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We calculate the plasma excitations in a bundle as well as a two-dimensional �2D� periodic array of aligned
parallel multishell nanotubes on a substrate. The carbon nanotubes are oriented perpendicular to the substrate.
The model we use for the system is an electron gas confined to the surface of an infinitely long cylinder
embedded in a background dielectric medium. Electron tunneling between individual tubules is neglected. We
include the Coulomb interaction between electrons on the same tubule and on different tubules for the same
nanotube and neighboring nanotubes. We present a self-consistent field theory for the dispersion equation for
intrasubband and intersubband plasmon excitations. For both the bundle and 2D array of aligned parallel
nanotubes, the dispersion relation of the collective modes is determined by a three-dimensional wave vector
with components in the direction of the nanotube axes and in the transverse directions. The dispersion equation
is solved numerically for a single-wall nanotube 2D array as well as a bundle, and the plasmon excitation
energies are obtained as a function of wave vector. The intertube Coulomb interaction couples plasmons with
different angular momenta m in individual nanotubes, lifting the �m degeneracy of the single-nanotube modes.
This effect is analyzed numerically as a function of the separation between the tubules. We show that the
translational symmetry of the lattice is maintained in the plasmon spectrum for the periodic array, and the
plasmon energies have a periodic dependence on the transverse wave vector q�. For the bundle, the Coulomb
interaction between nanotubes gives rise to optical plasmon excitations.
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I. INTRODUCTION

Carbon nanotubes �CNTs� are an allotrope of carbon
which have been prepared in various configurations. For ex-
ample, a one atom thick sheet of graphene rolled up into a
seamless cylinder with diameter on the order of a nanometer
constitutes a single-wall carbon nanotube �SWNT�. The ratio
of the length of the resulting nanostructure to the diameter
exceeds 106. The novel properties of such cylindrical carbon
tubules have made them potentially useful in many applica-
tions in nanoscience. These include photonics, electronics
�electrical circuits�, and other areas of materials science �to
strengthen polymer materials�.1–6 Their extraordinary
strength, unique electrical properties, and their ability to con-
duct heat efficiently have generated considerable interest
among both experimentalists and theoreticians.7–23 Nano-
tubes may also be produced by synthesis methods, for in-
stance multiwall nanotubes �MWNTs� which consist of mul-
tiple layers of graphene rolled in on themselves to form a
cylindrical tube. There are two models which can be used to
describe the structures of multiwall nanotubes. In the first
model, sheets of graphene are arranged in concentric cylin-
ders, e.g., a SWNT nanotube within a larger SWNT nano-
tube. In the Parchment model, a single sheet of graphene is
rolled in around itself. The interlayer distance in multiwall
nanotubes is close to the distance between graphene layers in
graphite, approximately 3.3 Å. Double-wall carbon nano-
tubes �DWNT� are particularly interesting because they com-
bine similar morphology and properties compared to SWNT,
but improving significantly their resistance to chemicals.7,9 It
is abundantly clear that carbon nanotubes are unique nano-
structures with remarkable mechanical and electronic
properties.1–3 Interest has focused on them as prototypes for

one-dimensional quantum wires as well as how these one-
dimensional properties would be modified when the nano-
tubes are combined in a linear array on a two-dimensional
�2D� plane or arranged on a three-dimensional lattice. In Fig.
1, we show schematically an array of nanotubes. We show
that the system of nanotubes would lead to a coupling be-
tween the plasmon modes.

Over the years, there have been a number of experimental
measurements24–27 and theoretical calculations28–30 dealing
with the effects due to coupling between nanotubes. In the
work of Taverna et al.24 employing electron energy-loss
spectroscopy �EELS�, it was demonstrated that due to the

