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We use a transfer-matrix method to study the disorder-induced metal-insulator transition. We take isotropic
nearest-neighbor hopping and an onsite potential with uniformly distributed disorder. Following the previous
work done on the simple-cubic lattice, we perform numerical calculations for the body-centered cubic and
face-centered cubic lattices, which are more common in nature. We obtain the localization length from calcu-
lated Lyapunov exponents for different system sizes. This data is analyzed using finite-size scaling to find the
critical parameters. We create an energy-disorder phase diagram for both lattice types, noting that it is sym-
metric about the band center for the body-centered cubic lattice but not for the face-centered cubic lattice. We
find a critical exponent of approximately 1.5–1.6 for both lattice types for transitions occurring either at fixed
energy or at fixed disorder, agreeing with results previously obtained for other systems belonging to the same
orthogonal universality class. We notice an increase in critical disorder with the number of nearest neighbors,
which agrees with intuition.
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I. INTRODUCTION

The disorder-induced metal-insulator transition �MIT� and
the concept of Anderson localization1–5 have been studied
extensively for more than forty years. The scaling theory of
localization6 provides a very successful approach for nonin-
teracting electrons. According to its predictions, a disorder
driven MIT occurs in three-dimensional �3D� systems, i.e.,
beyond a critical amount of disorder Wc, all eigenstates lo-
calize. For a smaller disorder, extended states exist in the
system.

For the simple-cubic �sc� lattice and uniform disorder dis-
tribution, the critical disorder and the critical exponent have
been successfully calculated using the transfer-matrix
method �TMM�.7,8 Highly accurate recent studies9–12 report
Wc=16.54�0.02 and the critical exponent �=1.57�0.02.9

However, direct diagonalization results based on energy-
level statistics13–16 and multifractal analysis17,18 give a
smaller �=1.44�0.2. Furthermore, experimental results re-
port yet smaller values of ��1.0.19–23 Many of these ob-
served discrepancies can be explained by the attainable lim-
its on system sizes, temperature, and statistical averages in
the above results. Nevertheless, the quest for an accurate
determination of the critical parameters at the Anderson tran-
sition is not yet complete.

The sc lattice is, in addition, not very common24 in nature.
The only element known to adopt it is the alpha phase of
polonium; most metals exhibit body-centered �bcc� or face-
centered �fcc� cubic lattices. Although the localization prop-
erties for an fcc lattice have been studied recently25 for a
vibrational problem, to the best of our knowledge, no critical
parameters have been reported for an electronic Anderson
transition in bcc and fcc lattices. In order to fill this gap, we
use, in the present paper, the TMM and finite-size scaling
�FSS� to calculate the critical parameters for the MIT in the
bcc and fcc lattices. Of course, one should expect no change
in the critical exponent, as all systems considered here be-
long to the same orthogonal universality class. On the other

hand, because of the different numbers of nearest neighbors
in sc �Z=6�, bcc �8�, and fcc �12� lattices, the values of the
critical disorder Wc and energy Ec may be different. Hence,
our study tests and reconfirms universality while, at the same
time, allowing us to see how the nonuniversal parameters of
the transition change with increasing coordination number.

II. NUMERICAL APPROACH

A. Transfer-matrix approach to the Anderson model
of localization

To model the MIT in the 3D system, we use the standard
Anderson Hamiltonian

H = �
i

�i�i��i� − �
i�j

tij�i��j� . �1�

The orthonormal states �i� correspond to electrons located at
sites i= �x ,y ,z� of a cubic lattice with periodic boundary con-
ditions. The hopping integrals tij are nonzero only for i , j,
being nearest neighbors, and the energy scale is set by choos-
ing tij =1. The disorder in the model is incorporated into the
diagonal energies �i� �−W /2,W /2�, randomly distributed
according to the uniform distribution with width W.

In order to compute the localization length � of the wave
function, we use the TMM for quasi-one-dimensional �1D�
bars of cross section M �M and length L�M.7–10 The
Schrödinger equation H�=E� for the Hamiltonian given by
Eq. �1� is written in the TMM form:

	�l+1

�l

 = Tl	 �l

�l−1

 ,

=	− Cl+1
−1 �E1 − Hl� − Cl+1

−1 Cl

1 0



�	 �l

�l−1

 , �2�

where �l, Hl, and Tl denote the wave function, Hamiltonian
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matrix, and transfer matrix of the lth slice of the bar, respec-
tively. 1 and 0 denote the unit and zero matrices. The local-
ization length ��M ,W�=1 /	min at energy E is determined by
the smallest Lyapunov exponent 	min
0 obtained as an
eigenvalue of the product of transfer matrices �L
=TLTL−1 . . .T2T1, where L is increased until the desired ac-
curacy is achieved.26 The reduced localization length may
then be calculated as �M�W�=��M ,W� /M.

