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The variation in the quasiparticle weight Z on moving around the Fermi surface in correlated metals is
studied theoretically. Our primary example is a heavy Fermi liquid treated within the standard hybridization
mean-field theory. The most dramatic variation in the quasiparticle weight happens in situations where the
hybridization vanishes along certain directions in momentum space. Such a “hybridization node” is demon-
strated for a simplified model of a cerium-based cubic heavy electron metal. We show that the quasiparticle
weight varies from almost unity in some directions to values approaching zero in others. This is accompanied
by a similar variation in the quasiparticle effective mass. Some consequences of such hybridization nodes and
the associated angle dependence are explored. Comparisons with somewhat similar phenomena in the normal
metallic state of cuprate materials are discussed. A phenomenological picture of the pseudogap state in cuprates
with a large Fermi surface with a severely anisotropic spectral weight is explored.
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I. INTRODUCTION

The normal state of cuprate materials is often described
�at least empirically� as a non-Fermi-liquid metal. A remark-
able feature of this metal is the presence of significant
momentum-space anisotropy:1 the extent to which Fermi-
liquid theory fails depends strikingly on which part of a
nominal Fermi surface is being probed. In optimally doped
systems, quasiparticlelike peaks measured in photoemission
experiments are typically much broader along the “antin-
odal” direction near the edges of the Brillouin zone than
along the diagonal “nodal” direction. The difference is even
more striking in underdoped cuprates where a pseudogap
opens—apparently only near the antinodal regions, leaving
behind a gapless “Fermi arc” centered at four nodal points.2

Somewhat similar phenomena have been reported even in
overdoped cuprates based on transport experiments, although
the anisotropy weakens with increased doping.3

Theoretical understanding of such phenomena in cuprates
is primitive and is hampered by the lack of a suitable frame-
work for describing non-Fermi-liquid phenomena.4 How-
ever, cuprates are but one example of a host of correlated
metals that have been studied over the years. Fermi-liquid
theory does not always fail in such metals. Motivated by the
observed momentum-space anisotropy in cuprates, we there-
fore pose the opposite general question: does the extent to
which Fermi-liquid theory work depend dramatically on
where one is on the Fermi surface in a correlated Fermi-
liquid metal? As there is a firm theoretical framework in
which to discuss Fermi-liquid metals, this question can be
expected to yield more easily to progress.

The most celebrated success of Fermi-liquid theory is pro-
vided by the “heavy-Fermi-liquid” state of rare-earth alloys.
These have quasiparticle effective masses as high as 100–
1000 times the bare electron mass and an associated small
quasiparticle weight Z at the Fermi surface.5 The main pur-
pose of the present paper is to discuss the variation in the
quasiparticle weight Z on moving around the Fermi surface.
Indeed Z is a convenient measure of the extent to which

Fermi-liquid theory works in a Fermi liquid. The theoretical
approach we use is the standard hybridization mean-field
theory for Kondo lattice models of rare-earth alloy. The
variation in Z may be linked to the internal orbital structure
of the Kondo singlet that forms between the local moments
and the conduction electrons. This internal orbital structure
derives from the symmetries of the atomic orbital occupied
by the local moment and the conduction electron band it is
coupled to. In the hybridization mean-field theory, this leads
to angle dependence of the hybridization on going around the
Fermi surface. The most dramatic variation occurs when the
hybridization vanishes along some directions. Along such
hybridization nodes Z�o�1� but can become very close to
zero along other directions. We demonstrate the possibility of
such hybridization nodes in a simplified model appropriate
for a Ce-based cubic system. Recent angle-resolved photo-
emission experiments6 have begun to probe the structure of
the electronic excitations of heavy Fermi liquid. We also note
that recent optical transport experiments on the “1-1-5”
family of materials have been interpreted in terms of
momentum-dependent hybridization amplitudes.7 This will
presumably go hand in hand with angle-dependent Z. We
expect that the physics described in this paper may be probed
in the near future.

Very recently, experiments on CeCoIn5 have reported a
striking anisotropic violation of the Wiedemann–Franz law at
the critical point.8 Tanatar et al.8 suggested that this might be
caused by Z vanishing on some extended portions of the
Fermi surface but not on others. The state we study in this
paper is a Fermi-liquid state and hence does not violate the
Wiedemann–Franz law. Nevertheless, the strongly angle-
dependent Z that we find might provide some hints on the
fundamental question of whether Z can vanish at all on some
but not all portions of the Fermi surface.

