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We investigate sum-rules applying to the Raman intensity in a strongly correlated system close to the Mott
transition. Quite generally, it can be shown that provided the frequency integration is performed up to a cutoff
smaller than the upper Hubbard band a sum-rule applies to the nonresonant Raman signal of a doped Mott
insulator, resulting in an integrated intensity, which is proportional to the doping level. We provide a detailed
derivation of this sum-rule for the #-J model for which the frequency cutoff can be taken to infinity and an
unrestricted sum-rule applies. A quantitative analysis of the sum-rule is also presented for the d-wave super-
conducting phase of the 7-J model, using slave-boson methods. The case of the Hubbard model is studied in the
framework of dynamical mean-field theory, with special attention to the cut-off dependence of the restricted
sum-rule and also to the intermediate coupling regime. The sum-rule investigated here is shown to be consis-
tent with recent experimental data on cuprate superconductors, reporting measurements of Raman scattering

intensities on an absolute scale.
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I. INTRODUCTION

Restricted sum-rules (relating the partial integral of the
intensity up to a cutoff with a correlation function) are useful
tools for analyzing spectroscopic information in strongly cor-
related materials. For example the sum-rule for the optical
conductivity has received a lot of attention in the context of
cuprates.' =

In contrast the sum-rules for the Raman scattering inten-
sity have been less studied. These were first considered in
Refs. 6 and 7. Recently, it has been stressed that for a doped
Mott insulator the nonresonant Raman intensity should be
proportional to doping®® provided the frequency integration
is carried up to a cutoff which is such that contributions from
the upper Hubbard band are not included. This proved instru-
mental in analyzing recent experiments on cuprate
superconductors’ that revived the debate about the relation-
ship between the pseudogap and the superconductive gap in
the underdoped phase of these compounds.'%-13

The goal of this paper is to analyze the Raman sum-rules
and their dependence on the strength of the interactions, dop-
ing, temperature, and choice of upper cutoff.

In Sec. III we show that for the #-J model the right-hand
side that enters the sum-rule for Raman scattering is propor-
tional to doping. In this case, the frequency cutoff can be
taken to infinity (since the upper Hubbard band is absent due
to the constraint of no-double-occupancy), hence making a
rigorous theoretical analysis easier.

We then evaluate explicitly the Raman response function
of a doped Mott insulator by solving the Hubbard model
using dynamical mean-field theory (DMFT). We explore the
region in which the Raman intensity scales with doping, and
how this region varies with the cutoff used in the sum-rule,
and contrast those results with that of a correlated material
slightly below the Mott transition. In Sec. V we compare the
results of our calculation, for different choices of the upper
cutoff, with experimental data and then in Sec. VI we con-
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clude with predictions for the temperature dependence of the
integrated low-energy Raman intensity using a slave-bosons
treatment of the #-J model.

II. RAMAN SUM-RULES

Raman scattering is a photon-in photon-out process hap-
pening when an external electromagnetic field is applied on a
system, and its nonresonant cross section can be calculated
from the Fermi’s golden rule, reading;

exp(- Be)) i A\ |2
R(q,Q) =272 -z 2(k)g(kp) > ejel(fl7(q)]i)
if rs

X 8e;— 8:- ), (1)

where [ is the inverse temperature, g(q)=(hc*/ qu)l/z,

where V is the volume, w, and ¢ are energy and polarization
vectors of the photons (i, indicate initial and final states of

the process), and

7”((1) 2 ak (9]{ k+q/20— k-q/2,0 (2)

is the stress operator tensor. g;  is the energy of the initial or
final state of the system, () is the transferred energy, ¢, cre-
ates an electron of momentum Kk, ¢, is the one-electron dis-
persion of the model under consideration, and r,s are Carte-
sian components.

Then by the fluctuation-dissipation theorem, the scattering
intensity in one channel,

0. 0) = Ee"p( ) e - 5, )

o)
- em ®

is related to the imaginary part of a response function, i.e.,
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Xs(q.1) =i0()[7%(q.1),77(0,0) ), (4)

which is a stress-stress correlation function of the unper-
turbed system.

We will consider in the following only the q=0 contribu-
tion, since the photon momentum is always much smaller
than the Fermi momentum.

What is remarkable in Raman scattering'# is that by tun-
ing the polarization of the incident and of the detected out-
going photons one can exploit selection rules to sort out
different processes in the probed material. This is of particu-
lar utility in order to separate the response due to electronic
excitations in different areas of the Brillouin zone, thus, al-
lowing to probe k-dependent properties of the material.