Cl and Cl+1 are the connectivity matrices describing the
connections of the lth slice to slices l−1 and l+1.27 Element
cjk of the connectivity matrix equals one if the site j in one
slice is connected to the site k in the other; otherwise cjk
=0. In the case of the sc lattice, each site has only one con-
nection to the succeeding �preceding� layer; therefore, all Cl
are unit matrices and the transfer matrix Tl reduces to the
most often used form28

Tl = 	− �E1 − Hl� − 1

1 0

 . �3�

For bcc and fcc lattices the connectivity matrices take a more
complicated form but with purely diagonal disorder, i.e., no
disorder in the hopping integrals tij. They are constant so that
the inverse Cl

−1 needs to be calculated only once at the be-
ginning of the TMM calculations for a given size M. Never-
theless, the additional need to multiply all states at each step
of the TMM with a dense matrix C−1 reduces the speed of
the calculation, and hence, restricts the attainable system
sizes. We emphasize that the construction of the Cl

−1 matrices
is not necessarily always possible for a given lattice along all
possible lattice vectors. Rather, only selected directions,
boundary conditions, and M values will lead to nonsingular
Cl matrices.29 Let us remark that the identification of permis-

sible directions for the application of the above TMM re-
quires some care.

B. Lattice structures

The structure of the bcc lattice is displayed in Fig. 1�a�.
The construction of the TMM quasi-1D bar proceeds along a
�100� vector. In this case each site within the slice is con-
nected to four sites in the preceding slice and to four sites in
the succeeding one. There are no connections between sites
within the slice, which means that the Hamiltonian matrix Hl
is a diagonal matrix of energies �i. We use periodic boundary
conditions in both transversal directions, which results in the
connectivity matrix for a slice of M �M sites being singular
for all even M, thus restricting the system sizes we can use.
Using a helical boundary condition30 in one or two directions
provides the same singularities, and hence, offers no advan-
tage.

Figure 1�b� shows the structure of the fcc lattice. It proved
convenient to construct the TMM bar along a �111� vector so
the subsequent layers of the bar are close packed. Within the
layer, each site has six connections to nearest neighbors. In
addition, there are three connections to the preceding layer
and three connections to the succeeding layer. The resulting
connectivity matrix can be inverted for each size of the M
�M TMM slice but only when we use a mix of periodic
boundary conditions in one direction and helical boundary
conditions in the other. We note that it has been shown pre-
viously that critical exponents and transition points are inde-
pendent of the boundary conditions.7,31 See Appendix for
examples of the connectivity matrices for system size M =3.

C. Finite-size scaling

The MIT is characterized by a divergent correlation length
so that at fixed energy E, 
�W�� �W−Wc�−�, and at fixed dis-

(a) (b)

FIG. 1. �a� Three layers of the 3D bcc lattice along a �100� lattice vector. The light gray spheres mark the first and third layer while the
dark gray ones indicate the central layer. Lines between the layers denote the connections between the lattice sites. The connections to the
upper-left sphere in the central layer are emphasized by broad lines, illustrating its eight neighbors. The four thick light gray lines connect
the first and the central layers while the black ones go from the central to the thirrd layer. �b� The structure of three layers of the 3D fcc lattice
along a �111� lattice vector. The broken lines mark the cubic unit cell of the lattice. The sites in the first and third layer are dark gray while
the sites in the central layer are light gray. The thick light gray lines represent connections between lattice sites in the same layer for one
particular site. The thick black lines represent connections between lattice sites in neighboring layers for another site. The thin lines indicate
connections to other sites. Some sites in the upper-right corner are removed for clarity.
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order W, 
�E�� �E−Ec�−�, where � is the critical exponent,
and Wc and Ec are the critical disorder and energy, respec-
tively, at which the MIT occurs.7 In the following discussion
we shall assume the case of fixed energy and varying disor-
der; the converse case of fixed disorder and varying energy
proceeds analogously.