FIG. 1. �Color online� Array of nanotubes whose axes are par-
allel and taken to be aligned in the z-direction. In this paper, we
consider a subset forming a bundle, and an infinite periodic array in
both x and y-directions.
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strong intratube and intertube Coulomb couplings, there is an
in-plane mode and an out-of-plane mode for an array of
nanotubes arranged on a two-dimensional surface. This is in
agreement with the work of Gumbs and A�zin7 who derived
the dispersion equation for nanotubes whose axes are aligned
on a planar surface �see also the paper by Shyu and Lin10�.
Stéphan et al.25 reported on a detailed experimental investi-
gation of the plasmon excitations of multiwall carbon nano-
tubes using EELS. The results in Ref. 25 compared the plas-
mon modes for MWNTs with those measured for SWNTs. In
interpreting their data,25 a continuum dielectric model was
adopted in which the bulk response function for the material
making up the nanoparticles was used. The EELS experi-
ments yielded high energy excitations with energies in the
5–15 eV range. Lower energy plasmon excitations
��0.5 eV� were measured by Murakami et al.26 in aligned
SWNTs on a planar surface forming a thin film by means of
optical-absorption techniques, thereby demonstrating the an-
isotropy of the modes.7 Films of thickness 1000 Å consist-
ing of SWNTs with mean diameter 4 nm have been probed
using EELS and the plasmon mode dispersion was
obtained.27 This means that there are about 25 SWNTs
stacked on top of each other; within the limits of the reso-
lution for the momentum and energy transfer for the EELS
experiments reported in Ref. 27 �see also the paper by Thess
et al.31�. The observed plasmons are in the energy range of
5–7 eV and wave number �0.15 Å−1 and are believed to be
excitations of the � electrons which are formed by the 2pz
orbitals.19 For metallic and narrow-gap semiconducting
SWNTs, the plasmon excitation energies are of low fre-
quency with energies in the range �1 eV.19 These collective
excitations are due principally to the excitation of the charge
carriers in the low-energy bands near the Fermi level. With
higher spectroscopic resolution, these low-frequency plas-
mon excitations should be observed, as we demonstrate in
this paper with the use of a simple model which is valid for
this range of frequencies. The results for the low-frequency
plasmon excitations in the tight-binding approximation agree
with the electron-gas model for SWNTs and DWNTs �see
Refs. 19 and 29 as well as references therein� and this is the
reason we use the present model for an array.

The electron-gas model for metallic carbon nanotube
bundle was presented by Lin et al.28 following the reported
experiments of Thess et al.31 Their formalism for calculating
the dispersion equation for this three-dimensional electron
system was based on the RPA. However, since the plasmon
excitations cannot be categorized as intrasubband and inter-
subband plasmons as for a single tubule, it is crucial to in-
clude the coupling between subbands with different angular-
momentum quantum numbers. It is the purpose of this paper
to calculate the dispersion relation of the low-frequency plas-
mons for doped32 nanotubes in which the charge carriers are
introduced onto the graphene tubules by means of intercala-
tion, as can be done in carbon fibers or C60.

33 Also, we in-
vestigate the way in which this dispersion relation is affected
by their geometrical arrangement, such as their separation
and angular configuration. This effect may be analyzed
through the behavior of the collective plasma excitations. We
do so by calculating numerically the plasma dispersion as a
function of the separation between the tubules. We demon-

strate that for a bulk lattice the translational symmetry of the
lattice is maintained in the plasmon spectrum, and the plas-
mon energies have a periodic dependence on the transverse
wave vector components.

We first calculate the plasmon dispersion equation for an
isosceles right triangle of nanotubes as a simple example of a
bundle of nanotubes on a substrate with their axes aligned
parallel to the z-axis.34–39 The weak van der Waals interac-
tion which holds them together is neglected in our calcula-
tions. The carbon nanotubes are oriented perpendicular to the
substrate. With one of the axes of the tubules on the z-axis,
the other tubules have their axes at x=ax on the x-axis and
y=ay on the y-axis. In the limit ax→� or ay→�, our dis-
persion equation reduces to that for a pair of multishell nano-
tubes, as obtained previously.23 We examine how the Cou-
lomb interaction effects on the plasmon spectrum depend on
the axial separation. In order to consider the role played by
the periodicity of a lattice on the collective modes, we con-
sider an array of nanotubes, with their axes parallel to the z
axis and equally spaced by distance ax in the x-direction and
ay in the y-direction. Each nanotube may consist of M �1
coaxial cylindrical tubules. We assume that there are no elec-
trons tunneling between the tubules in each nanotube and
between the nanotubes. The plasmons are determined by the
angular-momentum quantum number m corresponding to
transitions within a subband �m=0� or between different sub-
bands �m�0�, as well as the wave vector qz along the axis of
the nanotube and the transverse wave vector components qx
and qy.

Even in the absence of tunneling, for finite ax and ay, the
plasmon spectrum for one nanotube is modified by the Cou-
lomb interaction between the nanotubes.7 Furthermore, the
intertubule Coulomb interaction causes the angular momen-
tum not to be conserved in a nanotube array or bundle, and
modes with different m are coupled to one another. In par-
ticular, the degeneracy of the modes with angular-momentum
quantum numbers m and −m is lifted by the Coulomb inter-
action.

