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A definition of the effective permittivity and permeability is proposed for two-dimensional photonic crystals.
Expression for these effective parameters is deduced from the combination of the dispersion law with the
formula for the reflection coefficient of a semi-infinite photonic crystal in the single-mode approximation.
From these expressions, it is shown that the effective permittivity and permeability take purely real values
when the truncation plane of the photonic crystal contains an inversion center of the infinite crystal. In addition,
these effective parameters are demonstrated to be continuous and bounded when the crystal mode turns from
propagating to evanescent only if the eigenmode fields fulfill specific symmetry conditions. Finally, the validity
of the single-mode approximation and the effective-medium model of photonic crystals is investigated. In
particular, arguments suggesting that this model fails for bands exhibiting negative refraction are presented.
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I. INTRODUCTION

A crucial feature of photonic crystals �PCs� is the richness
of their dispersion relation.1 As opposed to homogeneous
media, whose equifrequency surfaces are always
ellipsoidal—and, consequently, convex—the shape of PC
equifrequency surfaces can be very complex: they can con-
tain sharp corners or edges separating flat or even concave
areas. This gives rise to unusual phenomena,2 in particular,
the self-collimation of light3 and the superprism effect.4

However, at specific frequencies, the equifrequency surfaces
of PCs can attain ellipsoidal shape too. In consequence, the
question arises if the electromagnetic behavior of the crystals
can then be successfully described in the effective-medium
approximation, where the crystal in question is replaced with
a homogeneous material with definite values of permittivity
� and permeability � or, equivalently, refractive index n
=��� and impedance �=�� /�. This procedure is especially
tempting in the analysis of photonic devices employing the
negative-refraction effect,5 where the behavior of the corre-
sponding system made of ideally homogeneous materials is
usually known in advance—a famous example being the
“perfect lens.”6

Numerous papers dealing with this subject have already
been published,7–18 and several definitions of the effective
parameters, which will be reviewed in more detail in Sec. II,
have been proposed. The ultimate verification of such a defi-
nition is the comparison of the reflection coefficient of the
crystal calculated rigorously with that of the effective me-
dium. So far, such a verification has been explicitly per-
formed only for normal9,11,12 or near-normal13 incidence.
However, many applications, including those related to nega-
tive refraction, rely on waves incident at large angles as well
as evanescent ones. The range of validity of the effective-
medium approximation is, therefore, still poorly known. This
paper aims to evaluate its performance in the whole range of
angles of incidence, to discuss the factors responsible for its
success or failure, and to provide rules enabling estimation
of its validity for arbitrary two-dimensional �2D� PCs.

Consider a semi-infinite 2D PC invariant along the y axis,
on whose surface, perpendicular to the z axis, an s- or

p-polarized plane wave is incident �Fig. 1�a��. Due to the
crystal periodicity in the x direction, the reflected field will
comprise infinitely many diffraction orders. Similarly, the
transmitted field will be a combination of infinitely many
crystal eigenmodes �propagative and evanescent� character-
ized by different wave vectors. On the contrary, if the crystal
was replaced by a homogeneous material �in general, aniso-
tropic but with one optical axis directed along y�, only one
transmitted plane wave would be excited. Evidently, there-
fore, the effective-medium approximation can be expected to
give a good picture of reality only when some crystal eigen-
mode is excited with amplitude significantly greater than the
others. Thus, the validity of the effective-medium approxi-
mation is seen to be constrained by that of the single-mode
approximation, which consists in neglecting all crystal eigen-
states except the dominant one. Note that the situation is
different from the one-dimensional �1D� case, where the
crystal always supports exactly two eigenmodes, only one of
which is excited by an incident wave. The usefulness of the
effective-medium approximation in the 1D case depends
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FIG. 1. Schematic diagrams of the fields generated by a polar-
ized plane-wave incident from an isotropic homogeneous medium
on the surface of �a� a photonic crystal and �b� another homoge-
neous medium.
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mainly on the rate of variability of the effective parameters
with the angle of incidence �ideally, they should not depend
on it�; in particular, Pierre and Gralak14 showed that only for
specific crystal truncations these parameters are continuous
when the crystal eigenmode turns from propagating to eva-
nescent.

The plan of this paper is as follows. In Sec. II, we review
the definitions of the effective parameters proposed to date
and give a justification of a specific one, showing it to be
rigorous under the single-mode approximation. Based on that
definition, in Sec. III we derive conditions for the reality and
continuity of effective � and �, extending to two dimensions
the results presented in Ref. 14 for 1D crystals. In Sec. IV,
we proceed to the discussion of the applicability conditions
of the single-mode approximation itself, formulating them in
terms of the Fourier spectrum of electromagnetic fields of
individual crystal eigenmodes. These results are used to
show that as far as the bands responsible for negative refrac-
tion are concerned, the single-mode approximation is mod-
erately accurate only close to normal incidence. Thus, effec-
tive � and � of the crystal corresponding to large values of
the component kx of the wave vector—in particular, to eigen-
states evanescent in the z direction—are not well-defined
quantities. In consequence, the behavior of systems contain-
ing homogeneous negative-index materials can change sig-
nificantly if these materials are replaced with PCs, even if the
equifrequency curves �EFCs� �and so the phase refractive
indices� of both media are the same.

