�2 + a2q4�2 .

From the above formulas, we extract �b in all dimensions to
get

�b � − log T in D = 2,

�b � T1/3 in D = 3. �E9�

APPENDIX F: WARD IDENTITIES

In this section, we derive the WI associated to the gauge
invariance of our theory. When it is not mentioned, the field

	 has been set to zero at the QCP. The first point of interest
is to show that the mass of the gauge fields is zero in the
Coulomb phase. The second point is to show that it is non-
zero in the Higgs phase. In the case of a purely bosonic
gauge theory, this second point is simple and can be found,
for example, in the Peshkin–Schroder.52 In the case of gauge
theory with nonrelativistic fermions, the point is more subtle
since the gauge fields a� and a� are not only coupled to the
Higgs boson. Gorkov65 was the first to show that the mass is
generated in the Higgs phase in the case of a supercondcutor.
Here, we follow Zinn-Justin on page 432,64 with a field theo-
retic derivation of the same result. The possibility of mass-
less Higgs phase, although nongeneric, will appear at the
end.

We start from Eq. �27� with the gauge fields both coupled
to the spinons f and holons b. For simplicity, we have set
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	=0 everywhere since this parameter is irrelevant at the
QCP,

S0 = −� ddxd��
	

f	
†�x�
�� +

��− iea/c�2

2mf
+ � + E0� f	�x�

+ b†�x�
�� +
��− iea/c�2

2mb
+ ��b�x�

+� ddxd��b�x�f†�x�c�x� + H.c.� + Hc. �F1�

For each field, we introduce a source term, such as

a� → J�,

f →  ̄ ,

f† →  ,

b → J̄b,

b† → Jb, �F2�

so that

S = S0 + Ssource, �F3�

with

Ssource = −� ddxd��a�J� + f† +  ̄f + J̄bb + b†Jb� .

The part of the action S0 �Eq. �F1�� is invariant under the
gauge transformation �Eq. �26��. Only the source terms
Ssource are affected by the gauge transformation. Using the
linearized form of the U�1� algebra, ei�=1− i�, we get for the
variation of the source term c,

�Ssource = −� ddxd�
 J�
e

��

��
+ i�� ̄f − f† � + i��bJ̄b − b†Jb�� .

Now from the change in variables,

f → f�1 + i�� ,

b → b�1 − i�� ,

a� → a� +
��

e � x�
, �F4�

we check that the whole action S=S0+Ssource is invariant
under the U�1� gauge transformation. Hence, �Ssource=0. In-
tegrating by parts the first term in Eq. �F4�, one gets one
version of the WI,

− ��J� + ie� ̄f − f† � + ie�J̄bb − b†Jb��]� = 0. �F5�

Equation �F5� is applied to any generating functional for
correlation functions. We can first use the generating func-
tional of the source currents W�J , �.

− ��J� + ie
 ̄�W

� ̄
−

�W

� 
 � + ie
 �W

� J̄b

J̄b − Jb
�W

�Jb
� = 0.

�F6�

However, we can also use the generating functional for the
vertices �, where � is a p-leg vertex, which leads to the more
useful WI,

− ��
��

�a�
+ ie
 ��

� f
f − f† ��

� f†� + ie
b
��

�b
−

��

�b†b†� = 0.

�F7�

To get a better idea, let us derive the WI for the two-leg
vertex, which is nothing but the total polarization ���. We
differentiate Eq. �F7� with respect to a��y� to get

− ��
�2�

�a��y� � a��x�
+ ie
 �2�

�a��y� � f�x�
f�x�

− f†�x�
�2�

�a��y� � f†�x�� + ie
 �2�

�a��y� � b�x�
b�x�

− b†�x�
�2�

�a��y� � b†�x�� = 0. �F8�

To get the proper vertices, we Fourier transform and then set
the sources to zero. We note here that it is possible to set the
sources to zero in the Coulomb phase, but not in the Higgs
phase where the boson acquires a nonzero mean-field value.
There are two cases of interest: �i� the Coulomb phase and
�ii� the Higgs phase. We get �i� in the Coulomb phase,