Inspired by these calculations appropriate to heavy elec-
tron systems, we consider the possibility that the pseudogap
regime of underdoped cuprates may actually have a large
band-structure Fermi surface but with strongly angle-
dependent Z. Several experimental results on underdoped cu-
prates are examined in this light. Such a pseudogap state has
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some attractive phenomenological features—in particular, it
provides one possible reconciliation between recent high-
field quantum oscillation experiments9–11 and older angle-
resolved photoemission spectroscopy �ARPES� reports of
gapless Fermi arcs. However, such a large-Fermi-surface
Fermi-liquid state also has a number of problems with other
experiments, making it unappealing as a serious theory on
underdoped cuprates. A non-Fermi-liquid version of such a
large-Fermi-surface state might perhaps resolve these diffi-
culties, but the theoretical description of such a state remains
out of reach.

II. KONDO SINGLETS WITH INTERNAL ORBITAL
STRUCTURE

Heavy fermion materials are conveniently modeled as
Kondo lattices, i.e., a periodic lattice of local moments
coupled by magnetic exchange to a separate band of conduc-
tion electrons.12 At low temperatures the local moments are
absorbed into the Fermi sea of the metal through Kondo
singlet formation. In a typical heavy electron metal, the local
moments occupy atomic f orbitals. The conduction electrons
derive from bands with different symmetries �s, p, or d�. The
Kondo singlet that forms between a local moment and a
conduction electron will therefore have nontrivial internal
orbital structure. In the low-temperature heavy-Fermi-liquid
phase, this orbital structure leads to pronounced anisotropies
between various parts of the Fermi surface. A close analogy
is with the physics of unconventional superconductors where
Cooper pairs with nontrivial internal orbital structure con-
dense, leading to anisotropic superconductivity. In the heavy-
Fermi-liquid case, such anisotropic effective masses are
known to occur and have been discussed theoretically using
a renormalized band theory approach.13

In the present paper we will mainly focus on the quasi-
particle spectral weight Z, which is a measure of the extent to
which Fermi-liquid theory works. To illustrate our point, we
focus specifically on Ce-based heavy electron materials with
the Ce ion in an f1 state.14 We also assume cubic symmetry.
Such a Ce ion has, after considering the effect of spin-orbit
coupling and crystal-field splitting, a low-energy Kramers
doublet that couples to a separate conduction band. We treat
the corresponding Kondo lattice model within the slave bo-
son mean-field approach.15,16 This approach is particularly
well suited to describing the heavy-Fermi-liquid phase. At
the mean-field level there are two bands—one derived from
the f moments and the other from the conduction electrons—
that are hybridized. Physically, the hybridization amplitude is
a measure of the Kondo singlet formation. We show that this
amplitude has strong momentum dependence coming from
the symmetry of the f orbital. Thus, the true quasiparticles at
the Fermi surface are angle-dependent admixtures of the f
fermions and the conduction electrons. Most remarkably, we
show that our simplified model naturally has directions in
which the hybridization vanishes. These hybridization nodes
have a number of consequences. Most importantly, it leads to
a Fermi-surface structure where along the hybridization
nodes the true �large� Fermi surface is contained within the
original small Fermi surface of the conduction electrons.

Thus, along these directions the true quasiparticle mostly has
c character with weak admixture to f . Along other directions
the situation is reversed. Now the physical electron spectral
weight depends on the extent to which the conduction elec-
tron contributes to the quasiparticle state of the true large
Fermi surface. This then leads to the dramatic variation in
the quasiparticle weight discussed in Sec. I.

In passing, we note that hybridization nodes have previ-
ously been proposed in the context of theories of gapless
Kondo insulators.17,18 When present, such nodes have rather
different effects in metallic heavy electron systems as we
discuss below. Hybridization nodes are also present in toy
Kondo lattice models, where each local moment is coupled
to a conduction electron at a neighboring site.19 Although
such models are not directly relevant to heavy electron sys-
tems, they capture some of the same physics described in this
paper.

III. ANDERSON MODEL FOR A CERIUM ION

We begin by briefly reviewing the Anderson model de-
scribing a cerium f1 impurity in a metallic host. The f states
have orbital angular momentum l=3 so that on including the
spin, there are 2�2�3+1�=14 quantum states in this orbital.
Spin-orbit coupling breaks the degeneracy of this orbital into
two sets of states with J=7 /2 and J=5 /2, where J is the total
angular momentum �J=s+ l�. The J=5 /2 states have a lower
energy, and so we will concentrate on them. In a cubic envi-
ronment crystal fields will further split the J=5 /2 states into
a doublet �lower-energy� state and a quadruplet �higher-
energy� state. We will concentrate on the lower-energy
Kramers doublet, described by �M�= �� �, where14

� + � = �1

6
�1/2�Jz = −

5

2
	 − �5

6
�1/2�Jz =

3

2
	 ,

�− � = �1

6
�1/2�Jz =

5

2
	 − �5

6
�1/2�Jz = −

3

2
	 . �1�

Now consider coupling this doublet to a band of conduction
electrons ck�. We assume that the f electron in a state M can
hybridize with the appropriate partial wave of the c electron
also in the partial-wave state M. The coupling may therefore
be modeled by the Anderson impurity Hamiltonian,20