II. DEFINITION OF EFFECTIVE PARAMETERS

In the effective-medium approximation a lossless 2D PC
is modeled by a lossless homogeneous, possibly anisotropic
medium with one optical axis oriented along the invariant
direction of the PC, hereafter taken to lie along the y axis.
We shall begin with a brief analysis of the refraction of a
plane-wave incident on the interface between an isotropic
medium with relative permittivity �1 and permeability �1,
occupying the z�0 half-space, and this anisotropic material
characterized by tensorial �̂2 and �̂2, lying in the z�0 half-
space �Fig. 1�b��. The wave is taken to propagate in the xz
plane. Throughout this paper we assume all electromagnetic
fields to be s-polarized �electric field perpendicular to the xz
plane�; the analysis of the p polarization case proceeds along
similar lines and will be omitted for brevity. For the sake of
simplicity, we shall restrict our attention to the case when
another optical axis of the anisotropic medium is perpendicu-
lar to the interface �i.e., lies along the z direction�—this cor-
responds to the usual case of the PC unit cell having a mirror
plane perpendicular to x or z. The tensors �̂2 and �̂2 become
then diagonal,

�̂2 = ��2x 0 0

0 �2y 0

0 0 �2z
�, �̂2 = ��2x 0 0

0 �2y 0

0 0 �2z
� , �1�

and the dispersion relation of s-polarized plane waves with
wave vector k� =kxx̂+kzẑ propagating in this medium takes the
form

kx
2

�2z
+

kz
2

�2x
= �2y

�2

c2 , �2�

where � denotes the frequency and c�1 /��0�0 the speed of
light defined in terms of the vacuum permittivity �0 and per-
meability �0. Thus, the EFCs of this material are ellipses
with principal axes of length 2Kx�2��2y�2z� /c and 2Kz

�2��2y�2x� /c.
When a plane wave with wave vector k�1=kxx̂+k1zẑ falls

on the interface between the isotropic medium 1 and the
anisotropic medium 2, reflected and refracted waves are gen-
erated, with wave vectors k�1�=kxx̂−k1zẑ and k�2=kxx̂+k2zẑ, re-
spectively. By imposing the continuity conditions at z=0 on
field components parallel to the interface, the well-known
Fresnel formulas for the amplitude of the reflected and re-
fracted waves can be derived,

r =
�2x/k2z − �1/k1z

�2x/k2z + �1/k1z
, t =

2�2x/k2z

�2x/k2z + �1/k1z
. �3�

These formulas can be written in a concise way by introduc-
ing the notion of transverse impedance of a material, defined
as

� jt = Ejt/Hjt �j = 1,2� , �4�

where Ejt �Hjt� is the amplitude of the transverse, i.e., paral-
lel to the interface, component of the electric �magnetic� field
of a plane wave propagating in the jth material in the given
direction k� j. Since in our case Ejt=Ejy =Ejy

0 eik� j·r�, H1t=−H1x
= �i��0�1�−1�E1y /�z= �k1z /��0�1�E1y, and H2t
= �k2z /��0�2x�E2y, we obtain

r =
�2t − �1t

�2t + �1t
t =

2�2t

�2t + �1t
. �5�

Several authors have attempted to generalize the concept
of transverse impedance to nonhomogeneous media, the
main obstacle being, obviously, that in such media the ratio
in Eq. �4� is spatially dependent.9,11–13,19 The most straight-
forward is to define �t as the ratio of the spatial field aver-
ages over the surface unit cell, as proposed by Lu and
Prather;11 while this might seem an oversimplification, in the
following we show that this approach is, in fact, rigorous if
the single-mode approximation holds. In an attempt to pre-
serve more information from the detailed field structure,
other authors9,12,13,19 suggested empirical definitions of the
transverse impedance, expressed in terms of the average
electromagnetic energy and Poynting vector of the dominant
crystal eigenmode. However, no mathematical justification
of these definitions has been given.

Efros and Pokrovsky8 and later Decoopman et al.10 pro-
posed an entirely different procedure. They considered the
perturbation of the incident electromagnetic field caused by a
PC slab embedded in a homogeneous medium whose permit-
tivity and permeability were varied. The values of these pa-
rameters corresponding to minimum perturbation were taken
as the effective � and � of the crystal. Contrary to the single-
mode approximation, such an approach is based on a rigor-
ous solution of Maxwell equations. On the other hand, it
requires significant computational effort since, for each value
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of the frequency and angle of incidence, simulations need to
be performed for multiple, possibly complex, values of � and
� of the homogeneous medium. Therefore, it is not well
suited to the analysis of the general behavior of the effective
parameters, for which a—even approximate—semianalytical
approach would be useful.

Finally, some authors15–18 proposed definitions of effec-
tive parameters based on the extended Maxwell-Garnett
theory, where the crystal unit cell is replaced by a coated
cylinder �or sphere� embedded in a homogeneous host me-
dium, whose parameters are determined from the condition
of vanishing scattering, calculated by the Mie theory. This
approach enabled them to reproduce the band structure of the
PCs in question, usually composed of dispersive �e.g., polari-
tonic� materials, with good accuracy. Nevertheless, the effec-
tive parameters they obtained are independent of the choice
of the crystal truncation plane, whereas one of the key ob-
servations of Decoopman et al.10 was the strong variability
of effective � and � with the position of the crystal surface.
Thus, the parameters introduced in Refs. 15–18 could not be
used to determine accurately the reflection coefficient of a
truncated PC.