This is, in particular, a key issue for the physics of cu-
prates in which nodal and antinodal regions of the Brillouin
zone are known to behave in distinctly different manners. It
is remarkable that despite being a g=0 probe (as is optics)
Raman scattering can still address momentum-selective is-
sues by exploiting the dependence of the Raman vertex on
the polarization of the incident and scattered light. Especially
for a material with perfect in-plane equivalence of the a- and
b-axis, the B,, and B;, geometry mainly probe, respectively,
the nodal and antinodal regions.

In the nonresonant response, by choosing the direction of
the polarizations e’, e/, one isolates contributions by the dif-
ferent elements 7(q) of the stress tensor.

As an example, let’s consider a square lattice with
nearest-neighbor and next-nearest-neighbor hoppings ¢ and ¢’
that give rise to the dispersion in k space,

€ =—2t(cos k, +cos k) +4t" cos k, cos k,. (5)

Then, in the B,, scattering geometry, ¢',¢/ are perpendicular
between each other and parallel to the x-y plane axes, and the
Raman scattering operator is 77(q). From Eq. (2) one then
sees that the sum over the momentum space is weighted by
the vertex factor,

32 €k
ok, 3k,

=4t sin k, sin k,,, (6)

thus, sorting out the contribution along the nodal directions.

Analogously, one can show how in the B, geometry, with
e',e/ perpendicular but oriented along the lattice diagonals,
one selects the antinodal directions in k space.

In this work we are interested in discussing the sum-rules
fulfilled by the Raman B,, nonresonant response. It is well
known”!3 that any susceptibility of the general Kubo form
[Eq. (4)] fulfills the following sum-rule:

2 f 400X /(@) = (O.[H,0T)), )
TJo

where O is the operator to the fluctuations of which the
susceptibility is associated.
Hence, for the By, Raman scattering this sum-rule reads,

2 f d0Oxg, () =([[7.H]. 7). (8)
m™J 8

PHYSICAL REVIEW B 77, 245128 (2008)

Equation (8) has been used in Ref. 9 to normalize the
Raman spectra in mercury-based cuprates. In the following
we will show that the right-hand side of this sum-rule is
proportional to doping in the z-¢'-J model.'®

III. B, RAMAN SUM-RULE IN THE ¢-¢'-J MODEL AND
ITS PROPORTIONALITY TO DOPING

In this section we report the analysis of the direct evalu-
ation of the right-hand side of the B,, sum-rule Eq. (8) in the
t-t'-J model on the square lattice.

This model is represented by the Hamiltonian,

H= 2 (tyc] ¢ g+ He) + 2 4Jk,<Sk -8,- inknl>, )
0:j,00 ki

acting on the Hilbert space where states with doubly occu-

pied sites have been removed.

Here cZU is the operator that creates an electron with spin
o in a state localized on-site i and 7;; is the hopping integral
between single-particle states at sites i and j. Sy is the elec-
tron spin at site k and 4J;;=0 is the antiferromagnetic super-
exchange and is zero for k=I and nonzero at (but not neces-
sarily restricted to) nearest neighbors.

The hopping matrix #;; is chosen to have nonzero elements
only for nearest (#;;=—t) and next-nearest (¢;=t") neighbors.
The on-site element is the chemical potential term that tunes
the filling (¢;=—u). The bare electronic dispersion is given
by Eq. (5).

We have to evaluate the doping dependence of the aver-
age of the double commutator [Eq. (8)] in this model.

To implement the non-double-occupancy constraint, we
use the formalism of the Hubbard Operators. Definitions and
some algebra tricks for this formalism can be found in Ap-
pendix. We thus obtain an exact expression of the right-hand
side of the sum-rule.

Both the stress operator [Eq. (2)] and the Hamiltonian
H=H,+H; can be readily expressed with these operators
Xogs

H,= E tiniUOX{)a" (10)
ijo
Hy= 2 20Xt X0~ XeoXlsp) (11)
kl,aB
7(0) = 2 X0 X, (12)
ijo

where the stress component 7 has elements,

oS w5
v dk, dk,

=41, cos(k - r;)sin k, sin k,
K

(13)

that are nonzero only when i and j are next-nearest neighbor,
as can be deduced by this expression (in order to lighten the
notation we will drop the superscript xy in ﬁj‘ from now on).

The evaluation of the commutators leads, for the hopping
part,'?
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[.H] ™= X

abed,a# B

[(Taptpe = Toctab) Toa

- (Tactcd - Tcdtac) Tbc]
b d b d
X[ XX 50X0aX05 = Xa0X 50X05X0a]

X

abcd,aBo
b ¢ yd
X[ XD oaD5:X0p
- XdBOD:TﬁDIZYOXScy] ’ (14)

(Tabtbc - Tbctab) Ted

where we have defined (see also Appendix) the bosonic op-
erator D, 5= (X, g+ S8apX)- All the other operators in the
expression are fermionic.