H = 

k,M

�kck
†ck + � f


M

fM
† fM + U 


M,M�

nMnM� + 

k,M

VkckM
† fM

+ Vk
�fM

† ckM , �2�

with the electron partial-wave operator ck,M, corresponding
to representation in total angular momentum and magnitude
k bases. The transformation between this bases and usual
spin � and vector momentum k bases is given by

ck,M
† = 


�
� d�k̂

4�
ck,�

† �k,��k,M� , �3�

where the integral is taken over all directions of the vector k̂.
For simplicity, we assume further that Vk=V independent
of k.
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Focusing now on the strong correlation limit of large U,
we restrict the f occupation to 1, imposing the constraint



M

fM
† fM = 1. �4�

The standard Schrieffer–Wolff transformation21,22 then gives
the “Kondo” effective Hamiltonian with an interaction

HI = − J 

k,k�,M,M�

fM
† ck,Mck�,M�

† fM�, �5�

with J=V2U / � f�� f +U��. This is a Kondo type23 interaction
and describes the coupling of the fluctuating M state at the
Ce site to the conduction band. Alternately, we may write

HI = − J 

k,k�,�,��,M,M�

�k����k�M���kM�k��

�fM
† ck�ck�,��

† fM�. �6�

IV. KONDO LATTICE MODEL

We now generalize the description of a single Ce impurity
ion in Sec. III to a lattice of Ce ions. We first introduce the
operators fM,R for the local moments at site R of the lattice.
The generalization of the Kondo interaction HI is clearly

HK = − J

R



k,�,k�,��,M,M�

�k�,���k�,M�,R��k,M,R�k,��

� fR,M
† ck,�ck�,��

† fR,M�, �7�

where �k ,M ,R� is a c-electron partial wave centered at site
R. We have

�k,M,R� = eiP̂·R�k,M� , �8�

where P̂ is the momentum operator �generator of translation�
and �k ,M� is a partial wave centered at the origin. Thus, we
get

�k,��k,M,R� = �k,��eiP̂·R�k,M� = eik·R�k,��k,M� �9�

since �k ,�� is momentum eigenstate. With Fourier trans-
forming the ck electrons back to real space �ck,�
=
re

ik·rcr,��, we get

HK = − J

R



r,r�,M,M�

fM,R
† �


k,�
�k,M�k,��eik·�r−R�cr,��

�� 

k�,��

�K�,���k�,M��e−ik�·�r�−R�cr�,��
† � fM�,R. �10�

It is convenient now to define real-space operators

	r,R,M = 

k,�

�k,M�k,��eik·�r−R�cr,�, �11�

which are a mixture of spin-up and spin-down electrons. In
terms of these real-space operators, the Kondo interaction
assumes the simple form

HK = − J

R



r,r�



M,M�

fM,R
† 	r,R,M	r�,R,M�

† fM�,R�. �12�

The full Kondo lattice model then takes the form

H = Hc + HK, �13�

Hc = 

k,�

�kck,�
† ck,�, �14�

together with the constraints



M

fM,R
† fM,R = 1, �15�

at each site R. Note that due to this constraint, it is no longer
appropriate to think of the f operators as describing physical
electrons. Rather, at this stage they should be viewed as neu-
tral fermions that carry spin alone. As is well known, this
representation is redundant and introduces an extra U�1�
gauge structure associated with the freedom to change the
phase of f independently at each site.

V. SLAVE BOSON MEAN-FIELD THEORY

We now discuss the Fermi-liquid phases described by this
Kondo lattice model within the slave boson mean-field ap-
proximation. In simpler Kondo lattice models this technique
correctly captures the essential physics of the Fermi-liquid
state.16 In the mean field we impose the constraint in Eq. �15�
on average with a chemical potential � f for the f fermions
and replace the Kondo interaction by a self-consistently de-
termined hybridization between the c and f operators. The
mean-field Hamiltonian reads

HMF = 

k�

�kck�
† ck� + � f


MR
fM,R

† fM,R

+ b

MR

� fMR
† 


r
	rRM + H.c.� . �16�

The mean-field parameters � f ,b must be determined self-
consistently through the equations

1 = 

M

�fM,R
† fM,R� , �17�

b = J�

M

fMR
† 


r
	rRM� . �18�

Note that we have chosen b to be real in this mean field.
Parenthetically, we note that a nonzero mean-field hybridiza-
tion parameter b should really be viewed as a Higgs conden-
sate for the U�1� gauge structure introduced when we repre-
sent the spins in terms of the f fields. In this Higgs phase the
internal gauge charge of the f fermions is screened by the
condensate, and the resulting screened gauge neutral object
has the same quantum numbers as the electron. This structure
of the low-energy electrons manifests itself as a small elec-
tron quasiparticle weight at the heavy electron Fermi surface.