To arrive at the proper definition of the parameters in
question, let us consider once again the configuration shown
in Fig. 1�a�, a semi-infinite 2D PC, on which a plane wave
with wave vector k� =kxx̂+kzẑ is incident. Since we shall fo-
cus on the case of s polarization, the electric field reduces to
its component along the y axis. We assume the crystal to be
oriented so that a �not necessarily primitive� rectangular unit
cell �ax ,az� can be defined. From the Maxwell equations, we
get

�Ey

�x
= i��0�Hz, �6a�

�Ey

�z
= − i��0�Hx, �6b�

�Hz

�x
−

�Hx

�z
= i��0�Ey , �6c�

where harmonic time dependence e−i�t has been assumed.
These equations can be solved separately in the homoge-
neous and periodic region and then matched at the crystal
surface z=0; to fulfill Maxwell boundary conditions, the
continuity of the Ey and Hx components on the surface has to
be assured.

The resulting structure is periodic with respect to the vari-
able x, so it is possible to perform a Floquet-Bloch
transform2,20 of the Maxwell equations �6�. After this trans-
form, as it is well known from the grating theory, the solu-
tion of the Maxwell equations in the homogeneous region is
given by the Rayleigh expansion,21,22

Ey
h�x,z� = ei�kxx+�0z� + 	

n�Z
rnei��kx+Gxn�x−�nz�, �7�

where Gxn�2�n /ax and �n���1�1�� /c�2− �kx+Gxn�2�1/2

with the sign of the square root chosen so that Re �n
+Im �n	0. In the crystal, we can expand the field in terms

of the PC eigenmodes with the x wave-vector component
equal to kx, taking into account �i� propagative modes carry-
ing energy in the +z direction and �ii� evanescent modes
decaying in this direction.2,23–28 These modes can be deter-
mined by several methods, most of which utilize some vari-
ant of the scattering-matrix algorithm;29 in our calculations
we have used the differential method.21,30,31 The electric field
of the mth eigenmode with wave vector 
�m�kxx̂+
mzẑ can
be written as a 2D Fourier expansion with coefficients
�um

np�n,p�Z,

Emy�x,z� = 	
n�Z

	
p�Z

um
npei��kx+Gxn�x+�
mz+Gzp�z�, �8�

where Gzp�2�p /az. Thus, the total electric field in the crys-
tal will be

Ey
cr�x,z� = 	

m�N
tmEmy�x,z� , �9�

with “transmission coefficients” tm denoting the amplitudes
of individual modes.

The requirement of continuity of Ey and Hx at z=0 leads
to

eikxx + 	
n

rnei�kx+Gxn�x = 	
m

tm	
n

	
p

um
npei�kx+Gxn�x,

�10a�

i�0

�1
eikxx − 	

n

i�n

�1
rnei�kx+Gxn�x

= 	
m

tm	
n

	
p

i�
mz + Gzp�um
npei�kx+Gxn�x. �10b�

Using the identity 
0
1e2�inxdx=�n0, where �nm equals 1 if n

=m and 0 otherwise, we arrive at the following inhomoge-
neous system of linear equations with unknowns �rn�n�Z and
�tm�m�N:

�n0 + rn = 	
m

um
n tm, �11a�

i�n

�1
��n0 − rn� = 	

m
vm

n tm, n � Z �11b�

with the coefficients um
n and vm

n defined as

um
n � 	

p

um
np, vm

n � 	
p

i�
mz + Gzp�um
np. �12�

This system can be written in the matrix form,

� − Î û

i�̂/�1 v̂
��r�

t�
� = � a�

a��
� , �13�

where Î denotes the identity matrix, û and v̂ are matrices
with elements um

n and vm
n �the row and column indices being

denoted by superscript and subscript, respectively�, �̂ is the
diagonal matrix of the coefficients �n, r� and t� are column
vectors of the coefficients rn and tm, and the vectors a� and a��,
whose elements are given by
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an � �n0, an� � i�0�n0/�1, �14�

represent the incident field.
If the crystal was replaced by a homogeneous medium,

the only nonzero reflection coefficient would be the specular
one �r0�. Using Eqs. �11a� and �11b� corresponding to n=0,
the following relation between r0 and the transmission coef-
ficients of individual modes can be derived:

r0 =

	
m

�um
0 − ��1/i�0�vm

0 �tm

	
m

�um
0 + ��1/i�0�vm

0 �tm

. �15�

As we have already seen, the effective-medium approxima-
tion relies on the assumption that the transmission coefficient
of a particular mode is much larger than all the others; with-
out loss of generality, we can denote this mode with the
index 1, so that our assumption reads t1� t2 , t3 ,¯. If it is
fulfilled, expression �15� reduces to

r0 �
iu1

0/v1
0 − �1/�0

iu1
0/v1

0 + �1/�0
. �16�

Comparing this expression with Eq. �3�, noting that �0 cor-
responds to k1z, and using the dispersion relation �2�, we see
that within the framework of the single-mode approximation
the PC produces the same reflected wave as a homogeneous
medium with