In the following analysis we will show that the average
value of this expression and of the other parts of the double
commutator is ~ ¢ at the leading order.

Indeed, after having brought together and collapsed all the
operators that refer to the same site into one (X3(X5,=X5,
see Appendix), expressions containing Xé)o or fermionic op-
erators vanish exactly as d— 0 because of the constraint.

This is an exact statement but it can also be seen more
explicitly in approximate schemes like slave-bosons, as we
will show here. Indeed one can evaluate the doping depen-
dence of the average of the different terms in the double
commutator by considering that each fermionic operator on a
different site carries a renormalization factor proportional to
b~ /8 while an operator Xi), carries a factor |b?|~ &;

iy,B =szafiﬁ’XirO =fj'—abi’Xf)a = b;fiw é)o = bjbr (15)

One can then evaluate, using these relations, the explicit
dependence in doping of each term of the sum corresponding
to the right-hand side of Eq. (8) with the prescription of
collapsing first the operators living on same sites into one.

We will see that the coefficients of all terms containing no

0o and less than two fermionic operators on different sites
(that we call “dangerous terms”) vanish, and thus, the depen-
dence is =& at the leading order.

Let’s analyze then [[7%,H,], 7%].

For the first of the two four-fermion contributions in Eq.
(14), these dangerous terms occur when in the sum a=c and
b=d. For example, the first product in this case contributes to
the sum (over a # b, a# ) with terms like,

XooX00X0X05=— XouXhp=—fiafucl bpfop-  (16)

Since in this case one can anticommute the Hubbard opera-
tors in order to collapse the ones that refer to the same sites
(X80 X0a=X4,» see Appendix) and then evaluate the averages
using the slave-bosons operatorial equivalences [Eq. (15)].

This term is “dangerous” since its average is not obvi-
ously proportional to doping. But, it does not actually con-
tribute to the sum since its coefficient, in this case, vanishes.
Indeed, for a=c and b=d its coefficient becomes (7,
- Tbatab) Tbb_(Taatab_ Tabtaa) Tbazo’ since Tiiztiizo'

The second four-fermion product instead is dangerous
when a=d and b=c and again its coefficient (7%,

= Tptan) Toa= (Taptba= Toatap) Top =0
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The two-fermion terms are dangerous when a=d and the
coefficient becomes (7,,tp.— Tpelap) Teq- FOT this to be nonzero
a and ¢ have to be next-nearest neighbors. Then, it is easy to
see that on the cubic lattice (and within the ranges previously
defined for the matrices #;; and 7;)) it is impossible to chose
the site b such that the coefficient is nonzero.

Thus, we have shown that all contributions of
[[7,H,], 7] with a less than linear dependence in doping
vanish.

For the magnetic part of the Hamiltonian one has,

2 4Tah7-cd(‘]bc_]ac_‘]bd+]ad)
abcd,a# B

X (X20X08X 50X0 0 — X X0aX50X0 5)

+ 2 2 Tab de("bc - Jac)[XZODZBXgaXza
abed,ca# B

+ XogXoDaXo0 + XD oo X06X o
+ XX o0D X = XeoDoaXorXgs
= XgpXe0DgaXo0 = XD aoX0aX g8
= XX 0D XGal (17)

The first of the four-fermion terms is never dangerous, since
even when q:d and é:c, the product X5 ﬁX,CBO=X80’ and thus,
its average is proportional to doping.

The second of the four-fermion terms is dangerous when
a=b and c=d. However, in these configurations the coeffi-
cient becomes 27,,7.(Jye—Jge=Jge +J4e) =0.

The analysis of the two-fermion terms is a little more
involved. They are dangerous when a=d. The product in this
case becomes [in D), 5= (X{,z+ 3,pX(p) We can drop the Xy
operators'®]

b e ¢ b b b

XioX(rBX at XaBXU'aX%(r + XZ’BXD[O'X%CK + XflﬂXﬁUXZD[

by - yb b e - b

- X(LIIOXUCYX;;ﬁ - LBBX(T&XZO' - X‘;'aXaoX;B,B - XLﬁ a
We used the fact that operators at sites a and d always com-
mute with operators at site b since the coefficient vanishes
when a=b or d=b.