To diagonalize this mean-field Hamiltonian, we go to mo-
mentum space. We write fM,R=
qe−iq·RfM,q and put in the
original form of 	 operators in terms of c. The hybridization
term then becomes
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HMF = b

R,r



q

eiq·RfM,q
† 


k,�
�k,M�k,��eik·�r−R�cr,� + H.c.

= b 

q,k,�

�

R

ei�q−k�·R� fM,q
† �k,M�k,��

��

r

eik·rcr,�� + H.c.

= b

k

�k,M�k,��fM,k
† ck,� + H.c. �19�

Thus, the momentum dependence of the hybridization is cap-
tured through the �k ,� �k ,M� matrix element, which we cal-
culate in the Appendix.

We define the four-component field 
k as


k = �
ck↑

ck↓

fk,1

fk,2

� ,

in terms of which the Hamiltonian becomes

HMF = 

k


k
†� �kI bM�k�

bM†�k� � fI
�
k. �20�

Here M�k� is a 2�2 matrix given by

M�k� = �B�k� A��k�
A�k� − B��k� � . �21�

The functions A�k� and B�k� are defined in the Appendix.
Now we look for operators �i�k� that satisfy

HMF,�i
†�k��=�i�k��i

†�k�, in terms of which HMF is diagonal,

HMF = 

k,i

�i�k��i
†�k��i�k� . �22�

If we express �i�k� as

�i�k� = ui
1�k�ck↑ + ui

2�k�ck↓ + ui
3�k�fk1 + ui

4�k�fk2, �23�

where the coefficients ui
�k� are determined through the ei-

genvalue equation

� �kI bM�k�
bM†�k� � fI

��
ui

1�k�
ui

2�k�
ui

3�k�
ui

4�k�
� = �i�k��

ui
1�k�

ui
2�k�

ui
3�k�

ui
4�k�

� . �24�

From this we get the four eigenstates and the corresponding
dispersion of four bands,

�1�k� = �2�k� =
�k + � f

2

− �� �k−� f

2 �2
+ b2��A��k��2 + �B��k��2� ,

�3�k� = �4�k� =
�k + � f

2

+���k − � f

2
�2

+ b2��A��k��2 + �B��k��2� .

At each k obviously we have �1�k�=�2�k���3�k�=�4�k�,
so we have two sets of doubly degenerate bands. The degen-
eracy is a consequence of time reversal and inversion sym-
metries which have been assumed in the original model.

Let us assume that there are nc conduction electrons per
unit cell with nc�1. Once combined with a single f fermion
per unit cell, we then need to fill these bands up to the Fermi
energy to give a total particle number of 1+nc per unit cell.
Only states in the lower bands �1 and �2 are electron filled,
and the Fermi surface always exists in these two bands.
Clearly, the Fermi surface is large in that its volume counts
both the conduction electrons and the f fermions. The shape
of the Fermi surface corresponding to our simple model is
shown in Fig. 1.

We note that the hybridization matrix bM�k�� vanishes
along �100� and symmetry related directions �see the Appen-
dix�. These hybridization nodes lead to striking Fermi-
surface anisotropies, as discussed in detail below. For now
we note that along these nodal directions the Fermi surface
coincides within the original small conduction electron
Fermi surface. To see this, consider the spectrum of the par-
tially occupied band. It is obvious that ��k�=�1�k��

�k+� f

2

− �
�k−� f

2 �. On the other hand,
�k+� f

2 − �
�k−� f

2 �=min��k ,� f� so
that for all k, ��k��� f the equality only holds for the
points where b�k�=b2��A��k��2+ �B��k��2�=0�. Thus, for nc
�1, Ef �� f. Now if we consider points on the Fermi surface
where b�k� vanishes, again for such points ��k� is equal to
either � f for points where �k�� f and �k for points where

FIG. 1. �Color online� Z on the Fermi surface. Red denotes
larger Z close to 1 and blue denotes Z close to zero. Red points are
along the �0,0,1�, �0,1,0�, and �0,0,1� directions.
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�k�� f. Since Ef �� f, for such points we have ��k�=�k; so
the Fermi surface coincides with the small Fermi sea of con-
duction electrons at the points where b�k�=0. Thus, along
the nodal directions of the hybridization, the quasiparticles at
the Fermi surface are almost entirely composed of conduc-
tion electrons. However, on moving away from these nodal
directions, the quasiparticles quickly acquire an almost com-
plete f character with a weak conduction electron admixture.

VI. IMPLICATIONS FOR PHOTOEMISSION
EXPERIMENTS

The anisotropic hybridization leads, as discussed below,
to anisotropic quasiparticle spectral weight. This can be
probed by ARPES. We begin with a general discussion of the
physical electron Green’s function in Kondo lattice systems.