�x = i
1z

u1
0

v1
0 , �z =

Kx
2

Kz
2�x, �y =

1

�x

Kz
2

�2/c2 , �17�

with the values of Kx and Kz read from the EFC of the domi-
nant crystal eigenmode. The transverse impedance is seen to
be

�t = i��0
u1

0

v1
0 . �18�

This agrees with the definition of Lu and Prather �Sec. 3 in
Ref. 11�, since from Eqs. �6b�, �8�, and �12� follows that u1

0

and −v1
0 / �i��0� are the average electric and magnetic field,

respectively, of the periodic part of the eigenmode on the PC
surface.

III. INFLUENCE OF SYMMETRIES ON THE EFFECTIVE
PARAMETERS

A. Symmetry requirement for reality

From Eq. �8� it follows that shifting the origin of the
coordinate system by x̂x+ ẑz corresponds to the mapping

um
np � um

np�z� � um
npe−i��kx+Gxn�x+�
mz+Gzp�z�, �19�

so that from Eq. �12� we obtain

u1
0

v1
0 �

u1
0�z�

v1
0�z�

�
	

p

u1
0pe−i�
1z+Gzp�z

	
p

i�
1z + Gzp�u1
0pe−i�
1z+Gzp�z

. �20�

As expected, this ratio depends only on the position of the
interface �the z=0 plane� but not on the exact location of the
origin of the coordinate system on this plane. We are now
ready to prove the first result.

Both the reflection coefficient r0 and the effective param-
eters �x, �z, �y, and �t are real provided that the following
three conditions are satisfied: �i� both the incident wave and
the dominant eigenmode are propagative (�0 and 
1z are
real), �ii� the truncation plane z=0 contains an inversion
center of the infinite crystal, and �iii� the single-mode ap-
proximation is valid.

The proof relies on the fact that the coefficients um
np of a

propagating mode m can be obtained with the standard
plane-wave method, and if the crystal unit cell is centrosym-
metric with respect to the origin, they are elements of an
eigenvector of a real symmetric matrix, hence necessarily
real �in the s-polarization case additionally multiplied by a
real diagonal matrix�.32 From Eq. �12�, um

n are then real,
while vm

n are imaginary; in particular, the expression iu1
0 /v1

0

occurring in Eqs. �16�–�18� is real. Since, by assumption, so
are �0 and 
1z, the proposition follows from simple inspec-
tion of formulas �16�–�18�. If the inversion center lies at
�x0 ,0� with x0�0, the above argument can be applied, too,
after shifting the origin of the coordinate system by −x0x̂:
from Eq. �20�, this transformation does not change the values
of r0 or the effective parameters. On the other hand, if the
interface contains no symmetry centers, a complex Hermit-
ian eigenvalue problem must be solved in the plane-wave
method, so that the eigenvector elements are not longer real,
and we cannot expect iu1

0 /v1
0 to be real either.

We remind that in the 1D case the reality of the effective
parameters is guaranteed if the surface is a mirror-symmetry
plane of the infinite crystal;14 however, in one dimension
mirror planes are, in fact, identical with inversion centers, so
that a priori it is not obvious which of these symmetry ele-
ments prove to be crucial in two dimensions.

As an illustration of the above theorem, we shall consider
the crystal shown in Fig. 2: the hexagonal lattice of air holes

a
√

3/4

3a
√

3/8

plane 1

plane 2

plane 3

a

FIG. 2. The structure of the PC analyzed in the text: a hexagonal
lattice of holes of radius 0.35a embedded in a dielectric matrix. The
horizontal lines mark the position of truncation planes 1–3; inver-
sion centers of the infinite lattice located at these planes are marked
with crosses.
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of radius 0.35a, a being the lattice constant, embedded in a
dielectric matrix with �=16. At the frequency �=0.14
�2�c /a, the EFC of the single s-polarized propagating crys-
tal eigenmode is circular �Fig. 3�a�, middle diagram, solid
line�. In Figs. 4�a�, 4�c�, and 4�e� the specular reflection co-
efficient of this crystal at the cited frequency value is plotted
against the x component of the wave vector of the incident
plane wave for three different positions of the interface be-
tween the crystal and the homogeneous medium, taken to be

vacuum ��1=�1=1�. Evidently, for surfaces containing in-
version centers �Figs. 4�a� and 4�c�� Im r0 is very small in the
whole range kx�0.14�2� /a, where the incident wave is
propagative. On the contrary, when the termination is chosen
in an arbitrary way �Fig. 4�e��, r0 has an appreciable imagi-
nary part. In all three graphs, the relative error of the single-
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FIG. 3. The EFCs at frequency �a� �=0.14�2�c /a and �b� �
=0.259�2�c /a of three PCs of the type shown in Fig. 2 with the
same average refractive index ����=2.67, but different values of the
index contrast �=��b /��h between the background and the holes:
�b=16, �h=1, and �=4 �solid lines�, �b=11.76, �h=2.94, and �=2
�dotted lines�, and �b=�h=7.11 and �=1 �dashed lines�. The middle
part of the graphs shows the EFCs of the real bands �Re kz