In order to extract the critical parameters from the calcu-
lated values of �M�W�, one applies the FSS procedure out-
lined in Ref. 32. The correlation length for the infinite system

 may be obtained from the localization lengths for finite
system sizes �M�W� by using the one-parameter scaling law
�M = f�M /
�.33 The FSS can be performed numerically by
minimizing the deviations of the data from a common scal-
ing curve. The critical parameters are then obtained by fitting
the 
 values as obtained from FSS. Better numerical accu-
racy for the FSS procedure can be achieved by fitting di-
rectly the raw data from TMM calculations using the method
applied previously to the TMM data for the 3D sc lattice.9,10

We introduce a set of fit functions that include two kinds of
corrections to scaling: �i� nonlinearities of the W dependence
of the scaling variables and �ii� an irrelevant scaling variable
that accounts for a shift of the point at which the �M�W�
curves cross. We use10

�M = f̃��rM
1/�,�iM

y� , �4�

where �r and �i are the relevant and irrelevant scaling vari-
ables, respectively. The function �M�W� is then Taylor ex-
panded

�M = �
n=0

ni

�i
nMny f̃n��rM

1/�� , �5�

f̃ n = �
k=0

nr

ank�r
kMk/�. �6�

Nonlinearities are taken into account by expanding �r and �i
in terms of w= �Wc−W� /Wc up to order mr and mi, respec-
tively,

�r�w� = �
m=1

mr

bmwm, �i�w� = �
m=0

mi

cmwm, �7�

with b1=c0=1. The expansions in the fit functions are carried
out up to orders ni ,nr ,mr ,mi, which are adjusted to the spe-
cific data and should be kept as low as possible while giving
the best fit to the data and FSS plot, and minimizing the
errors for critical parameters Wc and �. The Levenberg–
Marquardt method was used to perform the nonlinear fit.10,34

We emphasize that this FSS procedure assures the diver-
gence of 
, and hence, it is not the divergence itself but
rather the quality of how the model fits the computed re-
duced localization lengths �M, which determines the validity
of the scaling hypothesis.

III. CALCULATIONS AND RESULTS

A. Phase diagrams

Figures 2 and 3 show the phase diagrams for the bcc and

fcc lattices, respectively. Originally a grid of W vs E values
was created with separation �E, �W=0.5. At each point the
nature of the electronic wave function was determined by
comparing the reduced localization lengths �M calculated for
system sizes M =7 and M =9 with error �10%. If �9
�7
��� is at the same values of E and W then we identify the
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FIG. 2. Phase diagram for the bcc lattice. The dark gray region
represents the approximate location of the phase boundary. Its edges
�the solid black lines� were determined by comparing localization
lengths with errors �10% for system sizes M =7 and M =9 in the
�E ,W�� plane. The solid squares ��� are points calculated by per-
forming high-precision FSS on localization data with an error
�0.1%. The dashed squares are reflections of the solid squares in
the E=0 axis. The diamonds ��� denote the band edges at W=0.
They have been joined to the phase boundary edges calculated for
higher disorders as a guide to the eye. The dashed lines are the
theoretical band edges ��Z+W /2�, where Z is the coordination
number. The horizontal dotted line is the bcc estimate 21.13 for Wc

of Ref. 35. The light gray, shaded area in the center contains ex-
tended states while states outside the phase boundary are localized.
Error bars are within symbol size for ���.
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FIG. 3. Phase diagram for the fcc lattice. Symbols, lines, and
shaded areas have the same meaning as in Fig. 2 with the diamonds
��� representing the band edges −12 and 4 at zero disorder �Ref.
24� and the dotted line corresponding to the self-consistent estimate
33.08. �Ref. 35� Error bars are within symbol size.
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point �E ,W� in the phase diagram as extended �localized�.
The edges of the phase boundary were obtained by averaging
separately over the three extended and localized points
�E ,W� nearest to the boundary and then connecting such
averages using a spline fit. We do not obtain data points for

lower disorder values as the fluctuations in the Lyapunov
exponents, due to the small system sizes, become too big;
higher values of disorder smooth out these fluctuations.

TABLE I. Critical parameters for the MIT in the bcc lattice. All errors quoted are standard errors. �a� Three examples of FSS results with
varying nr ,ni ,mr ,mi at fixed energy E=0. We use 91 data points, equally spaced in the indicated intervals �cp. Fig. 4�, for each set of
nr ,ni ,mr ,mi. Varying nr ,ni ,mr ,mi, we obtain 41 best fit models in order to produce the indicated averages. �b� Similar FSS results obtained
for three out of 14 best fit models from 82 nonequally spaced data points at fixed W=15 for the indicated energy intervals. Some of the best
fit models use irrelevant scaling although the examples explicitly detailed do not, so that mi=ni=0 and the parameter y is not used. �c� The
results at W=17.5 �cp. Fig. 8� for three out of eight best fit models with 108 nonequally spaced data points used in each FSS procedure. All
the best fit models use no irrelevant scaling. The numerical fitting procedure continued in all cases until convergence was reached, or �a and
b� 5000 or �c� 1000 iterations had been completed. When averaging, nonconverged results were neglected.