Let us start with Anderson model given in Eq. �2�. In
ARPES by interaction with a light beam, electrons are ex-
tracted from the sample. These electrons in principle could
be extracted form any of the two bands see Eq. �2��. How-
ever, processes where the f occupation is changed cost a
large energy in the strong correlation limit. On the other
hand, processes where the removed f electron is replaced by
tunneling of a c electron into the unoccupied f site can occur
at order �V /U� and will have matrix elements in the low-
energy Kondo subspace. To discuss this physics, let us start
from a single Anderson impurity and consider the operator
�k,� that corresponds to extracting an electron with momen-
tum k and spin � out of the sample,

�k,� = ck,� + 

M

�k,��M�fM . �25�

In the strong correlation limit, we need to perform the
Schrieffer–Wolff transformation for this operator. Below we
use an equivalent alternate procedure. We first consider the
ground state. In the limit of infinite U it consists of a half-
filled f orbital coexisting with a conduction band filled up to
the Fermi energy. We name this state �g0�. In the limit of
large but finite U to first order in V /U the ground state be-
comes

�g1� = �g0� + 

n,M,k,�

�n�
�n�V�fM

† ck,� + ck,�
† fM��g0�

U
, �26�

where, for simplicity, we have assumed that the energy to
add, or remove, an f electron is U. Here �n� denote the first
excited states. To a good approximation, the state vector in
the second term is given by �fM

† ck,�+ck,�
† fM��g0�. Now when

we annihilate an electron by acting with � on �g1� state, only
final states which lie within the manifold of states with single
f occupancy at the impurity site will contribute to the pho-
toemission intensity at low energy. There are two such states,
one corresponding to the action of c on the �g0� component
of the ground state and the other corresponding to the action
of f on the second term in �g1� �i.e., on the f†c�g0� term�. The
net action of �k,� on �g0� is then

�k,� � ck,� + �V/U� 

k�,��,M�,M

�k�,M��k�,���

� �k,��k,M�fM�
† ck�,��fM . �27�

The first term corresponds to the knocking off of an elec-
tron from the c band and the second term corresponds to the
first-order process, where an electron from an f orbital is
knocked off and an electron from the c band replaces it. Now
for a lattice of impurities, we should consider processes
where f electrons from different sites are knocked out,

�k,� � ck,� + �V/U�

R



k�,��,M�,M

�k�,M�,R�k�,���

� �k,��k,M,R�fM�,R
† ck�,��fM,R. �28�

It is convenient to re-express this in real space. The pro-
cedure is the same as the one we followed in Sec. V,



R



k�,��,M�

�k�,M�,R�k�,����k,��k,M,R�fM�,R
† ck�,��fM,R

= 

R



k�,��,M�

�k�,M��k�,���eik�.�r-R�fM�,R
† cr,��,

�k,��k,M�eik.RfM,R

= 

R



M�

fM�,R
† �


k�,�

�k�,M��k�,���eik�.�r−R�ck�,��� ,



M

eik.RfM,R = 

R



M�

fM�,R
†

	r,R,M�

M

�k,��k,M�fM,R.

�29�

Within the slave boson mean-field approximation, we replace
the product f†c �or, equivalently, f†	� term in the second
term by its average to get

�k,� � ck,� + �b/V�

M

�k,��k,M�fM . �30�

The ARPES intensity may now be calculated from the
Green’s function of this � operator. Its trace is given by

TrG�,���k,i���� = �
0

�

d�ei����T��↑�k,���↑
†�k,0�

+ �↓�k,���↓
†�k,0��� , �31�

where the expectation value is taken in the ground state.
From Eq. �30� it is obvious that this Green’s function con-
sists of four different terms. For this calculation, we need to
have c� and fM operators, in terms of � operators. To make
this calculation more transparent, it is useful to introduce the
unitary matrix U as

U = �
u1

1 u1
2 u1

3 u1
4

u2
1 u2

2 u2
3 u2

4

u3
1 u3

2 u3
3 u3

4

u4
1 u4

2 u4
3 u4

4
� , �32�

where
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�
�1

�2

�3

�4
� = U�

c↑

c↓

f1

f2

� . �33�

Here the k index is suppressed for notational convenience.
Inverting, we get

c↑
† = u1

1�1
† + u2

1�2
† + u3

1�3
† + u4

1�4
†, �34�

c↓
† = u1

2�1
† + u2

2�2
† + u3

2�3
† + u4

2�4
†, �35�

f1
† = u1

3�1
† + u2

3�2
† + u3

3�3
† + u4

3�4
†, �36�

f2
† = u1

4�1
† + u2

4�2
† + u3

4�3
† + u4

4�4
†. �37�

Using this result, we can expand the imaginary part of the
trace of Green’s function to obtain the zero-temperature
spectral function. This has four terms corresponding to the
operator combinations cc†,f f†, fc†, and cf†. Let us calculate
them one by one. The cc† term is