− iq����
2 �q,− q� = 0, �F9�

which is rewritten, with the notations of the body of this
paper, as

− iq�����q,− q� = 0. �F10�

From Eq. �F10�, we see that, in the Coulomb phase, the WI
ensures that the mass of the transverse gauge field propagator
is zero to all orders. Note that identity �F10� constraints only
the mass of the vector fields; since the mass is taken at q0

=�=0, for which the scalar field a0 is dropping out of Eq.
�F10�. Now, �ii� in the Higgs phase, the WI writes

− iq����
2 �q,− q� + ie�b���b�

2 �q,− q� − �b†�
2 �q,− q�� = 0.

�F11�

We see that the gauge field propagator gets massive as soon
as �b�

2 �q ,−q�−�b†�
2 �q ,−q��0. This phenomenon is nothing

but the Meissner effect for superconductors. Note that it can
happen that for special forms of the Fermi surface, �b�

2 �q ,
−q�−�b†�

2 �q ,−q�=0. We then get the equivalent of massless
superconductivity for a U�1� gauge theory.

We can also derive the same kind of WI for the three-leg
vertex. Let us take, for example,

Γaµf†
k+q

fk
= aµ(q) fk

f
†
k+q
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We differentiate Eq. �F7� with respect to f�y� and then to
f†�z� and set the source terms to zero, except in the Higgs
phase,

− ��
�3�

�a��x� � f†�z� � f�y�
+ ie
−

�2�

� f†�z� � f�x�
�xy

−
�2�

� f�y� � f†�x�
�xz� + ie
b�x�

�3�

� f†�z� � f�y� � b�x�

−
�3�

� f†�z� � f�y� � b†�x�
b†�x�� = 0. �F12�

�i� In the Coulomb phase,

− iq��a�fk+q
† fk

3 + ie�Gf
−1�k + q� − Gf

−1�k�� = 0. �F13�

�ii� In the Higgs phase, it comes

− iq��a�fk+q
† fk

3 + ie�Gf
−1�k + q� − Gf

−1�k�� + ie�b�

�
 �3�

�bq � fk+q
† � fk

−
�3�

�bq
† � fk

† � fk+q
� = 0.

Quite generically, the p-leg vertex is related to the �p−1�-leg
vertex through the WI. Note that a relation similar to Eq.
�F13� can be established for the ferromagnetic QCP using the
translational invariance instead of the gauge invariance; one
can follow the same steps using the Noether theorem associ-
ated with translation invariance, instead of the equivalent of
it, associated with U�1� local invariance, which we derived
here.

APPENDIX G: DIRECT CHECK OF THE VANISHING OF
THE MASSES

In this section, we directly check that the masses of the
gauge field propagator vanish in the Coulomb phase at the
first order in perturbation theory.

1. Fermion part

Let us start with the fermions and check the following
cancellation:

Πf (0, 0) =
aµ aν

f

f

+

aµ aν

= 0

� f�0,0� = �ij
T

2mf
2�
�n

� ddk

�2��d

k2

d

1

�i�n − �k
0�2

+
T

2mf
�
�n

� ddk

�2��d

1

�i�n − �k
0�

,

with �k
0=k2 / �2mf�+� f. Relating the first term to the second

through the identity

�− 2mf
2�

�

�mf

1

�i�n − �k
0�

=
k2

�i�n − �k
0�

,

we get

� f�0,0� = 
−
1

d

�

�mf
+

1

2mf
�� ddk

�2��dnF��k
0� . �G1�

Noticing that

� ddk

�2��dnF��k
0� = � f � mf

d/2,

we finally get at the first order in perturbation theory

� f�0,0� = 0. �G2�

2. Holon part

The bosonic part follows the same steps as the fermionic
one,

Πb(0, 0) =
aµ aν

b

b

+

aµ aν

= 0

�b�0,0� = �ij
T

2mb
2�
�n

� ddq

�2��d

q2

d

1

�i�n − q2/�2mb��2

+
T

2mb
�
�n

� ddq

�2��d

1

�i�n − q2/�2mb��
.