The numerical calculations we present were carried out to
analyze the way in which mode coupling modifies the plas-
mon spectrum. For the bundle consisting of three nanotubes
whose axes are at the vertices of a triangle, we calculate the
dispersion relation as a function of the transverse and longi-
tudinal components of the wave vector. For the array of
nanotubes on a 2D lattice, we show that the symmetry of the
lattice is maintained in the plasmon spectrum, and the plas-
mon excitations depend on the wave vectors qx and qy with
periods 2� / ax and 2� / ay in the x and y-directions, respec-
tively. Numerical results are presented for the array of nano-
tubes on a 2D lattice with M =1. We obtain data for the
plasmon excitation energies as functions of qz, qx, and the
lattice period ax. Different plasmon modes associated with
the intrasubband and intersubband electron transitions in the
tubules are considered and compared with the results for a
single nanotube and a linear array on a 2D planar sheet.

The outline of the rest of this paper is as follows: In Sec.
II, we derive the dispersion relation for plasmons in a bundle
of nanotubes In Sec. III, we present and discuss the plasma
dispersion equation for a periodic array of nanotubes consist-
ing of an arbitrary number of concentric tubules. In Sec. IV,
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we present numerical results for the plasmon excitation en-
ergies and discuss their properties as functions of their wave
vectors and the separation of the nanotubes. We give a sum-
mary in Sec. V.

II. THEORETICAL FORMALISM FOR A BUNDLE OF
TUBULES

We first consider a simple model of bulk quantities of
nanotubes. For this we have a coupled triad of infinitesimally
thin nanotubules, with their axes aligned in the z-direction.
The nanotubes are predicted to be semiconducting or metal-
lic depending on the chirality of the tubules. The axis of one
of the tubules of radius R1 is located at the origin at x=0 and
the remaining two tubules each of radius R2 and R3 are lo-
cated at a distance of x=ax and y=ay from the origin on the
x and y axis, respectively. We shall impose the condition that
ax�R1+R2 and ay �R1+R3. There is no tunneling between
the tubules so that the eigenfunctions of an electron on the jth

tubule �j=1,2� on the x axis or y axis, with axial wave
vector and angular-momentum quantum numbers are given
by

��, j�x =
eikzz

�Lz

�l,j�� − �j − 1�axêx� ,

��, j�y =
eikzz

�Lz

�l,j�� − �i − 1�ayêy� , �1�

where �= �kz , l� and

�l,j��� =
eil	

�2�

1
�Rj


 j���, 
 j
2��� = ��� − Rj� . �2�

The energy eigenvalues are

�,j =
�2kz

2

2m�
+

�2l2

2m�Rj
2 . �3�

The plasmon dispersion equation can be obtained by solving

the density-matrix equation i�d�̂ / dt = 	Ĥ , �̂
, where Ĥ= Ĥ0

−e	ext and �̂= �̂0+��̂ with ��j�Ĥ0���j��=�,j����� j j� and
��j��̂0���j��= f0��,j������ j j�, where f0��,j� is the Fermi-Dirac
distribution function. In the lowest order of perturbation
theory, we obtain

��j���̂0���j�� = 2e
f0��,j� − f0��,j�
�� − �,j + �,j

��j�	tot�r,�����j�� .

�4�

Here, 	tot�r ,��=	ind�r ,��+	ext�r ,�� is the sum of the ex-
ternal and induced potentials with 	ind�r ,�� a solution of
Poisson’s equation

�2	ind�r,�� =
4�e

s
�nind�r,�� . �5�

Now, we obtain the following matrix elements for the
tubules of radii R1, R2 and R3, i.e.,

