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We study fidelity susceptibility in the one-dimensional asymmetric Hubbard model and show that the fidelity
susceptibility can be used to identify the universality class of the quantum phase transitions in this model. The
Kosterlitz–Thouless-type transition occurred at half-filling and the Landau transition away from half-filling can
be discriminated from distinct critical exponents of the fidelity susceptibility.
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I. INTRODUCTION

Quantum phase transitions �QPTs� of a many-body system
at zero temperature are characterized by the change of the
ground-state properties as model parameter � in the system
Hamiltonian H��� is varied across the transition point �c.

1

This primary observation motivates people to explore the
role of fidelity, a concept emerging from quantum informa-
tion theory,2 in critical phenomena.3,4 Since the fidelity mea-
sures the similarity between states, the change in the ground-
state structure around the quantum critical point should result
in a dramatic change in the fidelity across the critical point.
Such a fascinating prospect was first demonstrated in the
one-dimensional �1D� XY model, where the fidelity shows a
narrow trough at the phase-transition point.3,4 Afterward, the
fidelity was used to characterize the QPTs in fermionic5 and
bosonic systems.6 So these works established another con-
nection between quantum information theory and condensed-
matter physics, in addition to the recent studies on the role of
the entanglement in QPTs.7–12 The motivation for exploring
the role of the fidelity in QPTs is obvious: since the fidelity is
purely a quantum information concept, where no a priori
knowledge of the order parameter and the change of symme-
try in the system is assumed, it would be a great advantage if
one can use it to characterize the QPTs.13–18

The fidelity actually reflects the response of the ground
state to the change of the QPT driving parameter. Recently,
Zanardi et al.14 introduced the Riemannian metric tensor in-
herited from the parameter space to denote the leading term
in the fidelity, and argued that the singularity of this metric
corresponds to the QPTs. At the same time, You et al.15 in-
troduced another concept, the so-called fidelity susceptibility
�FS�, and established a general relation between the leading
term in the fidelity and the structure factor of the driving
term in the Hamiltonian. This relation implies that the fidel-
ity may not have a singular behavior in transitions of infinite
order, such as the Kosterlitz–Thouless �KT� phase
transition.19

In this paper, we show that the FS can be used to charac-
terize the universality class20 in quantum critical phenomena
by studying the FS in two quantum many-body models. First
we perform a scaling analysis of the FS for a general system
and show the critical exponent of the FS can be used to
describe the universality class of the quantum phase transi-
tions, as illustrated by the well-studied 1D transverse-field

Ising model. Then we focus on the critical behavior of the FS
in the 1D asymmetric Hubbard model �AHM�.21 Since the
AHM can be used to describe a mixture of two species of
fermionic atoms in optical lattices, which has been realized
by recent experiments on the cold atoms,22 so the model
itself is of current research interest,23–28 and its universality
class, to the best of our knowledge, has not been discussed.
By analyzing the FS, we obtained the critical point and cor-
responding exponents in the 1D AHM, and found that the
QPTs occurred at various band fillings can be characterized
by critical exponents. For example, the system size scaling
exponent of the FS is found to be 5.3 away from half-filling
�e.g., n=2 /3� and 1 at half-filling. We would like to empha-
sis that the critical exponents here are obtained without any
knowledge of the symmetry of the system.

This paper is organized as follows: In Sec. II, we discuss
scaling and critical properties of the FS in a general quantum
phase transition. In Sec. III, we study numerically the FS in
the ground state of the 1D AHM for both cases of n=2 /3 and
n=1. Finally, our conclusions are given in Sec. IV.