We then have to exchange the indices a and b in the III,
IV, VII, and VIII term in order to match the spin indices with

the remaining four terms (the operators in ¢ and b commute).
We obtain

b b b
XaoXogXpa+ XapXoaXpo = XacXopXpa
b b ¢ yb
~ XapXoaXpo = XaoXoaXpp = XppXoaXps
b : e b
+ XZOXUQX;% + XfBBX(mXEU =0,

since the renaming of a and b changes the sign of the coef-
ficient 7,,7,4(Jp.—J,.). Thus, the terms cancel two by two (I
and III, II and IV, V and VII, and VI and VIII).

We can then conclude that all the terms that contribute to
([[7,H],7]) are at least <& and that the sum-rule integral
[Eq. (8)] is proportional to doping. Note that this is true
irrespectively of the nature of the possible long-range order-
ing (e.g., both in the normal and superconducting states).

([=.H,). 7] =
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IV. DYNAMICAL MEAN-FIELD THEORY CALCULATION
IN THE HUBBARD MODEL

In this section we report the explicit calculation of the
Raman response function for the doped Hubbard model,

H=> tij(cjgcj0+ He)+ U, Ny, (18)
1,0 1

at strong and intermediate coupling within DMFT (Ref. 19).

One of our main motivations for studying the Hubbard

model is to investigate the restricted sum-rule up to a fre-

quency cutoff ). and study the dependence on the cutoff

frequency.

Single-site DMFT freezes spatial fluctuations while fully
retaining the local dynamics. It thus allows to calculate dy-
namical response functions in the local self-energy
approximation.?’

Since the Raman vertex is odd under, e.g., k,— —k,, ver-
tex corrections vanish in the local self-energy
approximation'® and the stress-stress response function Eq.
(4) at q=0 reduces to the simple bubble diagram of dressed
propagators, which reads (in the imaginary time formalism),

( (9261(

I
ot
Xi0)= 52 ok, ok,

Briv

and analytically continued,

2
)G(k,iv)G(k,ivHQ), (19)

X'(Q)= f deV(e)f dwA(€,w)A(e, 0 + Q)[f(w) - flw+ Q)],

(20)
where
_ azék )2
V(e) = % (akx Ik, Se- &)
= (41")22 sin® k, sin” k,8(e - &) 1)
Kk

is the appropriate form factor obtained by summing over k
the product of two B,, geometry vertices [Eq. (6)]. It can be
calculated once and for all and for the dispersion, [Eq. (5)] is
a smooth function. A(e,w) is the spectral function,

1
AK,w) =— —Im Gk, w)
™

1 Im 3(w)
T m(o+p- g - Re 3(w)*+ (Im S(w)?
(22)

for =€ and is easily accessible in single-sitt DMFT?!
through the knowledge of the local self-energy.?

Hence, in this approximation the nonresonant Raman re-
sponse is readily calculated by convoluting two single-
particle spectral functions with the appropriate kernel V(e).

We have solved the Hubbard model with DMFT at zero
temperature and finite doping for U/W=2.5 (W is the band-
width), which can be seen as a rather strong coupling, and
for an intermediate coupling U/ W=1.35.
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FIG. 1. (Color online) Evolution of the B,, Raman response
function for U/W=2.5 with doping ranging from 6=0.01 to &
=0.25. The low-energy feature increase in weight for increasing
doping, the high-energy one decreases.

Let’s first focus on the strong coupling case. Indeed, this
correspond to a doped Mott insulator, the critical U at half
filling for the chosen density of states (see below) being
U,/W=1.5, and at U/W=3 the Hubbard bands being split
apart by a gap A=1.5W.%3

In Fig. 1 we show how the response function calculated in
DMFT shows two principal features. These are expected
when A>W from the general features of A(e,w) and the
smooth form of V(e).

At zero temperature the Raman response formula simpli-
fies further in;

0
A/’(Q)=Jdev(e)J dwA(e,w)A(e,w+ Q). (23)
)

The integral will be nonzero when, for some e, the two spec-
tral functions shifted by () from one another have an overlap
in the region [-(,0], i.e., between the two quasiparticle
resonances.

Hence, at low (), y” will show contributions from the
overlap of the two functions within the same Hubbard band,
the one in which the quasiparticle peak lies.

At higher )= W, since the width of the Hubbard band is
~W, if the gap is bigger than the bandwidth (A>W), the
two spectral functions will have negligible overlap. Indeed,
the Hubbard band of one will fall onto the gap of the other
and the response will be nearly zero. Then, for even bigger )
the two spectral functions will be shifted enough so to have
the upper Hubbard band of one overlapping the lower Hub-
bard band of the other. A finite response is found, thus, gen-
erating a second well separated feature at these higher fre-
quencies.