��, j�eiq·r���, j�� = �kz�,kz−qz
e−im�imJm�q�Rj�� j j�, �6�

where q�=�qx
2+qy

2. This yields

�nind�r,��

=
2e

V
�
j,j�

�
�,��

f0��,j� − f0���,j��

�� − �,j + ��,j�
�
q,q�

���, j��e−iq·r��, j�	ind

��q,����, j�eiq�·r���, j�� �7�

and

�nind�q,�� =
2e

V
�
kz

f0�kz,l;1
� − f0�kz−qz,l−m;1�

�� − kz,l;1
+ kz−qz,l−m;1

e−im�1Jm�q�R1�

� �
qx�,qy�

	ind�qx�,qy�,qz;��Jm�q�� R1�qx� − iqy�

q��
�m

+
2e

V
�
kz

f0�kz,l;2
� − f0�kz−qz,l−m;2�

�� − kz,l;2
+ kz−qz,l−m;2

F1�m,q�,�2;R2�

� �
qx�,qy�

	ind�qx�,qy�,qz;��e−iqx�axF1�m,q�� ,�2;R2� +
2e

V
�
kz

f0�kz,l;2
� − f0�kz−qz,l−m;2�

�� − kz,l;2
+ kz−qz,l−m;2

e−iqyayF2�m,q�,�3;R3�

� �
qx�,qy�

	ind�qx�,qy�,qz;��eiqy�ayF2�m,q�� ,�3;R3� , �8�

where �2 is the angle between the x-axis and a line drawn
from the center of the cylinder at the origin to a point on
circumference of the cylinder with its center at x=ax. We
also define �3 as the angle between the y-axis and a line
drawn from the center of the cylinder at the origin to a point

on the circumference of the cylinder located on the y-axis at
y=ay. In addition, we have introduced the following nota-
tion:

F1�m,q�,�2;R2� = e−im�2Jm�q�R2� ,
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F2�m,q�,�3;R3� = e−im�3Jm�q�R3� . �9�

The potential 	ind�q ,�� in Eq. �7� can be rewritten in
terms of �nind�q ,��. This gives

�nind�q,�� = −
2e2

�s
�1,m�qz,��Jm�q�R1�U1,m�qz�qx + iqy

q�

�m

−
2e2

�s
�2,m�qz,��e−iqxaxF1�m,q�,�2;R2�U2,m�qz�

−
2e2

�s
�3,m�qz,��e−iqyayF2�m,q�,�3;R3�U3,m�qz� ,

�10�

with

U1,m�qz� =
1

LxLy
�

qx,qy

�nind�qx,qy,qz�
qx

2 + qy
2 + qz

2 Jm�q�R1�qx − iqy

q�

�m

,

U2,m�qz� =
1

LxLy
�

qx,qy

�nind�qx,qy,qz�
qx

2 + qy
2 + qz

2 eiqxaxF1�m,q�,�2;R2� ,

U3,m�qz� =
1

LxLy
�

qx,qy

�nind�qx,qy,qz�
qx

2 + qy
2 + qz

2 eiqyayF2�m,q�,�3;R3� ,

�11�

and

� j,m�qz,�� = 2 �
l=−�

� �
−�

�

dkz

f0�kz,l;j
� − f0�kz−qz,l−m;j�

�� − kz,l;j
+ kz−qz,l−m;j

.