II. SCALING ANALYSIS OF THE FIDELITY
SUSCEPTIBILITY

To begin with, we consider a general Hamiltonian of
quantum many-body systems,

H��� = H0 + �H�, �1�

where H� is the part of the Hamiltonian that drives QPTs
with the strength �. Following Ref. 4, the fidelity is defined
as the overlap between two ground states ��0���� and
��0��+����, i.e.,

F��,��� = ���0�����0�� + ����� . �2�

The FS is just the most relevant term in the fidelity,

�F������ = �
n�0

���n����H���0�����2

�En��� − E0����2 , �3�

where ��n���� satisfies H�����n����=En�����n���� and de-
fines a set of orthonormal basis in the Hilbert space. The FS
is mathematically related to the structure factor of the driving
term H�,15 which denotes the fluctuation caused by the driv-
ing parameter �. For example, by extending the fidelity to
the thermal state,13 the FS is simply the specific heat or the
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magnetic susceptibility14,15 if we choose the driving param-
eter as temperature or magnetic field, respectively. Therefore,
the singular behavior of the FS corresponds to a phase tran-
sition. However, this picture might not be true for the KT-
type transition. For the KT transition, despite of the vanish-
ing energy gap, there is still no singularity in the FS as
matrix elements ��n����HI��0���� also vanish at the same
time. The appearance of the power-law decay behavior re-
veals a stronger fluctuation around the critical point. Thus the
FS, by its definition, might reach a maximum around the
critical point, although the maximum point is not necessary
right at the critical point, as has been observed in the 1D
Hubbard model.15

Similar to other approaches describing phase transitions,
we can also extract critical exponents from the FS. In the
most cases, the FS usually depends linearly on the system
size, i.e.,

�F������ � L , �4�

in the noncritical region. Then the average FS �F������ /L, as
an intensive quantity in the thermodynamic limit, scales like

�F������

L
�

1

��c − ���
, �5�

around the critical point �c with � being corresponding ex-
ponent. There are rare cases �such as the FS in the Lipkin–
Meshkov–Glick model29� that �F������ is not a linear func-
tion of L, then the left term in Eq. �5� can be replaced by a
general �F������ /L��, where �� is the size exponent of the FS
in the noncritical region. On the other hand, if the average FS
around the critical point shows a peak for a finite system, its
maximum point at �max scales like

�F����� = �max� � L�. �6�

So we introduce the following function to include the above
two asymptotic behaviors:

�F������

L
=

A

L−�+1 + B�� − �max�� , �7�

where A is a constant, B is a nonzero function of �, and both
of them are independent of the system size. According to Eq.
�7�, the rescaled FS is a universal function of the rescaled
driving parameter L	��−�max�, i.e.,

�F����� = �max,L� − �F�����,L�

�F�����,L�
= f�L	�� − �max�� , �8�

where 	 is the critical exponent of the correlation length and
f�x� is an even function of x around the zero point. Combin-
ing Eqs. �5�–�8�, we can find a relation among the three
exponents, that is,

� =
� − 1

	
. �9�

As a direct demonstration, we revisit the well-studied 1D
transverse-field Ising model, whose Hamiltonian reads

HIsing = �
j

�
 j
z
 j+1

z + �
 j
x� , �10�

where 
 is the Pauli matrix. Obtained in Ref. 4 were �=2
and ��=1, and 	=1 is known, so �=1; Eq. �9� is satisfied.
Thus, the relation between the FS and the Landau’s
symmetry-breaking theory �LSBT� is straightforward: the
universality classes could be identified by the critical expo-
nents of the FS.

III. FIDELITY SUSCEPTIBILITY IN THE ONE-
DIMENSIONAL ASYMMETRIC HUBBARD MODEL

We now turn to the 1D AHM, whose Hamiltonian reads

HAHM = − �
j=1

L

�
�=�1

�



t
cj,

† cj+�,
 + U�

j=1

L

nj,↑nj,↓, �11�

where cj,

† and cj,
 ,
= ↑ ,↓ are creation and annihilation op-

erators for fermionic atoms with spin 
 at site j, respectively,
n
=c


†c
, t
 is 
-dependent hoping integral, and U denotes
the strength of on-site interaction. The Hamiltonian �11� has
U�1� � U�1� symmetry for general t
, and the atom numbers
N↑=� jnj,↑ and N↓=� jnj,↓ are conserved. The total number of
atoms is given by N=N↑+N↓ and the filling factor is n
=N /L. For simplicity, we reset t= t↓ / t↑ and U to be U / t↑.