�0, Im kz=0�, the bottom one, of the imaginary bands of the first
kind according to the classification of Ref. 33 �Re kz=0, Im kz

�0�, and the top one, of the imaginary bands of the second kind
�Re kz=2� /a�3, Im kz�0, i.e., lying on the edge of the first Bril-
louin zone�. Only the three bands with lowest values of Im kz are
shown in each case. The bands of the empty lattice ��=1� are la-
beled with the index n of the harmonic Gxn to which they corre-
spond. For each mode with wave vector k� visible in the graph, the
crystal supports three additional modes with wave vectors k��, −k�,
and −k��, where the asterisk denotes complex conjugation �Ref. 33�.
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FIG. 4. �a� The kx dependence of the specular reflection coeffi-
cient r0 of the crystal from Fig. 2 truncated along plane 1 at �
=0.14�2�c /a. Solid lines: results of rigorous calculations; circles:
results of calculations made in the single-mode approximation; and
dashed line: relative error of the single-mode approximation,
rsinglemode−rrigorous / rrigorous. The vertical lines at kx=0.14�2� /a
and 0.4465�2� /a mark where the incident wave and the single
propagating crystal eigenmode, respectively, turn from propagating
to evanescent. �b� Amplitudes of the three most slowly decaying
crystal eigenmodes excited in the above conditions �solid, dashed,
and dotted lines in order of increasing Im kz�. ��c� and �d�� The
same for plane 2. ��e� and �f�� The same for plane 3.
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mode approximation, defined as rsinglemode
−rrigorous / rrigorous, is plotted with a dashed line. It is clear
that at the chosen frequency �corresponding to the middle of
the first crystal band� the single-mode approximation is very
accurate for kx corresponding to propagating incoming waves
�kx�� /c�; for larger kx, accuracy degrades slightly, but the
relative error seldom exceeds 10%.

B. Symmetry requirement for continuity

We proceed to the investigation of the behavior of the
effective permittivity and permeability near the value of kx at
which the dominant eigenmode transforms from propagating
to evanescent. At this point, 
1z is zero; according to Eq.
�17�, this implies �x=�z=0 and �y→� unless v1

0 is zero at
the same time. The italicized statement is thus a necessary
condition for the continuity and boundedness of �y. We shall
now show that this condition can be related to the symmetry
of the eigenmode fields in the following way: The effective
parameters �x, �z, and �y are continuous only if the follow-
ing conditions are satisfied: �i� the crystal has mirror planes
parallel to the surface, �ii� the electric field of the dominant
mode with wave vector parallel to these mirror planes is
symmetric with respect to them, and �iii� the crystal is trun-
cated along either �a� a mirror plane or �b� any plane con-
taining inversion centers and parallel to the mirror planes,
provided the latter contain inversion centers, too.

To begin with, we note that according to the group
theory,34,35 the crystal eigenmodes with a given wave vector
k� can be classified in terms of the irreducible representations
of the largest common subgroup of the photonic lattice group
and the group of k�, i.e., the group of symmetry operations
leaving the wave-vector invariant. For k� parallel to x the
latter group comprises only the identity I and the reflection
with respect to the x axis, �x. It follows that if the crystal
itself has a mirror plane parallel to x, the electric field of the
eigenmodes with k� =kxx̂ is either symmetric or antisymmetric
with respect to reflection about it. Let us assume this plane to
lie at z=0. From Eqs. �12� and �20� it follows that the
“shifted” coefficient v1

0�z0� will be

v1
0�z0� =

2�i

az
	

p

pu1
0pe−2�ipz0/az. �21�

If the electric field is symmetric with respect to the plane z
=0, we have u1

np=u1
n,−p for all n , p�Z, hence

v1
0�z0� =

4�

az
	
p�0

pu1
0p sin

2�pz0

az
. �22�

Without further constraints on u1
0p, the coefficient v1

0�z0� will
be null only if 2�z0 /az is an integral multiple of �, so that all
the sine factors vanish. With z0 restricted to the first unit cell
�0�z0�az�, this is equivalent to z0=0 or z0=az /2. Thus, the
truncation must coincide with one of the mirror planes �ob-
viously, z=az /2 is a mirror plane if z=0 is one�.

Assume now that the crystal has inversion centers outside
the mirror planes. It is easy to see that they must lie halfway
between successive planes, i.e., at z=az /4 and z=3az /4. As
shown in Sec. III A, the coefficients u1

np�az /4� and

u1
np�3az /4� must then be real; from Eq. �19�, u1

np�az /4�
�u1

npe−2�ip/4=u1
np�−i�p, so the reality condition reads

u1
np�− i�p = �u1

np��ip. �23�

It follows that

u1
np is � real

imaginary
� for all �even

odd
�p . �24�

Alone, this condition does not ensure vanishing of v1
0 at any

new truncation planes. However, if the mirror plane z=0 also
contains inversion centers, then all the coefficients u1

np must
be real. Combined with �24�, this means that u1

np vanish for
all odd p, and expression �22� for v1

0�z0� becomes

v1
0�z0� =

4�

az
	
p�0

2pu1
0,2p sin

4�pz0

az
. �25�

It will be null provided that z0=naz /4, with n�Z, i.e., on all
planes containing inversion centers.