�a�
�M E �W nr ni mr mi Wc � y

3–15 0 20.3–21.5 2 0 1 0 20.95�1� 1.67�5� -

3–15 0 20.3–21.5 3 1 1 4 20.92�2� 1.51�9� 1.7�5�
3–15 0 20.3–21.5 3 2 3 1 20.75�3� 1.70�9� 3.0�5�
] ] ] ] ] ] ] ] ] ]

Averages: 20.81�1� 1.60�2�
�b�

�M �E W nr mr Ec �

9–13 9.9–10.9 15 2 1 10.38�1� 1.32�5�
9–13 9.9–10.9 15 2 2 10.38�1� 1.22�5�
9–13 9.9–10.9 15 3 4 10.40�1� 1.03�3�
] ] ] ] ] ] ]

Averages: 10.39�1� 1.21�2�
�c�

�M �E W nr mr Ec �

7–15 10.5–11.5 17.5 2 1 10.98�1� 1.55�6�
7–15 10.5–11.5 17.5 3 2 10.99�1� 1.48�6�
7–15 10.5–11.5 17.5 3 4 10.99�1� 1.36�7�
] ] ] ] ] ] ]

Averages: 10.99�1� 1.45�3�
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the same values of M as in Fig. 4. Inset: Dependence of the scaling
parameter 
 on the disorder strength W for the 13 W values shown
in Fig. 4. In all cases, error bars are within symbol size.
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A striking difference between the phase diagrams is that
for the bcc lattice, the phase boundary is symmetric about the
line E=0, whereas for the fcc lattice it is not. This is due to
the bipartiteness of the bcc lattice, which consists of two sc
sublattices with one displaced half the distance along a body
diagonal of the other. Hence, for any site in one sublattice, its
nearest neighbors are in the other sublattice. Such connec-
tions result in states coupled by a bipartite symmetry trans-
formation, which is exact for the case of no diagonal disor-
der, with eigenenergies of the same magnitude but of
opposite sign having approximately the same localization
lengths; this produces a symmetric phase diagram. The fcc
lattice is nonbipartite, so such a symmetry in its phase dia-
gram is not observed.

In Figs. 2 and 3, we also indicate, via horizontal lines,
previous results for critical disorder strengths,35 which were
based on the self-consistent theory of localization and ob-
tained for a momentum cutoff of 2pF, where pF is the Fermi
momentum. These estimates agree well with our results for
both bcc and fcc lattices. The sc result �13.91� of Ref. 35,
however, deviates more strongly from recent Wc
=16.54�0.02 9–11 estimates.

B. Critical parameters at E=0

The TMM calculations were performed for system sizes
up to M =15. In order to examine the localization properties
at the band center for the bcc lattice and the barycenter36 for
the fcc lattice, we set E=0 in Eq. �2�. A value of the critical
disorder Wc was approximated using the phase diagrams de-
scribed above and then the localization lengths � were cal-
culated for a range of W close to this approximate value with
the accuracy ranging from 0.1% for small system sizes M to
about 0.14% for the largest. Let us remark that we use the
term critical disorder to indicate that there are no further
extended states at E=0 for disorders W
Wc; extended states
may still exist for W
Wc at other energies E, as shown in
Fig. 3.

The reduced localization lengths for the bcc lattice are
displayed in Fig. 4. Note how the crossing point of the
curves shifts with changing M. In most cases this indicates
the need for an irrelevant scaling variable introduced via
nonzero values of ni and mi in Eqs. �5� and �7�. Figure 5
shows the results of the scaling procedure for nr=3, ni=2,
mr=3, and mi=1. The scaling curve exhibits localized and
extended branches, as expected for the MIT. Divergence of

TABLE II. Critical parameters for the MIT in the fcc lattice at E=0 �cp. Fig. 6�. We use 91 data points for
each FSS and the obtained 31 best fit models average, as indicated. The fitting procedure was continued until
convergence was reached or until 5000 iterations had been completed, although only models for which
convergence was reached were included in the averaging process. No irrelevant scaling was necessary, so
ni=mi=0.