The phase diagram of the AHM has been extensively
studied in Refs. 21, 27, and 28. A schematic phase diagram
of the AHM is shown in Fig. 1, whose qualitative features
can be understood from its two limiting cases, the Falicov–
Kimball �FK� model region30,31 �t↓=0� and the Hubbard
model region32 �t↑= t↓�. We should point out that band filling
plays a distinct role in the AHM. Away from the half-filling,
the system is an ideal conductor and in the density wave state
in the Hubbard region, but in a phase separation state in the
FK region. For the latter, the translational symmetry is bro-
ken and the phase transition is of Landau type.27,28 While at
half-filling, the ground state is a spin-density wave in both
the Hubbard region and the FK region. The difference is that
in the Hubbard region, the system renormalizes to the
Heisenberg fixed point, while in the FK region, it renormal-
izes to the Ising fixed point. In the large U limit, the model

0 0.5 1 1.5 2
filling factor: n

0

0.5

1

t

0 5 10 15 20 25 30
U

0

0.5

1

t

t
c

HM

FK

HM

FK

t
c

FIG. 1. �Color online� The schematic phase diagram of the
AHM. Left: The phase diagram defined on the U-t plane, which
shows a KT transition at half-filling and the Landau transition away
from half-filling. Right: The phase diagram defined on the n-t plane,
in which the transition along the middle line is of KT type and the
thin solid lines at both sides are of Landau type. The phase diagram
has a mirror symmetry about the line n=1 due to the particle-hole
symmetry in the model.
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can be approximated by the XXZ model,21 i.e.,

H = J�
j=1

�
 j
x
 j+1

x + 
 j
y
 j+1

y + �
 j
z
 j+1

z � , �12�

where

J =
t↑t↓
U

, � =
t↑
2 + t↓

2

2t↑t↓
. �13�

For the XXZ model, the exact solution has already been ob-
tained by the Bethe-ansatz method.33 Its ground-state energy
can be expanded to an arbitrary order of �, and the spin-spin
correlation function around the critical point is of power-law
decay. Therefore, the QPT occurred between these two re-
gions is of KT type.21

In order to quantify the change in the ground state during
the evolution of t, we define the fidelity of the 1D AHM as

F�t,�t� = ����t����t + �t��� . �14�

The corresponding FS is

�F�t��t� = − 2 lim
�t→0

ln F�t,�t�
�t2 . �15�

We study �F�t� in two special cases, away from half-filling
�n=2 /3� and the half-filling �n=1�, with interaction U=30.
The numerical results of different system sizes obtained from
exact diagonalization are presented in Fig. 2, where bound-
ary conditions were carefully chosen so to avoid ground-
state-level crossing induced by finite lattice size effects. For
both cases, the FS reaches a maximum point at a certain
position tmax. The difference is that for n=2 /3, �F�t��t= tmax�
diverges dramatically with increasing system size, while for
n=1, �F�t��t= tmax��L. The former behavior clearly shows a
Landau-type transition and the latter a KT-type transition.

To study the critical behavior of the FS around the tran-
sition point at n=2 /3, we perform finite-size scaling analy-
sis. According to the scaling ansatz34 and conclusions of Sec.
II, we show the rescaled FS as a function of rescaled t in Fig.
3 for the case of U=30, in which numerical results obtained
from various system sizes fall onto a single line. The maxi-

mum value of the FS diverges with increasing system size as:
�F�t��t= tmax��L�. For the 1D AHM, the FS should be aver-
aged over the system size, so �F�t��t= tmax� /L�L�−1. Thus the
exponent 	 together with � determines the critical exponent
� in Eq. �5�. For the present case, we find 		2.65 and �
	5.3; hence �= ��−1� /		1.6, which clearly differs from
the Ising model. For the Ising model of Eq. �10�, only Z2
symmetry is broken when the phase transition occurs, while
in the AHM, the translational symmetry is broken in the
phase separation region, so they belong to different univer-
sality classes. The critical tc can be obtained by 1 /L extrapo-
lation. In the left plot of Fig. 4, we show the scaling behavior
of the tmax. The critical points are found to be tc
	0.294,0.402,0.459 for U=10,20,30, respectively.