Let us now proceed to the case of electric-field antisym-
metric to the mirror planes. We have then u1

np=−u1
n,−p, and

the sines in Eq. �22� are replaced by cosines. In order that
v1

0�z0� is null, to each p�N must correspond a q�Z such
that 2�pz0 /az= �q+ 1

2 ��. It is easy to see that this condition
cannot be fulfilled for any value of z0. If the structure has
additional inversion centers, so that u1

np vanish for all odd p,
the condition becomes 4�pz0 /az= �q+ 1

2 ��, which has no so-
lutions, either.

The above considerations show that if the PC has no mir-
ror planes parallel to the surface, there will be no interplay
between coefficients u1

np and u1
n,−p, which is necessary so that

all the terms of the series in Eq. �21� vanish. It should be
emphasized that presence of different symmetry elements,
such as mirror planes perpendicular to the surface, will not
change matters, since these operations are not in the group of
the wave vector k� =kxx̂.

As an illustration of the above theorem, consider again the
structure from Fig. 2. In Figs. 5 and 6 the kx dependence of
the effective �x and �y for different frequencies and termina-
tion planes is shown. In the first band �Fig. 5�, the electric
field has the required symmetry, so that for truncation planes
1 and 2 �y�kx� is continuous, whereas it is divergent for the
arbitrarily chosen plane 3. On the contrary, the electric field
of a mode belonging to the second band is antisymmetric
with respect to the mirror planes �Fig. 6�, and so �y is diver-
gent no matter what truncation plane is chosen.

C. Remarks

In the context of metamaterials containing resonant com-
ponents, such as split rings, it has been observed that inside
band gaps, the effective permittivity and permeability of
these structures �defined at normal incidence� have large
imaginary parts of opposite sign, regardless of the truncation
plane location.36–39 This is not in contradiction with our
theory, since one of the assumptions of the condition for
reality of � and � formulated in Sec. III A is the propagative
nature of the fundamental crystal eigenstate �real 
1z�. Of
course, inside band gaps all modes are evanescent, and so the
above condition is not applicable.
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On the other hand, our results show that, in general, the
effective parameters of a lossless PC can attain complex val-
ues even outside band gaps, if the truncation plane does not
exhibit certain symmetries. In this case, the product �� is
real �due to the absence of losses�, and either � or � has
negative imaginary part. This is visible, for example, in Fig.
5�e� showing the kx dependence of the effective parameters
for the low-symmetric truncation plane 3: it is clear that
arg �x� �− �

2 ,0�, so that Im �x�0. Only at specific trunca-
tion planes effective � and � are real. �It must be noted,
though, that precisely these special truncation planes have

usually been chosen in previous calculations of the effective
parameters of PCs and metamaterials.�

To conclude this section, we stress that the symmetry re-
quirements we have derived are rigorous in the framework of
the single-mode approximation. Excitation of secondary
crystal eigenmodes will perturb the true reflection coeffi-
cient, e.g., introducing a small imaginary part even though
the truncation plane contains inversion centers. Nevertheless,
if the perturbation is not too strong, the presented conditions
are still useful, for instance, in searching for the crystal trun-
cation with Im r0 as small as possible.

IV. VALIDITY OF THE SINGLE-MODE APPROXIMATION

We have seen that at a frequency value belonging to the
first band of the crystal shown in Fig. 2, the single-mode
approximation works well, and so the effective-medium
model is well founded �cf. Fig. 4�. In the second band, how-
ever, this approximation becomes much less accurate. In
Figs. 7�a� and 7�c�, the rigorous value of the specular reflec-
tion coefficient of the crystal at the frequency �=0.259
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FIG. 5. �Color online� �a� Electric field Ey and �b� magnetic field
Hx of the single propagating mode with 
� � x̂ of the crystal shown in
Fig. 2 at �=0.14�2�c /a. A sample mirror plane of the lattice
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�2�c /a is juxtaposed with that calculated from Eq. �16�;
the relative error grows with kx and is usually greater than
20% �plane 1� and 10% �plane 2�. In the evanescent region,
the single-mode approximation is clearly irrelevant. The
graphs of the amplitudes of the three most slowly decaying
crystal eigenmodes �Figs. 7�b� and 7�d�� show that the influ-
ence of the second mode is non-negligible in the whole range
of kx, and for the first truncation plane, even the third mode
plays a significant part. Close inspection reveals that the ra-
tios t2 / t1 and t3 / t1 tend to grow with the incidence angle;
thus, the effective-medium model is a better approximation
at near-normal than at grazing incidence �except for the im-
mediate neighborhood of kx=� /c, where r0 becomes exactly
−1�.

It is natural to ask about the reason underlying the high
amplitude of the secondary modes; an answer to this ques-
tion would enable us to estimate the range of applicability of
the single-mode approximation. In the following, we offer a
qualitative argument relating the ratios tm / t1 to the Fourier
spectrum of the individual mode fields on the crystal surface.