�M E �W nr mr Wc �

3–15 0 26–27.5 1 2 26.73�1� 1.58�2�
3–15 0 26–27.5 2 2 26.73�1� 1.58�3�
3–15 0 26–27.5 3 3 26.73�1� 1.67�5�
] ] ] ] ] ] ]

Averages: 26.73�1� 1.60�1�
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the scaling parameter 
 at W�20.75 indicates the critical
value of the disorder. Table I gives some examples of models
providing the best fits and the resulting critical parameters.
The values of the critical disorder and critical exponent ob-
tained by averaging over all the best fit models are also
given.

We emphasize that the simple presentation of data with
minimal �2 value for a given set of nr ,mr ,ni ,mi, systemati-
cally underestimates the true error. The reason is twofold.
First, we note that there is no a priori justification which set
of nr ,mr ,ni ,mi values to use. Also, typically, the variation in
results for different nr ,mr ,ni ,mi is larger than the error bars
suggested for each individual set. Next, one can change the
range of system sizes and disorder/energy values for the lo-
calization data to be included in the fit. This again leads to
changes in the critical parameters, which are usually beyond
the error bars generated in each individual nr ,mr ,ni ,mi fit.
Hence, in the absence of a clear criterion for choosing which
of these fits to use, our strategy is �i� to delete all obviously
erroneous fits, i.e., those that do not converge or those that
converge to unphysical values, and �ii� to average over the
remaining results with a proper estimation of accumulated
error based on the individual errors for each nr ,mr ,ni ,mi
choice. Last, all this should be done while keeping the num-

ber of parameters—as determined by nr ,mr ,ni ,mi—as small
as possible. Typically, this increases the error estimates by
one order of magnitude when compared to the fit describing
the one for smallest �2.

Results of the TMM calculations for the fcc lattice are
shown in Fig. 6. In this case the lines for constant M cross at
the same point—at least within the accuracy of the calculated
�M—indicating that the use of the irrelevant variables in
Eqs. �5� and �7� is not necessary in most cases, and ni=mi
=0. Results of the fit for nr=2,mr=2 are displayed in Fig. 7.
The transition at W�26.73 is clearly indicated. More ex-
amples of best fit models can be found in Table II, as well as
the average values of the critical parameters.

C. Critical parameters away from the band center

We also perform calculations where we fix the disorder
and allow the energy to vary across a critical value Ec for the
transition. We remark that it is known that such investiga-
tions are numerically more difficult due to the influence of
density-of-states effects.37 Results of the TMM and FSS cal-
culations for the bcc lattice with W=17.5 can be seen in Fig.
8. Evident is the poorer quality of the fit compared to the

TABLE III. Critical parameters for the MIT in the fcc lattice at W=18 �cp. Fig. 9�. We use 83 data points to perform the FSS and use
eight best fit models to obtain the averages. None of the best fit models use irrelevant scaling. The fitting procedure was continued until
convergence was reached or until 1000 iterations had been completed, although only models for which the method converged were used to
obtain the averages. � is used to denote the number of degrees of freedom.

�M �E W nr mr Ec � �2 �q �

9–15 8.52–8.88 18 1 2 8.683�3� 1.63�5� 79.0 0.44 78

9–15 8.52–8.88 18 2 2 8.687�4� 1.65�5� 78.0 0.44 77

9–15 8.52–8.88 18 3 1 8.685�3� 1.62�5� 77.6 0.46 77

] ] ] ] ] ] ] ] ] ]

Averages: 8.684�2� 1.63�2�
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FIG. 8. Localization data for the bcc lattice with W=17.5. Sys-
tem sizes M are 7��� ,9�+� , . . . ,15��� as in Fig. 4. Error bars are
within symbol size. Left: Scaling function �solid line� and scaled
data points using nr=2 and mr=1. Right: Reduced localization
lengths �M vs disorder W. Lines are fits to the data given by Eqs.
�4�–�7� with nr=2 and mr=1.
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FIG. 9. Data for the fcc lattice with W=18. System sizes M are
9�+� ,11��� , . . . ,15��� as in Fig. 7. Error bars are within symbol
size. Left: Scaling function �solid line� and scaled data points using
nr=1 and mr=2. Right: Reduced localization lengths �M vs disor-
der W. Lines are fits to the data given by Eqs. �4�–�7� with nr=1 and
mr=2.
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calculations where the energy was fixed at zero. This is not
due to using lower accuracy data, as the maximum raw-data
error remained at 0.1%. Hence, we attribute it to complica-
tions arising from a varying density of states close to Ec at
the attainable values of M. Results for the critical parameters
are shown in Table I for W=15 and W=17.5. The low value
of � for the case W=15 can be attributed to the use of fewer
data points in the FSS and only using three values of M. We
note that this is consistent with the lower values of � ob-
tained in the diagonalization studies, as mentioned in Sec. I.
It appears that the FSS procedure systematically reduces the
values of the critical exponent for the data from smaller sys-
tems or of lower accuracy.