�12�

After substituting, we obtain

U1,m�qz� = −
2e2

�s
�1,m��qz,��U1,m��qz�

1

LxLy
�

qx�,qy�

Jm��q�� R1�Jm�q�� R1�

qx�
2 + qy�

2 + qz
2 qx� + iqy�

q��
�m�−m

−
2e2

�s
�2,m�qz,��U2,m��qz�

1

LxLy
�

qx�,qy�

e−iqx�ax
F1�m�,q�� ,�2,R2�Jm�q�� R1�

qx�
2 + qz

2 qx� + iqy�

q��
�−m

−
2e2

�s
�3,m��qz,��U3,m��qz�

1

LxLy
�

qx�,qy�

e−iqy�ay
F2�m�,q�� ,�3,R3�Jm�q�� R1�

qx�
2 + qz

2 qx� + iqy�

q��
�−m

, �13�

U2,m�qz� = −
2e2

�s
�1,m��qz,��U1,m��qz�

1

LxLy
�

qx�,qy�

eiqx�ax
F1�m,q�� ,�2;R2�Jm��q�� R1�

q��
2 + qz

2 qx� + iqy�

q��
�m�

−
2e2

�s
�2,m��qz,��U2,m��qz�

1

LxLy
�

qx�,qy�

F1�m�,q�� ,�2,R2�F1�m,q�� ,�2,R2�
q��

2 + qz
2 e−i�qx−qx��ax

−
2e2

�s
�3,m��qz,��U3,m��qz�

1

LxLy
�

qx�,qy�

F2�m�,q�� ,�3,R3�F1�m,q�� ,�2,R2�
q��

2 + qz
2 e−iqyayeiqx�ax, �14�

U3,m�qz� = −
2e2

�s
�1,m��qz,��U1,m��qz�

1

LxLy
�

qx�,qy�

eiqy�ay
F2�m,q�� ,�3;R3�Jm��q�� R1�

q��
2 + qz

2 qx� + iqy�

q��
�m�

−
2e2

�s
�2,m��qz,��U2,m��qz�

1

LxLy
�

qx�,qy�

F1�m�,q�� ,�2,R2�F2�m,q�� ,�3,R3�
q��

2 + qz
2 e−iqyayeiqy�ay

−
2e2

�s
�3,m��qz,��U3,m��qz�

1

LxLy
�

qx�,qy�

F2�m�,q�� ,�3,R3�F2�m,q�� ,�3,R3�
q��

2 + qz
2 e−iqy�ayeiqyay . �15�

We note that the set of equations in Eqs. �13�–�15� form a simultaneous system in the variables U1,m�qz�, U2,m�qz�, and
U3,m�qz�, with m=0, �1, �2,¯. These equations may be simplified if we now introduce the following quantities below, i.e.,
if we set

Amm� =
2e2

�s
�1,m��qz,��

1

LxLy
�

qx�,qy�

Jm��q�� R1�Jm�q�� R1�

q��
2 + qz

2 qx� + iqy�

q��
�m�−m

,
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Bmm� =
2e2

�s
�2,m��qz,��

1

LxLy
�

qx�,qy�

e−iqx�ax
F1�m�,q�� ,�2,R2�Jm�q�� R1�

q��
2 + qz

2 qx� + iqy�

q��
�−m

,

Cmm� =
2e2

�s
�3,m��qz,��

1

LxLy
�

qx�,qy�

e−iqy�ay
F2�m�,q�� ,�3,R3�Jm��q�� R1�

q��
2 + qz

2 qx� + iqy�

q��
�−m

,

Dmm� =
2e2

�s
�1,m��qz,��

1

LxLy
�

qx�,qy�

eiqx�ax
F1�m,q�� ,�2,R2�Jm��q�� R1�

q��
2 + qz

2 qx� + iqy�

q��
�m�

,

Emm� =
2e2

�s
�2,m��qz,��

1

LxLy
�

qx�,qy�

F1�m�,q�� ,�2,R2�F1�m,q�� ,�2,R2�
q��

2 + qz
2 e−i�qx−qx��ax,

Fmm� =
2e2

�s
�3,m��qz,��

1

LxLy
�

qx�,qy�

F2�m�,q�� ,�3,R3�F1�m,q�� ,�2,R2�
q��

2 + qz
2 e−iqyayeiqx�ax,

Gmm� =
2e2

�s
�1,m��qz,��

1

LxLy
�

qx�,qy�

eiqy�ay
F2�m,q�� ,�3,R3�Jm��q�� R1�

q��
2 + qz

2 qx� + iqy�

q��
�m�

,

Hmm� =
2e2

�s
�2,m��qz,��

1

LxLy
�

qx�,qy�

F1�m,q�� ,�2,R2�F2�m,q�� ,�3,R3�
q��

2 + qz
2 e−iqxaxeiqy�ay ,

Imm� =
2e2

�s
�3,m��qz,��

1

LxLy
�

qx�,qy�

F2�m�,q�� ,�3,R3�F2�m,q�� ,�3,R3�
q��

2 + qz
2 e−iqyayeiqy�ay . �16�

We note that Fmm and Hmm are the only matrix elements
containing a product of the two factors exp�iq�ax cos �� and
exp�−iq�ay sin ��. The Jacobi-Auger formula along with a
standard formula for exp�iz cos �� and exp��i sin �� pro-
duces the above obtained results.

Back substituting the results for the matrix elements in
Eq. �16� into Eqs. �13�–�15�, respectively, yields the follow-
ing compact system of simultaneous linear equations

U1,m + �
m�

Amm�U1,m� + �
m�

Bmm�U2,m� + �
m�

Cmm�U3,m� = 0,

U2,m + �
m�

Dmm�U1,m� + �
m�

Emm�U2,m� + �
m�

Fmm�U3,m� = 0,

U3,m + �
m�

Gmm�U1,m� + �
m�

Hmm�U2,m� + �
m�

Imm�U3,m� = 0.