Acc�k,�� = �u1
1�k��2 + �u1

2�k��2���1�k� − ��

+ �u2
1�k��2 + �u2

2�k��2���2�k� − �� . �38�

We then get the following form for the quasiparticle resi-
due on the Fermi surface:

Zcc�k��2�k� = Ef�

= �u2
1�k��2 + �u2

2�k��2

=
b�k�2

b�k�2 +  ��k�−� f

2 + �� ��k�−� f

2 �2
+ b�k�2�2 . �39�

Now for f f term �noting u1
3=u2

4=0� we have

Af f�k,�� = �b�k�
V

�2

�u4
1�k��2��1�k� − ��

+ �b�k�
V

�2

�u2
3�k��2��2�k� − �� . �40�

This gives the residue

Zf f�k��2�k� = Ef�

=
� ��k�−� f

2 + � ��k�−� f

2 �2
b�k�2�2

b�k�2 + � ��k�−� f

2 + � ��k�−� f

2 �2
+ b�k�2�2�b�k�

V
�2

.

�41�

The last contribution will be

Zcf�k��2�k� = Ef�

= −
2�b2/V�� ��k�−� f

2 + � ��k�−� f

2 �2
+ b�k�2�

b�k�2 + � ��k�−� f

2 + � ��k�−� f

2 �2
+ b�k�2�2

�RA2��k� + B2��k�� , �42�

where b�k�=b��A��k��2+ �B��k��2. In Fig. 1 we have also
indicated the total residue Ztotal, which is the sum of these
three contributions.

Using the fact that �b�k�� is small, we can investigate the
behavior of Ztotal at least for the points where �b�k��� ���k�
−� f�. For such points we see that whenever �k�� f, the
dominant term �of order b2 /V2� is Zf f and it varies since b�k�
is angle dependent. On the other hand, when �k�� f, the
dominant contribution is Zcc, which is of order one. This
information could be summarized in the following form:

Z�k��2�k� = Ef� = b2 h�k�
��k� − � f�2���k� − � f�

+ �� f − ��k�� , �43�

where h�k� is given by

h�k� = �A2��k�� + �B2��k����1 + ��k� − ��2/V2�

− 2RA2��k� + B2��k����k� − ��/V . �44�

A key result of this calculation is that for the points where
��k��� f, Z is small and of order b�k�2

��k�−� f�2 ; this quantity
varies by about 20% due to the angle-dependent b�k�. How-
ever, for the points where � f ���k�, the quasiparticle residue
will be of order one and will exhibit no strong variations.
The small region in the middle of the Fermi surface in Fig. 1
with Z�1 corresponds to these points. These regions are
centered along �100� and symmetry related directions. As
discussed in Sec. V, the hybridization matrix has nodes in
these special directions and the corresponding quasiparticles
are essentially conduction electrons with Z�1. On the other
hand, farther away from these nodal directions, the quasipar-
ticles develop f character and Z�o�b2� along these other
directions.

There is thus a dramatic anisotropy in Z on moving
around the Fermi surface. We note that ARPES experiments
will naturally be able to resolve the quasiparticle peak along
high-Z directions. However, a low-resolution ARPES study
may not be able to resolve well the small-Z quasiparticles at
all and may incorrectly conclude that the Fermi surface con-
sists only of finite open ended pieces.

VII. MOMENTUM-DEPENDENT EFFECTIVE MASS

It is well known that the effective mass m� in a heavy
fermion system can be very anisotropic on the Fermi surface.
How do these anisotropies correlate with the anisotropic Z?
It is precisely the combination Z�m� that determines the
tunneling density of states. It is therefore also interesting to
look at m��k� variations over the Fermi surface. The effec-
tive mass can be calculated by taking the second derivative
of energy with respect to momentum in the direction perpen-

dicular to the Fermi surface, i.e.,
�2�2�k�

�k�
2 :
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1/m��k�� = 1/2me
��1 −

�k−� f

2

�� �k−� f

2 �2
+ �b�k��2

+
b2��k − � f�f�k�

� �k−� f

2 �2
+ �b�k��2�3/2� � 1/me

���� f − ��k�� +
b2

��k − � f�2g�k�� , �45�

where me
� is the free-electron effective mass �1 /me

�=
�2�k

�k�
2 �. In

the last step we used the approximation ��k−� f�� �b�k��.
f�k� and g�k� are dimensionless functions of k, where g�k�
=2 sgn��k−� f�4f�k�+ �A��k��2+ �B��k��2� numerical cal-
culations show no k point where g�k� vanishes�. Inverting
this, we get

m��k� � me
���� f − ��k�� + ���k� − � f�

��k − � f�2

g�k�b2 � .