At half-filling n=1, the KT transition occurs. The corre-
sponding finite scaling analysis for the case of U=30 is pre-
sented in Fig. 5. The maximum point of the FS is propor-
tional to the system length. This is consistent with our
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FIG. 2. �Color online� The scaling behavior of the FS as a func-
tion of t for the cases of n=2 /3 �left� and n=1 �right�. Here U
=30.
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FIG. 3. �Color online� The finite-size scaling analysis is per-
formed for the case of power-law divergence at U=30, n=2 /3, and
system sizes L=6,9 ,12,15. The FS shows to be a function of
L	�t− tmax� only, with the critical exponent 		2.65. The inset ex-
hibits the scaling behavior of �F�t= tmax�. The straight line is of
slope 1 in the logarithmic scale and �	5.3. �See text for details.�
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aforementioned understanding. Again, the rescaled FS for
various system sizes fall onto a single line, which is a func-
tion of L	�t− tmax� with critical exponent 	=−1 /4. We find
that around the maximum point tmax the FS behaviors as

�F�t��t� 	 3.86 + 0.75L + 1350L−1/2�t − tmax�2, �16�

approximately. Referring to Eq. �5�, we have �=0. As ex-
pected, there is no singularity in �F�t��t�. Due to the system
size exponent −1 /2 in the last term of Eq. �16�, the maxi-
mum behavior becomes weak with the increasing system
size, as is also shown in Fig. 2. The relative larger FS in the
FK region can be understood from its effective model, i.e.,
the XXZ model, in which the transition from quantum fluc-
tuation �Hubbard region� to Ising order �FK region� occurs at
the isotropic point. The transition is of KT type, and the
correlation function �
 j

z
 j+r
z � is of exponential decay in the

Hubbard region and of power-law decay in the FK region.
The FS, as an indicator of the fluctuation of the anisotropic
term in the XXZ model, should have a large value in the FK
region.

In analogy with the KT transition that occurred in the
quantum XY model,35 we guess that the very steep decreas-
ing point of the FS in Fig. 2 is more closer to the exact
critical point. Therefore, we also take the first-order deriva-
tive of the FS with respect to t and perform 1 /L finite scaling
analysis for the minimum point of d�F�t��t� /dt. Numerical
data are shown in the right plot of Fig. 4. In the thermody-
namic limit, we find that tc	0.308,0.313,0.317 for U
=10,20,30, respectively. The results are close to those ob-

tained by the density-matrix renormalization-group
method,21 which suggested that the critical point locate in the
range �0.3, 0.4� for the case of U=10.

Similar analysis can be applied to other fillings. The
power-law divergence of the FS �F�t��t� /L always exists for
any fillings other than the half-filling �n=1�. Since the AHM
possess particle-hole symmetry, so the FS takes the same
value for band fillings n and 2−n �n2� and the phase dia-
gram in the n− t plan has a mirror symmetry about the line
n=1. Take into account the fact that even a single hole dop-
ing away from half-filling leads to the instability of the den-
sity wave state in the infinite U limit,27 we conclude that the
KT transition occurs only at half-filling; so the transition
point at n=1 is expected to be a quar-critical point on the
phase diagram, and the behavior of FS signals the transition
type along the critical lines.

IV. CONCLUSION

In conclusion, we have shown that the FS, as the leading
term in the fidelity between two ground states at different
parameter space, can be used to characterize the universality
class in quantum critical phenomena. Since the FS is related
to the structure factor of the phase-transition driving term in
the Hamiltonian, it is linked up to the LSBT straightfor-
wardly, so the critical exponent associated with FS is a natu-
ral candidate for the classification of the universality. We
elucidated this point by the simple QPT that occurred in the
1D transverse-field Ising model. On the other hand, despite
no singularity appearing in the FS when crossing a KT tran-
sition point, the stronger fluctuation might make the FS reach
a maximum near the critical point. The nonsingular behavior
of the FS in the KT transition is also pointed out in later
investigations.36 In connection with recent progress in cold
atom systems, we studied the FS in the 1D AHM and showed
that the FS can help us to identify both types of phase tran-
sition in this model. The critical exponent � for the Landau-
type transition is calculated with finite-size scaling analysis
and is found to be 1.6 for n=2 /3 filling. While for the KT
transition, �=0 for n=1 in the thermodynamic limit, and FS
scales linearly with system size.
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