�17�

The mode coupling arising from the Coulomb interaction is
clearly seen through the finite values of the coefficients when
m��m in Eq. �17�. The dimension of the associated coeffi-
cient matrix above is dependent on the type of transitions

being investigated. Therefore, to obtain a matrix of modest
dimensions, let us consider only intrasubband transitions
�i.e., m=0�. For such transitions, we have

J��,qx,qy,qz��U1,0�qz�
U2,0�qz�
U3,0�qz�

� � �1 + A0,0 B0,0 C0,0

D0,0 1 + E0,0 F0,0

G0,0 H0,0 1 + I0,0
�

��U1,0�qz�
U2,0�qz�
U3,0�qz�

� = �0

0

0
� . �18�

For nontrivial solutions of Eq. �18� to exist, one requires that
the determinant of the coefficient matrix J�qx ,qy ,qz� vanish.
That is DetJ�qx ,qy ,qz�=0. This is the dispersion formula for
the plasmons and particle-hole mode intrasubband transitions
only. Let us further investigate the intrasubband �m�=m=0�
plasma dispersion equation. In general, an explicit determi-
nation of the elements of the matrix for m=m� leads to a
simplification of the results in Eq. �16� and we have

Amm =
e2

��s
Im�qzR1�Km�qzR1��1,m�qz,�� ,
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Bmm =
e2

��s
�2,m�qz,���

0

�

dq�q�

J0�q�ax�Jm�q�R1�Jm�q�R2�
q�

2 + qz
2 ,

Cmm =
e2

��s
�3,m�qz,���

0

�

dq�q�

J0�q�ay�Jm�q�R1�Jm�q�R3�
q�

2 + qz
2 ,

Dmm =
e2

��s
�1,m�qz,���

0

�

dq�q�

J0�q�ax�Jm�q�R1�Jm�q�R2�
q�

2 + qz
2 ,

Emm =
e2

��s
Im�qzR2�Km�qzR2��2,m�qz,�� ,

Fmm =
e2

��s
�3,m�qz,���

0

�

dq�q�

� �
k,k�=−�

� ikJk�q�ax�Jk��q�ay�Jm�q�R2�Jm�q�R3�

q�
2 + qz

2 ,

Gmm =
e2

��s
�1,m�qz,���

0

�

dq�q�

J0�q�ay�Jm�q�R1�Jm�q�R3�
q�

2 + qz
2 ,

Hmm =
e2

��s
�2,m�qz,���

0

�

dq�q�

� �
k,k�=−�

� ik�− 1�k�Jk�q�ax�Jk��q�ay�Jm�q�R2�Jm�q�R3�

q�
2 + qz

2 ,

Imm =
e2

��s
Im�qzR3�Km�qzR3��3,m�qz,�� . �19�

There is symmetry between the matrix elements appearing in
Eq. �19�. For example, the only difference between Bmm in
the first row and second column and Dmm in the second row
and first column is the susceptibility � j,m�qz ,��, with j=1 or
j=2. Because of the symmetry under the interchange
R1↔R2, the form factor in these two matrix elements is the
same. Also, the matrix element Cmm may be obtained from
Gmm with the replacement �3,m�qz ,��→�1,m�qz ,�� and vice
versa. For these two matrix elements, there is symmetry un-
der the interchange R1↔R3. Further simplification of these
results may be achieved for intrasubband excitation �m=m�
=0� by means of the identity40

�
0

�

dq�

q�

q�
2 + qz

2J0�aq��J0�bq��J0�cq��

= I0�qza�I0�qzc�K0�qzb� for a � b + c; b,c,qz � 0.

�20�

In the limit when ax→�, i.e., when the tubule on the x axis
is infinitely far away, the intertubule Coulomb interaction is
negligible, and we obtain the following dispersion formula
for two tubules on the y axis, i.e.,

Det�1 + A0,0 0 C0,0

0 1 + E0,0 0

G0,0 0 1 + I0,0
� = 0. �21�

In the limit ay→�, the dispersion equation becomes

Det�1 + A0,0 B0,0 0

D0,0 1 + E0,0 0

0 0 1 + I0,0
� = 0. �22�

Thus, as expected, the dispersion Eqs. �21� and �22� clearly
demonstrate a coupling of the modes in a pair of the nano-
tubes leaving the third isolated from the other two in the
bundle. We now turn to a consideration of the dispersion
equation for plasma excitations for a 2D array of nanotubes
embedded in a background dielectric medium.