If instead A<<W, this separation of the response will in
general not occur.

The evolution of this response function with doping is
such that the lower energy feature grows with increasing
doping while the higher energy one decreases. This is ex-
pected since upon doping the system dilutes and becomes
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FIG. 2. (Color online) Integrated spectral weight up to a cutoff
Q,.=1.2W, which fully includes the lower energy feature, of the first
moment of the Raman response function plotted versus doping. As
predicted for the #-J model W(6) « 8. Integral up to lower cutoffs are
also plotted.

less and less correlated thus causing a transfer of spectral
weight back from high to low frequencies.

Physically the separation of the response function into
two features means that the Coulomb repulsion is large
enough to separate, in energy, the particle-hole excitations
happening in the Hubbard band of empty sites from the ones
involving doubly occupied sites.

In the strong coupling limit and at low doping, this model
can be mapped on a 7-#'-J model and this allows us to iden-
tify the low-frequency response with that of the 7-J model so
that we can use it to confirm our analysis on the sum-rule
integral.

We thus consider the response under a cutoff ).~ W that
includes only the processes of the low-energy feature of the
Raman response function, namely,

Q. o
W(Q,) = f AQOY Q) = f dQOY(Q), if Q. = W,
0 0

(24)

In Fig. 2 we plot the calculated W({),.) as a function of
different cut-off frequencies (). The highest value ().
=1.2W fully includes the low-energy feature of the Raman
response in our case, thus reproducing the 7-¢'-J model sum-
rule.

It appears that the linearity in doping of W({},= W) holds
well up to dopings of about 10%, then higher order terms
start contributing considerably.

By reducing the cut-off frequency one can see that the
integral is still linear in doping. This is somehow expected
since the whole lower feature scales with doping and van-
ishes as the insulating phase is reached for 6=0. The linear-
ity region actually increases and extends up to 15% doping
(i.e., the whole underdoped region in cuprates).

The smaller extent of the linear region for the higher cut-
offs is probably due to the proamity of the high-energy fea-
ture in the response function, which would indeed be com-
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FIG. 3. (Color online) Upper panel: nonresonant B,, Raman
response function for U/W=1.35<U,,. Different curves are, from
bottom to top, for increasing dopings 6=0.01+0.25. The two sepa-
rate features present at large U/D have now partially merged but
the curves still scale with doping at low frequency. Lower Panel:
sum-rule integral for cutoffs Q,=0.165W (lower curve) and ),
=0.375W (upper curve). Inset: sum-rule integral for all the chosen
cutoffs in Fig. 2: from bottom to top ./ W=0.165, 0.375, 0.65, and
1.2. An intercept is clearly non-negligible for 2,=0.65W, the be-
havior is no more linear for Q.=1.2W of the order of the
bandwidth.

pletely absent if we were to take the actual U/W— % limit.

However, in fact, considering a cutoff lower than ().
=W is actually directly relevant to the analysis of experi-
mental data on cuprates, as we will see in Sec. V.

Let’s now consider the intermediate coupling case.

We studied the model at U=1.35W=0.9U,, and obtained
the results plotted in the upper panel of Fig. 3. One immedi-
ately sees that the two features of the strong coupling case
have now merged as the separation of the two Hubbard
bands is less than W.

Nevertheless, the low-energy part of x’({)) still scales
with doping.

In the lower panel of Fig. 3 we plot the value of the
integral W({),) for small cutoffs as a function of doping.
Although the intercept is indeed nonzero, owing to the fact
that a quasiparticle resonance is still present at half filling in
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this case (which testifies the metallic behavior at half filling
that one obtains when U is smaller than the Mott transition
critical value U,,), this intercept is practically negligible for
the lower cutoffs, given the very little weight of the quasi-
particle resonance very close to U,,. Thus, the behavior of
the sum-rule integral for small cutoffs is still =& in the un-
derdoped region for U=0.9U,.

Indeed, by raising the cutoff to values closer to the band-
width, one eventually loses the linear behavior, owing to the
presence of the low-frequency tail of the spectrum of transi-
tions between the two Hubbard bands.

V. CONNECTION WITH EXPERIMENTS: CUT-OFF
FREQUENCY AND COUPLING STRENGTH

Some experimental setups are believed to give measures
that are accurate enough to extract reliably absolute scatter-
ing intensities. We have compiled and analyzed experimental
data from two such references,?*?* which are shown in Fig.
4. The linear dependence of the absolute intensities in the
underdoped region (at least up to ~10% doping) is clearly
visible for small cutoffs, up roughly to 2000 cm
~0.25 eV.