Let us begin by writing system �13� in a partitioned form,
emphasizing the rows corresponding to the nonzero elements
of the vectors representing the incident field, a0 and a0�, as
well as the columns corresponding to the unknowns r0 and tk,

�
− Î 0� 0̂ û�k

�0 u�k
�0 û�k

�0

0̄ − 1 0̄ ū�k
0 uk

0 ū�k
0

0̂ 0� − Î û�k
�0 u�k

�0 û�k
�0

i�̂�0/�1 0� 0̂ v̂�k
�0 v�k

�0 v̂�k
�0

0̄ i�0/�1 0̄ v̄�k
0 vk

0 v̄�k
0

0̂ 0� i�̂�0/�1 v̂�k
�0 v�k

�0 v̂�k
�0

��
r��0

r0

r��0

t��k

tk

t��k

�
= �

0�

1

0�

0�

i�0/�1

0�
� . �26�

In the notation used, the symbols embellished with arrows,
bars, and hats are column vectors, row vectors, and matrices,
respectively, while those without any embellishment are sca-
lars. The meaning of the indices should be clear; for ex-
ample, û�k

�0 stands for the submatrix of the û matrix corre-
sponding to rows with negative indices and columns with
indices less than k. From the Cramer’s formula, we have
tl / tk=Dl /Dk, where Dj stands for the determinant of the ma-
trix created by replacing the jth column in the matrix of the

system from Eq. �26� by the right-hand side of the system.
After some algebra, where elementary properties of determi-
nants are utilized, we arrive at

tl

tk
= �− 1�l−k

�
− Î 0̂ û�l

�0 û�l
�0

0̂ − Î û�l
�0 û�l

�0

i�̂�0/�1 0̂ v̂�l
�0 v̂�l

�0

0̂ i�̂�0/�1 v̂�l
�0 v̂�l

�0
�

�
− Î 0̂ û�k

�0 û�k
�0

0̂ − Î û�k
�0 û�k

�0

i�̂�0/�1 0̂ v̂�k
�0 v̂�k

�0

0̂ i�̂�0/�1 v̂�k
�0 v̂�k

�0
�

. �27�

By means of the Laplace expansion of the determinants in
the numerator and denominator along the columns contain-
ing u�k and u� l, respectively, the ratio tl / tk can be written as the
ratio of two sums of terms proportional, respectively, to the
components of the Fourier expansion of the electric and
magnetic fields at the crystal surface of the kth and lth eigen-
mode,

tl

tk
=

	
n�0

�anuk
n + bnvk

n�

	
n�0

�anul
n + bnvl

n�
, �28�

where an and bn denote the appropriate coefficients resulting
from the Laplace expansion. It is crucial to observe that these
sums do not contain the zeroth Fourier component of either
field.

The PC bands can be treated as mixtures of the eigen-
states of the empty lattice with “average” � and �; for a fixed
kx, these eigenstates are the plane waves Eyn�x ,z�=exp�i�kx

+Gxn�x+ ikznz�, where kzn=����� /c�2− �kx+Gxn�2. When the
index contrast of the photonic lattice is low enough, in some
regions of the �� ,kx� space each of the PC eigenstates com-
prises a single dominant plane wave, the perturbative com-
ponents having low amplitude. This means that each of the
sets of coefficients �um

n �n�Z corresponding to different modes
m contains a single dominant component. From Eq. �28� it
follows that, in general, the mode whose dominant compo-
nent is the zeroth one �n=0� is then excited the most
strongly. Indeed, labeling this mode with index m=1, we see
that in expression �28� for the ratio t1 / tk �k�1� the sum in
the denominator does not contain terms proportional to u1

0

and v1
0, which, by assumption, are the largest ones. On the

contrary, the sum in the numerator contains two terms pro-
portional to the dominant components of the kth mode, say,
uk

nk and vk
nk, since nk is necessarily different from zero. Thus,

we see that the fraction t1 / tk is a ratio of a “large” and a
“small” quantity—and so t1� tk for all k�1, that is, the
defining assumption of the single-mode approximation is ful-
filled.
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Conversely, if there is strong coupling between the zeroth
harmonic and plane waves corresponding to different values
of n, so that no mode with highly dominant zeroth compo-
nent exists, the denominator in Eq. �28� for l=1 is no longer
a small quantity, and multiple eigenmodes can be excited
with comparable amplitude.

We conclude that the single-mode approximation should
work best at those values of � and kx for which the mode
originating from the n=0 harmonic [the plane wave
exp�ikxx+ ikz0z�] does not contain significant contributions of
other plane waves. In practice, this usually means that when
we consider the transition from the empty lattice to the final
PC, the fragment of the PC EFC around a given value of kx
should form mainly from the circle corresponding to the n
=0 harmonic of the empty lattice. For example, as can be
seen in Fig. 3�a�, the EFC of the single propagating mode of
the crystal in question �solid line, middle diagram� is very
similar to the original EFC of the n=0 harmonic of the
empty lattice �dashed line�. In addition, the imaginary bands
corresponding to n=−1 and n=−2 are very weakly perturbed
�top diagram�. We infer that the individual plane waves
couple weakly, so that the zeroth harmonic of the field of the
propagating crystal eigenmode should be dominant, and the

eigenmode itself should be strongly excited. These claims
are corroborated by Figs. 8�a� and 8�b�, where the amplitudes
of several harmonics u1

n and v1
n of this mode at the truncation

plane 1 are shown for two values of kx, and Fig. 4�b�, where
the amplitudes tm of individual eigenstates are juxtaposed.