III. TWO-DIMENSIONAL ARRAY OF NANOTUBES

Assuming that there is no tunneling between the tubules,
the single-particle eigenfunctions for the 2D periodic array
are

� j�l��,z� =
1

�LzNxNy

eikzz �
nx=−Nx/2

Nx/2

�
ny=−Ny/2

Ny/2

ei�kxnxax+kynyay�� jkzl

�	� − �nxaxêx + nyayêy�
 ,

� jl��� =
1

�2�
eil	 1

�Rj


 j��� , �23�

where j=1,2 , ¯ ,M labels the tubules in the nanotube, �
= �kx ,ky ,kz� is a composite index for the electron eigenstates,
� jl���eikzz is the wave function for an electron in the jth
tubule, with wave vector kz in the axial direction and
angular-momentum quantum number l=0, �1, �2,¯,

i

2���=���−Rj�, kx= 2�
Lx

nx, and ky = 2�
Ly

ny with nx

=0, �1, �2, ¯ , �
Nx

2 and ny =0, �1, �2, ¯ , �
Ny

2 . Here,
Nx=Lx /ax and Ny =Ly /ay are the numbers of nanotubes in the
x and y directions in the array with periodic boundary con-
ditions. Electron motion in the azimuthal direction around
the tubule is quantized and characterized by the angular-
momentum quantum number l, whereas motion in the axial z
direction is free. Thus, the electron spectrum in each tubule
consists of one-dimensional �1D� subbands with l serving as
a subband index. The spectrum does not depend on kx and
has the form

 jkzl
=

�2kz
2

2m�
+

�2l2

2m�Rj
2 . �24�

Consequently, using these results in conjunction with the
methods previously employed for the one-dimensional array
of nanotubes, we obtain the dispersion formula for plasma
excitations in a 2D array of nanotubes to be
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Det��mm�� j j� +
2e2

axays
� j�m��qz,�� �

Nx=−�

�

�
Ny=−�

� Jm��Rj�
��qx + GN

x �2 + �qy + GN
y �2�Jm�Rj

��qx + GN
x �2 + �qy + GN

y �2�

�qx + GN
x �2 + �qy + GN

y �2 + qz
2

�  qx + GN
x + i�qy + GN

y �
��qx + GN

x �2 + �qy + GN
y �2�m�−m� = 0, �25�

where GN
x =

2�Nx

ax
and GN

y =
2�Ny

ay
.

The result in Eq. �25� shows that the symmetry of the lattice is maintained in the plasmon spectrum for both the x and y
directions. In addition, the plasmon excitations depend on the wave vector components qx and qy with periods 2� / ax and
2� / ay . In the limit, ay→�, we obtain the following dispersion equation for a linear array of nanotubes on a 2D plane, i.e.,

Det��mm�� j j� +
e2

�axs
� j�m��qz,�� �

Nx=−�

� �
−�

�

dqy

Jm����qx + GN
x �2 + qy

2Rj��Jm���qx + GN
x �2 + qy

2Rj�

�qx + GN
x �2 + qy

2 + qz
2

� qx + GN
x + iqy

��qx + GN
x �2 + qy

2�m�−m� = 0, �26�

which agrees with the result obtained by Gumbs and
Aǐzin.7

IV. NUMERICAL RESULTS AND DISCUSSION

We now turn to numerical calculations for an array of
nanotubes as well as a bundle based on the formalism we
developed in Secs. II and III. We simulate a metallic
graphene tubule in a medium with background dielectric
constant �s=2.4 by choosing m�=0.25me, where me is the
free-electron mass and EF=0.6 eV. The effective Bohr ra-
dius is aB��2s /m�e2=1.26 Å. All calculations were car-
ried out at zero temperature. We included the transitions m
=0, �1 only in the calculations for plasma excitations in a
2D array. The number of occupied subbands in each tubule is
determined by its radius, the electron density through the
Fermi energy and electron effective mass. The occupied sub-
bands are then included in the sum l=0, �1,
�2, ¯ , � lmax, where lmax labels the highest occupied sub-
band at T=0 K. For a single wall cylindrical nanotube of
radius 11 Å, there are five subbands occupied by electrons
corresponding to l=0, �1, �2. Lin and Shung9 used the
same values of �s, m�, R, and EF in calculating the plasmon
excitation spectrum. It was shown that there are three qua-
siacoustic plasmon branches associated with intrasubband
electron excitations with angular-momentum transfer m=0.
The reason for this is that the plasmon excitations depend on
�l� in this case. There are five optical plasmon branches as-
sociated with intersubband electron transitions with angular-
momentum transfer m= �1.