Hence, if the experimental cutoff is as low as (),
<2000 cm™'~0.25 eV, Raman spectra can indeed be nor-
malized using a linear scaling in doping, as was done in Ref.
9.

By raising the cutoff around 4000 cm~'~0.5 eV, one
finds a nonvanishing intercept as is visible in Fig. 4.

It is also very interesting to notice the nonvanishing inter-
cept found for higher cutoffs. This is consistent with the very
recent analogous findings of Comanac et al. in Ref. 26,
where by analyzing optical conductivities of a wide range of
cuprates the midinfrared spectral weight (,.=0.8 eV) is
found to be nonvanishing despite a vanishing Drude spectral
weight (,=0.2 eV). To explain these experiments, these
authors propose to model the optical conductivity of cuprates
with a Hubbard model whose interaction strength is less than
the single-site DMFT U, =1.5W. This is the value at which
a pure Mott transition takes place without additional effects
due to magnetic correlations.

Indeed, the calculation we performed in Sec. IV, at U
=1.35W<U.,,, reproduces the behavior found in the experi-
ments we reviewed. As is clear in the lower panel of Fig. 3,
while for intermediate cutoffs, an intercept is sizeable, for
the lower cutoffs it is instead very small. Moreover, the an-
tiferromagnetic correlations neglected in this single-site
DMFT approach are likely to depress the low-frequency
data, thus further reducing the intercept.

There are two possible interpretations of this observation
of a finite intercept for the higher values of the cutoff (keep-
ing in mind however that the Raman data used here are taken
at slightly different temperatures and that more data are
needed).

The first one is that cuprates are actually in the regime of
intermediate correlation strength, as recently advocated by
Comanac et al.>® on the basis of a similar observation from
optics. Another possible interpretation of the nonvanishing
intercept found for 2.=4000 cm™' are additional contribu-
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FIG. 4. (Color online) Sum-rule integral W({}.) calculated from
the experimental data on (¥,_,Ca,)Ba,Cu3Og,, in the normal phase,
taken from Refs, (17) and (18) here absolute intensities of Raman
scattering have been measured. The plots are rescaled by normaliz-
ing to the square of the cutoff frequency. The sum-rule linearity
holds clearly up to 6~0.1 for both lower cutoffs. The line is a
least-square fit of the {,=1000 cm™' data points, discarding the
0=0.01 point that corresponds to the antiferromagnetic phase. The
curves for these lower cutoffs extrapolate linearly to zero or to a
very small intercept. The curve obtained for €.=4000 cm™!
~0.5 eV instead does not seem to extrapolate to zero. As discussed
in the text, this may indicate either that cuprates are in an interme-
diate coupling regime (Ref. 26), or that additional magnetic contri-
butions (e.g., two magnons) contribute to the Raman signal in that
frequency range.

tions to the Raman scattering of spin origin, such as two
magnon processes. To settle this issue clearly, further work is
needed.

VI. B;, SUM-RULE IN THE SUPERCONDUCTING PHASE
OF THE ¢-t'-J MODEL: SLAVE BOSONS

In this paragraph we calculate explicitly the right-hand
side of Eq. (8) by averaging the calculated expressions for
the commutators [Egs. (14) and (17)] in the slave-bosons
mean-field formalism of Ref. 27 used in the early studies of
high-T,’s, which is the simplest approximation that allows to
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access the d-wave superconducting phase of the #-t'-J model
beside the normal phase.

We recall here briefly this approach. The Hamiltonian of
the -¢'-J model[ Eq. (9)] lives in the restricted Hilbert space
in which all states with a doubly occupied site are projected
out. This can be expressed by means of a mixed fermion-
boson Hamiltonian,

H=2 (tif1sbib ! fie+Hee) - w2 fifio

ij,o i

+ E 4J,-j[(S,~ e i(l —bjb)(1 - b;bj)]

i

+ E x,(% £ fntbib— 1), (25)

in which the boson operators blT (b;) represent the creation
(destruction) of a hole on-site i, and thus carry the charge
degrees of freedom while the pseudofermions fJU (fiy) carry
the spin information. This Hamiltonian lives in the enlarged
Hilbert space represented by all the possible states of the
bosonic and pseudofermionic fields. To complete the map-
ping, a constraint has to be introduced in order to restrict
again this Hilbert space to the physical one by excluding all
the nonphysical states. In doing this, one can also implement
the non-double-occupancy condition, using namely,

2 fidia+ bibi=1. (26)
This is expressed in Eq. (25) by means of the Lagrange mul-
tipliers \;, which enforce the condition on every site.