�46�

We see a similar behavior for Z�k�. Again, for points with
�k�� f we have quasiparticles with a large effective mass,
but for �k�� f quasiparticles are free-electron types and
have an effective mass corresponding to a small conduction
electron’s effective mass. We see that we have large effective
masses at the points where Z is small. Thus, variations in
effective mass are indeed correlated with variations in 1 /Z.
The approximate invariance of the product Z�k�m��k� is a
momentum-space variant of the Langreth theorem, which
states that the single particle density of states in the Ander-
son impurity model is an adiabatic invariant, independent of
the strength of the interaction.24,25

This is interesting since it shows us that the strong angle-
dependent anisotropy does not apparently have a large ob-
servable consequence on ordinary tunneling measurements.
However, it may possibly show up in the amplitude of the
Friedel oscillations of the tunneling conductance around an
impurity and may therefore be accessible through Fourier
transform scanning tunneling spectroscopy.

VIII. UNDERDOPED CUPRATES: PSEUDOGAPS AND
FERMI ARCS IN A LARGE-FERMI-SURFACE METAL?

We now compare the phenomena described to observa-
tions on the normal state of cuprate materials. As discussed
above in the heavy fermion context there are portions of the
Fermi surface where Z�o�1�, and ARPES experiments may
conclude that the Fermi surface consists of open ended
pieces. This is strongly reminiscent of the Fermi arc phenom-
ena reported by ARPES in the pseudogap regime of under-
doped cuprates. It is tempting therefore to imagine that a
similar mechanism is operational in cuprates. More specifi-
cally, is it possible that underdoped cuprates actually have a
large band-structure-like Fermi surface but the Z is o�1� only
along the observed Fermi arcs and becomes very small away
from it so that those portions are not easily observed? The
antinodal pseudogap itself must then be associated with a
gap in the incoherent part of the electron spectrum with the
gapless coherent part not resolved due to the smallness of Z.

In considering this question, we first observe that in the
heavy fermion system, the smallness of Z goes hand in hand

with the largeness of the effective mass. More generally, the
effective mass is not directly related to Z �it is only in cases
where the electron self-energy is momentum independent
that Z determines the mass renormalization�. So phenomeno-
logically, we need to first suppose that the small-Z antinodal
regions do not have mass enhancement. Such a Fermi-liquid
state for the pseudogap regime has some attractive features.
Consider first the gapless Fermi arcs. Several popular theo-
ries attempt to view the arcs as part of a true Fermi surface
which consists of small closed hole pockets whose back por-
tions are not observed in ARPES due to a small Z. However,
the observed Fermi arc coincides with band-structure Fermi
surface and shows no tendency to bend away into a closed
hole pocket. In contrast, in the state discussed above the true
Fermi surface is simply the band-structure one but the anti-
nodal sections would be unobservable due to a small Z.

Consider next recent observations of quantum oscillations
at high fields and low temperatures in some underdoped
cuprates.9,10 The oscillation frequency seems consistent with
a small Fermi pocket. A key issue is to reconcile this with the
Fermi arcs reported in photoemission, and a few different
ideas have been proposed.26,27 An interesting feature of the
high-field experiments is a negative Hall constant, which has
been interpreted as evidence for an electron pocket.28 Re-
cently, Millis and Norman29 proposed that the oscillations
and negative Hall constant should be with a 1/8 filling an-
tiphase stripe order, which folds the band-structure Fermi
surface to create a pocket. One issue with the proposal is that
the electron pocket is near the edges of the full Brillouin
zone—precisely the region where a big pseudogap is seen by
ARPES in zero field in the normal state above Tc. For the
theory in Ref. 29 to apply, it is apparently necessary that the
60 T fields used in the quantum oscillation experiment wipe
out the pseudogap.30 This may seem unnatural but is not
prohibited. This difficulty is overcome in the large-Fermi-
surface pseudogap envisaged in this section. A low-
temperature 1/8 antiphase stripe instability arising from that
state will retain all the same transport properties as that in the
theory in Ref. 29. This is because the smallness of Z does not
affect transport phenomena. On the other hand, the ARPES
pseudogap �which in this state is the gap of the incoherent
part of the spectrum� will survive intact. Thus, this kind of
large-Fermi-surface state provides a possible route to a rec-
onciliation between the quantum oscillation and ARPES ex-
periments.

However, a number of difficulties exist with the idea that
the pseudogap state has a large-Fermi-surface state with
strong angle-dependent Z. First, the density of states as mea-
sured by thermodynamic measurements actually decreases
on entering the pseudogap state by cooling. This requires that
the effective mass at the antinodal regions is suppressed
�rather than enhanced� in the pseudogap state, which is rather
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unnatural. Besides, such behavior should signal an increase
in the Drude weight in optical transport in the pseudogap
state, which is not seen. Finally, this is also inconsistent with
the scaling of the superfluid density with the density of
doped holes.

In light of these difficulties, it seems unlikely that a
Fermi-liquid state with a large Fermi surface of the kind
discussed here is a serious candidate for the pseudogap state.
These difficulties may perhaps be overcome by a non-Fermi-
liquid version which retains the large Fermi surface and the
strong variation in the low-energy spectral density. However,
a description of such a state does not currently exist.