Now let us turn our attention to Fig. 3�b�, where the evo-
lution of the EFCs at the frequency �=0.259�2�a /c is
shown; this frequency lies in the second band, which exhibits
negative group velocity. We can see that in this case the
plotted quarter of the circular EFC of the single propagating
crystal eigenstate is formed by merging of the n=0 and n=
−1 harmonics of the empty lattice. Their strong coupling is
further indicated by the substantial alteration of the shape of
the imaginary bands. We can expect the contribution of the
zeroth harmonic to be the strongest at small values of kx and
so the accuracy of the single-mode approximation to be high-
est near normal incidence and deteriorate with increasing kx.
This is again confirmed by Figs. 8�c�, 8�d�, and 7�b�.

To help establish a broader picture of the single-mode
approximation’s performance, in Fig. 9�b� the relative error
of the reflection coefficient r0 calculated in this approxima-
tion is plotted for a mesh of 101�100 points of the �kx ,��
space. In turn, Figs. 9�c� and 9�d� present the amplitude
variations of the zeroth harmonic of the electric and mag-
netic fields, respectively, of the most slowly decaying crystal
mode �on the truncation plane 1�. It can be seen that, while
there is no one-to-one correspondence, the areas of signifi-
cant error generally match those in which the n=0 compo-
nent of either the electric or magnetic field, or both, of the
least-evanescent eigenmode has small amplitude. �In fact, the
dependence of the approximation’s accuracy on the Fourier
spectrum of the magnetic field seems more pronounced than
that on the electric field.�

Finally, it should be noted that the EFC from Fig. 3�b� is,
in fact, typical for negative-refraction bands. Indeed, the
EFCs of the empty lattice are circular, with group velocity
directed outward, and the negative bands arise from convex
figures formed by arcs of three, four, or six such intersecting
circles, necessarily including those corresponding to harmon-
ics with nonzero Gxn �see Fig. 10�. Thus, the resulting bands
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do not fulfill the validity condition of the single-mode ap-
proximation or do it only in the restricted range of kx close to
zero. Consequently, attribution of effective permittivity and
permeability to negative-refraction bands makes sense at
most for near-normal incidence, while in the evanescent re-
gime the effective-medium description is definitely inappro-
priate.

V. CONCLUSIONS

In this paper, we have analyzed in detail the effective-
medium description of 2D PCs. Its validity has been shown
to be restricted by the accuracy of the single-mode approxi-
mation, and a definition of the effective parameters such as
permittivity, permeability, and transverse impedance rigorous
under this approximation has been given. In the framework
of the single-mode approximation, we have studied the de-
pendence of the reflection coefficient r of the crystal on the
position of the truncation plane, deriving the conditions as-
suring r, and consequently the effective parameters, to be
real valued. Continuity and boundedness of the latter have
been shown to depend on the symmetry of the dominant
crystal eigenmode. Subsequently, the conditions of validity
of the single-mode approximation have been studied. We
have established a link between the relative excitation ampli-
tudes of individual crystal eigenmodes and the Fourier spec-
trum of the electric and magnetic fields of these modes on
the crystal truncation plane. This link has been employed to
formulate a qualitative criterion enabling estimation of the
accuracy of the single-mode approximation based on the
comparison between the equifrequency diagrams of the PC
and of the homogeneous medium with refractive index equal
to the average refractive index of the former. Finally, we
discussed the special case of negative-refraction bands; we
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FIG. 9. �Color online� �a� The band structure of the PC shown in
Fig. 2: gray and white areas denote photonic bands and gaps, re-
spectively. The arrows mark the frequency values �=0.14
�2�c /a and 0.259�2�c /a. �b� The dependence of the relative
error of the single-mode approximation of this crystal’s reflection
coefficient on kx and � for the truncation plane 1. �c� The corre-

sponding dependence of u1
0 / �	n�u1

n�2�1/2. �d� Same for
v1

0 / �	n�v1
n�2�1/2.
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FIG. 10. �Color online� Typical configurations of empty-lattice
EFCs leading to formation of negative-refraction bands �red dashed
line� after introducing sufficient lattice modulation. In each case,
the direction of normal incidence is from the bottom; circles corre-
sponding to harmonics with Gxn=0 are drawn in darker blue. Thin
lines mark the boundaries of the first Brillouin zone of each lattice,
and black dots denote reciprocal-lattice points. Top row: square
lattice, bands encircling �a� the M point of the first Brillouin zone
and �b� the � point; bottom row: hexagonal lattice, bands encircling
�c� the J point and �d� the � point.

WOJCIECH ŚMIGAJ AND BORIS GRALAK PHYSICAL REVIEW B 77, 235445 �2008�

235445-10



concluded that the effective-medium description of these
bands is, quite generally, inaccurate, since their Fourier-
space structure entails simultaneous excitation of other bands
by plane waves incident at most angles, and so attributing a
definite effective permittivity and permeability to these
bands is not physically meaningful.
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