One then performs a Hartree—Fock—Bogoliubov decou-
pling and a static mean field (such that A;=\ and the con-
straint is satisfied on the average, i.e., (b/b)y=1-2{f] fix)
=) on this Hamiltonian by introducing the following mean-
field parameters:

K= 3‘](2 f;‘rofi+x,a'>/2’

Ax == Ay =A= 3J<fini+xJ, _filfi+xT>/27

(bib)y =[P =1= 2 flsfie) = 6. (27)

o

We choose the phase in which K is isotropic (i.e., K,
=K,=K) while the superconducting order parameter has a
d-wave symmetry (A,=—A,). This has been shown to be the
actual ground state at finite doping between all the possible
symmetries in this kind of mean field.?’

The obtained mean-field Hamiltonian reads,

Hyr= > &fifio+ (2 Afi i + Hc) (28)
ko

ko
where
€=~ 2(6t = K)(cos k, + cos k) +46t" cos k, cos k,,
(29)

Ay =2A(cos k, - cos ky). (30)
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FIG. 5. (Color online) Doping-temperature phase diagram of the
t-t'-J model within the Kotliar-Liu slave-bosons mean-field ap-
proximation for J=0.1 t and '=0 and #'=0.3 t. The actual super-
conducting region is below a condensation temperature of the
bosons, where phase coherence sets in. This temperature is an in-
creasing function of doping, so that the superconducting region is
dome-shaped.(Ref. 27)

Equations (27)—(30) are the mean-field equations that
have to be iterated until a self-consistent solution is found.

The Hamiltonian Eq. (28) is of the standard Bogoliubov
bilinear form, and thus, it is trivially solvable (by means of a
Bogoliubov substitution). One can then calculate any fermi-
onic average by means of a Wick factorization in terms of
the bilinear averages,

<f:‘r, j(r> = % cos(k - rij)gltmfk(r%

<fiafj6> = 2 cos(k - rij)(fkaf—k5->~ (31)
Kk

This mean-field Hamiltonian of the #-¢'-J model has the
phase diagram shown in Fig. 5 for r=10 J and for #'=0
(Kotliar-Liu result) and ¢' =0.3¢ (the value generally used for
high-T, superconductors like BiSCCO).

For each doping there are two phases, a low-temperature
(superconducting) phase with A #0 and a high-temperature
(normal) phase with A=0. The transition temperature is de-
noted Tryp and is a decreasing function of doping. The
bosons are treated here as fully condensed because <b:fb,»)
=|(b;)|*= 5 at all temperatures.

If we were to allow bosons decondensation (which re-
quires to include the link variational parameter (b;b;) as
well), another crossover temperature (zero at half filling and
rapidly increasing with doping) would delimit a low-
temperature phase with phase coherence from the disordered
phase of incoherent pairs. The actual superconducting region
has a domelike structure centered around a region of “opti-
mal” doping where the two characteristic temperatures cross.

In this formalism it is then possible to calculate the right-
hand side of Eq. (8) by taking each Hubbard operator prod-
uct in the two parts of the commutators [Egs. (14) and (17)]
and obtain the expression in terms of the fs and the bs using
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FIG. 6. (Color online) Right-hand side of the sum-rule evaluated
in the #-¢'-J model within the Kotliar-Liu slave-bosons mean-field
approximation for different temperatures and parameters J=0.1¢
and ¢'=0.3¢. The bottom curve is calculated for 8=, entirely in the
normal phase, and shows how the linearity holds pretty well also for
the normal phase in the whole range of dopings.

Eq. (15). Then one performs the Wick factorization of each
product [i.e., following the example of Eq. (16)]. One ob-
tains . <fjmfaafz(rfbo> = <f¢;afaa><fzafb0> - <f;afb0><f;;afaa>
— {f Fs MfE foo)), and by means of the bilinear averages
Eq. (31) calculated with Hy within the converged solution
one obtains the final result. This result is plotted in Fig. 6 as
a function of doping at different temperatures.

The results shows that in the superconducting phase at
T<Tgryp the sum-rule integral is linear in doping until
30-40% doping, thus, allowing the linear scaling of the Ra-
man spectra in doping for the full extent of the superconduct-
ing phase of cuprates.

Still, one has to be aware of the many limitations of this
simple mean field. Beside the cited boson decondensation,
which adds a second energy scale to the problem, less rel-
evant to our analysis, the method lacks a second fermionic
energy scale that is new and very debated point put forward
in Ref. 9. Our analysis in terms of the Kotliar—Liu slave
bosons has to be taken, thus as a qualitative description of
the nodal physics in the superconducting phase.