Results for the TMM and FSS calculations for the fcc
lattice with W=18 can be seen in Fig. 9. Table III gives
examples of the best fit models and shows the resulting av-
erage critical parameters. Note that both estimates of � in
Tables II and III are consistent with the result 1.57�2� for the
sc lattice.9 The TMM data for this system has the highest
quality out of all the data presented in this study. Thus, for
this case only, we include the �2 values and the goodness of
fit parameter �q�� /2,�2 /2�, where � is the number of de-
grees of freedom. For all the models, we found �2��,
which indicates a good fit. We remark that the results pre-
sented in Tables I and II have lower precision but this is clear
since the accuracy of the individual data points is less, due to
smaller system sizes and fewer available data points very
close to the transition.

IV. CONCLUSIONS

Using the transfer-matrix approach and FSS, we deter-
mined the critical parameters of the Anderson transition for
the bcc and fcc lattices. The values of the critical exponent �
are in good agreement with the results obtained previously
for other systems belonging to the orthogonal universality
class. The increase of the critical disorder Wc from 16.54 for
the sc lattice to 20.81 and 26.73 for the bcc and the fcc
lattices, respectively, may be attributed to an increasing num-
ber of nearest neighbors, which, for the above structures,
equals 6, 8, and 12, respectively. More nearest neighbors
connected to a given site provide more paths for electronic
transport so stronger disorder is needed to localize eigen-
states of the system. The universal localization properties of
a 3D system and the presence of an MIT are, however, not
affected in accordance to the scaling theory of localization,6

and are in agreement with the results27 showing that they
depend only on the dimensionality of the system but not on
the number of nearest neighbors in the lattice.

Our results and their interpretation are consistent with in-
vestigations of classical bond and site percolation models on
sc, bcc, and fcc lattices. In Ref. 38, it was found that the
percolation thresholds for these lattices decrease with in-
creasing number of nearest neighbors; more neighbors allow
for easier formation of a percolating cluster, or, as in our
case, the formation of extended states.
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APPENDIX: CONNECTIVITY MATRICES

For completeness, let us give the connectivity matrices for
bcc and fcc lattices with M =3. Recall that Cl is the connec-
tivity matrix describing the connections of the lth slice to the
l−1th slice. Element cjk of the connectivity matrix equals
one if site j in the lth slice is connected to site k in the l
−1th slice; otherwise cjk=0. The boundary terms are indi-
cated in italics. For the bcc lattice for odd layers,

C2l−1 =�
1 0 1 0 0 0 1 0 1

1 1 0 0 0 0 1 1 0

0 1 1 0 0 0 0 1 1

1 0 1 1 0 1 0 0 0

1 1 0 1 1 0 0 0 0

0 1 1 0 1 1 0 0 0

0 0 0 1 0 1 1 0 1

0 0 0 1 1 0 1 1 0

0 0 0 0 1 1 0 1 1


 . �A1�

For even layers,

C2l =�
1 1 0 1 1 0 0 0 0

0 1 1 0 1 1 0 0 0

1 0 1 1 0 1 0 0 0

0 0 0 1 1 0 1 1 0

0 0 0 0 1 1 0 1 1

0 0 0 1 0 1 1 0 1

1 1 0 0 0 0 1 1 0

0 1 1 0 0 0 0 1 1

1 0 1 0 0 0 1 0 1


 . �A2�

For the fcc lattice for odd and even layers,

Cl =�
1 1 0 0 0 0 0 1 0

0 1 1 0 0 0 0 0 1

1 0 1 1 0 0 0 0 0

0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 0 0

0 0 0 1 0 1 1 0 0

0 0 0 0 1 0 1 1 0

0 0 0 0 0 1 0 1 1

1 0 0 0 0 0 1 0 1


 . �A3�

In all cases, l is a positive integer.
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