Relating the first term to the second term through the identity

�− 2mb
2�

�

�mb

1

�i�n − q2/�2mb��
=

q2

�i�n − q2/�2mb��
,

we get

�b�0,0� = 
−
1

d

�

�mb
+

1

2mb
�� ddq

�2��dnB�q2/�2mb�� .

� ddq

�2��dnb�q2/�2mb�� = �d

mb
d/2

�2��d� xd−1dxnB�x2� ,

with �d as the solid angle in d dimensions, we finally get at
the first order in perturbation theory,

�b�0,0� = 0. �G3�

APPENDIX H:CONDUCTION ELECTRON’S
LIFETIME

In this appendix, we give the evaluation of the tempera-
ture dependence of the imaginary part of Im �c. We work in
D=3 and
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�c�T� = gT�
n
� ddq

�2��d

q

c��n − �T� + aq3

1

i�n − �k+q
0 ,

�H1�

where the frequency �n= �2n+1��T. We close the contour
around the two branch cuts for �n=0 and �n−�T=0 to get

�c�T� = − g� d�

4i�
coth
 �

2T
�� qddq

�2��d

� 	 1

− ic� + aq3

1

� + i�T − 
vFqx

−
1

ic� + aq3

1

� + i�T − 
vFqx
�

− g� d�

4i�
tanh
 �

2T
�� qddq

�2��d

� 	 1

ic� + c�T + aq3

1

� + i� − 
vFqx

−
1

ic� + c�T + aq3

1

� − i� − 
vFqx
� ,

=− g� d�

4i�
coth
 �

2T
�� qddq

�2��d

� 	 2ic�

c2�2 + a2q6

1

� + i�T − 
vFqx
�

− g� d�

4i�
tanh
 �

2T
�� qddq

�2��d

� 	 2

ic� + c�T + aq3

1

� + i� − 
vFqx
� ,

Taking the integration over qx leads to

�c�T� =
g


vF
� d�

4�
coth
 �

2T
�� �qq�d−1�dq

�2���d−1�
ic�

c2�2 + a2q6

+
g


vF
� d�

4�
tanh
 �

2T
�� �qq�d−1�dq

�2���d−1�
1

ic� + c�T + aq3 ,

where �d is the solid angle of dimension d. This integral is
dominated by the low energy part of the first term �the high

energy part of the first and second terms cancels out� which
leads to

Im �c�T� =
g


vF
�

aIR

T d�

2�

T

�
� �qq�d−1�dq

�2���d−1�
c�

c2�2 + a2q6 ,

where aIR is a IR cutoff. Taking d=3 and changing variables
for x=q3 /�, we get

Im �c�T� =
g


vFc
�

aIR

T

d�
T

�
�

0

� 4�dx

3�2��3

1

1 + a2x2 ,

�T log
 T

aIR
� . �H2�

The question is now to determine the cutoff aIR. Since we
work at finite temperature, there are two sources of IR cut off
which are E� and mb�T�, with mb�T� is the temperature de-
pendence of the holon mass,

aIR = max�E�,mb�T�� .

Here, mb�T� is determined by evaluating the corrections to
scaling

mb(T ) =

b

g4

b

+
g4 g4

b

b

+
b

aµ

+
b b

where g4 is the coupling constant associated to the �4-holon
field theory, if it is there. One can check that the first diagram
goes like T�d+z−2�/z, the second one like T�d+2�/2, and the third
one like T5/3 in D=3. Hence, in D=3,

mb�T� � T4/3.

Note that the lines are full and that we must use the Eliash-
berg theory for this check. Hence, in this model, in the inter-
mediate energy regime, mb�T��E�. We get

Im �c�T� � T log
 T

E�� . �H3�
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