It is also interesting to plot the temperature dependence of
the sum-rule integral.

In order to compare the temperature dependence in the
superconductive phase at different dopings, in Fig. 7 we plot
([7,H],7])/ 6, owing to the doping linearity. The res-
caled curves indeed lie all in the same range of values but
show a different behavior in temperature depending on the
doping value. While at low doping raising, the temperature
causes a decrease in the sum-rule value, after 6~ 12%
(which could be interpreted as “optimal doping” in this
slave-bosons mean-field) the value instead increases with in-
creasing temperatures. Then, in general when the system en-
ters the normal phase upon heating, the integral value shows
a cusp and then drops quickly.

This behavior has not yet been measured and it is a pre-
diction of this slave-boson mean-field treatment that would
be very interesting to clarify in further experiments.
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FIG. 7. (Color online) Temperature dependence of the sum-rule
in the slave-bosons formalism in the superconducting phase. For
increasing temperature the integral decreases at low doping while it
increases at higher doping.

VII. CONCLUSIONS

We have studied a restricted sum-rule for Raman scatter-
ing, which involves the first moment of the nonresonant B,,
response  function up to a cutoff frequency:

0dQOX; ().

For the (foped t-t'-J model, where we can take the cutoff
).=, we have shown that this integral is proportional to the
doping level. This supports the experimental data analysis of
Ref. 9.

We have then calculated the Raman response function and
studied its doping dependence for the normal phase of the
Hubbard model within DMFT.

We have first studied the system in the strong coupling
case U=2.5W, which corresponds to a doped Mott insulator.
In this case the low-frequency response of this system can be
identified with the one of the #-¢'-J/ model and we have con-
firmed its linearity in doping at low doping.

We have then studied the intermediate coupling case U
=1.35W=0.9U,,, showing that in this case the sum-rule in-
tegral still shows a behavior =6 for very low cutoffs, while
the intercept is non-negligible for intermediate cutoffs.

We have also shown a compilation of experimental data
that are believed to correctly measure the absolute intensity
of Raman scattering on YBCO. As in our DMFT study at
U=1.35 W, the behavior is =§ at low cutoffs ({,
=0.125 eV) but shows a non-negligible intercept already
for (),~0.25 eV. This can be interpreted in support of the
hypothesis that cuprates are “intermediately correlated” as
recently put forward in Ref. 26.

Finally we have studied the superconductive phase of the
t-t'-J model using the slave-boson method of Ref. 27. We
can calculate explicitly the right-hand side of the sum-rule in
this approximation and we show its linearity in doping up to
dopings of order of 30% and a prediction on the temperature
dependence.

The combination of those results gives a first indication
on how the strong correlations affect integrated Raman in-
tensities. Missing at this point, a systematic study of the
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effect of dynamical short-range magnetic correlations since
the slave-boson method captures these in a primitive fashion
using static link expectation values. These limitations can be
removed using cluster versions of dynamical mean-field
theory?® and this is left for future studies.
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APPENDIX: SOME ALGEBRA OF THE HUBBARD
OPERATORS USED IN THIS PAPER

Hubbard operators on-site i are defined as

X g=a)(Bli |y |By=100[1]1),

and hence, they are used to enforce the constraint of no on-
site double occupancy since they all project the |T]) state to
Zero.

From their definitions it is easy to show that two Hubbard
operators acting on the same site observe the following com-
mutation (anticommutation) relations:

(A1)

PHYSICAL REVIEW B 77, 245128 (2008)

(Xl Xl = O, Xes = 8usXlp. (A2)

Instead, two operators acting on different sites respect the
canonical commutation or anticommutation relations de-
pending on them being “fermionic” (X, or X, that add or
remove a spin-1/2) or “bosonic” (X, X, that either don’t
change the onsite spin or they add or remove a spin 1), i.e.,

(X5, X5 = 0,[X5,X0], = 0,[X5,X0]_=0, Vi # j,
(A3)

where “B” is for bosonic and “F” is for fermionic. Indeed
these operators are not actual bosons or fermions since on
site they respect the (A2).

It is useful in our calculations to introduce the bosonic
operator D’aﬁ corresponding to the particular case of (A2) for
the onsite anticommutation of two fermionic operators;

[X’aO,Xf)ﬁ]Jr = X;B + 8,5X00 = D’aﬂ (A4)
and also its on-site commutation relations with the others
Hubbard operators;

(D] Xbgl= 8y oXh g = ypXeos + 85 (830X l5— Bp0Xhe).
(A5)
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