IX. DISCUSSION

The most interesting aspect of our work is the possibility
of large variations in the quasiparticle weight �and, concomi-
tantly, the effective mass� on moving around the Fermi sur-
face. This anisotropy is linked to the internal orbital structure
of the Kondo resonance, derived from the f symmetry of the
orbitals occupied by the local moments. In the hybridization
mean-field theory, the most dramatic variation occurs when
there are hybridization nodes, i.e., directions along which the
hybridization vanishes. We have demonstrated the possibility
of these nodes in a simple model of a Ce-based cubic heavy
fermion system with cubic symmetry. Hybridization nodes
lead to the possibility that some portions of the large Fermi
surface are actually contained within the original small
Fermi surface of the conduction electrons. In those regions
the quasiparticles essentially have a c-electron character with
very little admixture to the f fermions. The quasiparticle
weight is correspondingly large �of order 1�. The opposite is
true in other portions where the quasiparticles mostly have
an f character and have small Z. This then leads to a strong
angle dependence of the quasiparticle weight.

Real heavy electron materials have much more compli-
cated band structures than in the simplified model considered
here. Nevertheless, there exists in general the possibility of
hybridization nodes, which will greatly affect their low-
temperature physics. Consider, for instance, heavy electron
superconductivity. At least in some cases the superconduc-
tivity may be driven by formation of singlet bonds between
neighboring local moments due to Ruderman–Kittel–
Kasuya–Yosida interactions. In combination with Kondo hy-
bridization, this leads to superconductivity. Formally, the sin-
glet formation may be described as �f f� pairing, while the
Kondo hybridization has nonzero �c†f�. This then leads to
nonzero �cc�, i.e., superconducting order.31,32 If the hybrid-
ization has nodes, then this will lead to extra nodes in the
physical superconducting order parameter over and above
any nodes inherited from the singlet bond �f f� amplitude.33

The large variation in Z also has potential implications on
current thinking on the nature of the quantum critical point
between the heavy Fermi liquid and the antiferromagnetic
metal. It has been suggested that this transition is accompa-
nied by the loss of Kondo screening, resulting in a recon-
struction of the Fermi surface.34–36 Such a reconstruction
presumably requires Z to vanish through out the large Fermi
surface on approaching the transition from the paramagnetic

side. For a discussion on Z vanishing at the heavy fermion
quantum critical points, see Ref. 37. The variation in Z de-
scribed in this paper raises the question of whether the man-
ner in which Z vanishes also varies around the Fermi surface.

We also explored the possibility that the pseudogap state
of underdoped cuprates may be a large-Fermi-surface Fermi-
liquid state with a strongly angle-dependent Z. While such a
picture has some very appealing features, it has enough dif-
ficulties with experiments that it is unlikely to directly be a
relevant theory of the pseudogap state.
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APPENDIX: CALCULATION OF MATRIX ELEMENT

To calculate �k ,� �k ,M�, we use the known overlap of
�k ,�� and �k ,Jz� �Ref. 38� for l=3,

�k,��k,Jz� = 4�Jz
Y3

Jz+1/2��k���,−1/2 + �Jz
Y3

Jz−1/2��k���,1/2� ,

�A1�

where Yl
m��k� are associated Legendre functions and Jz

= �7+2Jz� /14�1/2 and �Jz
= �7−2Jz� /14�1/2 are Clebsch–

Gordan coefficients.38 Now using the forms given in Eq.
�A1�, we get the following for the two orbital states:

�k,��1� =
1
�6
� 1

�7
Y3

−2��k���,−1/2 +�6

7
Y3

−3��k���,1/2�
−�5

6��5

7
Y3

2��k���,−1/2 +�2

7
Y3

1��k���,1/2� ,

�k,��2� =
1
�6
��6

7
Y3

3��k���,−1/2 +
1
�7

Y3
2��k���,1/2�

−�5

6��2

7
Y3

−1��k���,−1/2 +�5

7
Y3

−2��k���,1/2� .

It is more convenient to work with a simplified version of
these relations, as

�k,��1� =
1

�42
Y3

−2��k� − 5Y3
2��k����,−1/2

+
1

�42
�6Y3

−3��k� − �10Y3
1��k����,1/2,
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�k,��2� =
1

�42
�6Y3

3��k� − �10Y3
−1��k����,−1/2

+
1

�42
Y3

2��k� − 5Y3
−2��k����,1/2.

If we introduce new functions A��k� and B��k�,

�k,��1� = A��k���,−1/2 + B��k���,1/2,

�k,��2� = − B���k���,−1/2 + A���k���,1/2, �A2�

where A��k�= 4�
�42

Y3
−2��k�−5Y3

2��k�� and B��k�
= 4�

�42
�6Y3

−3��k�−�10Y3
1��k��.
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