In Fig. 2, we present our results for the dispersion relation
of intrasubband �m=0� plasmon excitations of a 2D array of
single wall nanotubes. The radius of each tubule is 11 Å and
the period of the lattice is 35 Å. The excitation energy is
plotted as a function of qz with qx=� /ax and qy =� /ay. Only
the plasmon branches which are not Landau damped and
which lie outside the single-particle excitation regions are

presented in Fig. 2. For the sake of clarity, we have omitted
the boundaries of the particle-hole continuum in this figure.
In Fig. 3, we plot the intrasubband plasmon energies as a
function of qxax /2� for fixed qy and qz, using the same lat-
tice parameters as Fig. 2. Only the plasmon modes which are
not Landau damped by the single-particle excitations are
shown in Fig. 3. There are several branches of plasmon ex-
citations in both Figs. 2 and 3. The periodicity of the lattice
is preserved in each of the plasmon branches when plotted as
functions of the transverse wave vector qx.

It is a simple matter to show from Eq. �26� that for a 1D
array, when qx=0 the elements of the determinantal matrix
with m=0, m�= �1 are zero due to antisymmetry of the qy
integrand. This means that there is decoupling of the intra-
subband and intersubband excitations. Similarly, it follows
from Eq. �25� that when both qx=0 and qy =0, the matrix
elements of the determinantal equation are zero for m=0 and
m�= �1 as well. The main result of these plots is to show
that the Coulomb interaction between the tubules in the 2D

qz/kF

0.0 0.2 0.4

S
ω

/E
F

0.0

0.4

0.8

1.2

m=0, qx=π/ax, qy=π/ay

FIG. 2. Undamped intrasubband �m=0� plasmon excitation en-
ergy, in units of the Fermi energy EF, as a function of qz /kF. Here,
kF is the Fermi wave number in the ground �l=0� subband obtained.
The solutions were obtained by solving Eq. �25� for qx=� /ax and
qy =� /ay. The parameters used in the calculation are m�=0.25me,
where me is the bare electron mass and ax=ay =35.0 Å, R
=11.0 Å, and EF=0.6 eV.
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array serves to alter substantially the dependence of the plas-
mon frequency on qz. Furthermore, as the separation between
tubules is decreased, the plasmon frequency is increased due
to the role played by the Coulomb interaction between the
tubules. Some of the plasmon branches in Fig. 3 show a
stronger dependence on qx than others. This variation is more
pronounced for the high-frequency plasmon mode compared
with some of the lower-lying frequency ones.

The effect of the Coulomb interaction on the intrasubband
plasmon excitation spectrum of a 2D array of nanotubes con-
sisting of a pair of coaxial tubules is demonstrated in Fig. 4.
The outer radius is R1=14.4 Å and the inner radius is R2
=11 Å. The period of the lattice was chosen as ax=ay
=35 Å in both the x and y directions. Only those branches
which are not Landau damped by single-particle excitations
are shown in this figure. The two highest modes originate
from the high-energy modes of each tubule. The Coulomb
interaction between the coaxial tubules leads to optical
branches which are not present for a single tubule, all of
whose modes are acoustic in nature.

Plasmon excitations arising from intersubband electron
transitions for m= �1 are shown in Figs. 5 and 6 for the 1D
and 2D periodic arrays of single-wall nanotubes. In both fig-
ures, only undamped plasmon modes are shown and the
particle-hole continuum is omitted. The highest modes have
a stronger dependence on the transverse wave vector qx than

the lower modes. This is more so for the 1D array than for
the 2D array. The main difference between these intersub-
band modes in a single tubule compared with a linear 1D
array of tubules and when they are arranged in a 2D lattice
may be explained in the following way. In a single tubule,
plasmon modes with m= +1 and −1 are degenerate.9 The
periodic lattice of tubules in either one direction or in two
directions removes the axial symmetry of the structure. The
Coulomb interaction between the tubules lifts the degeneracy
and splits each single tubule intersubband plasmon mode
into two branches, increasing the total number of modes to
ten for both the 1D and 2D lattices. The Coulomb interaction
seems to have a larger effect on the lowest modes for the 1D
lattice. Furthermore, this splitting is larger for the high-
frequency modes compared with the low-frequency ones.
This is demonstrated in Figs. 5 and 6. As a matter of fact, the
splitting of the low-frequency modes is too small to be re-
solved on the scale used in the figures.

Figure 7�a� shows the dispersion relation for intrasubband
plasmon excitations obtained by solving for the zeros of the
determinant matrix in Eq. �18�. The plasmon energy is plot-
ted as a function of the wave vector qz, for fixed ax=ay
=25.0 Å. The radius of each of the three cylinders is 11 Å.
Each of the three cylinders has three plasmon branches when
it is not interacting with either one of the two other cylinders.
The Coulomb interaction between electrons on different tu-
bules splits the degenerate plasmon modes for each tubule.

qxax/2π
0.0 0.2 0.4 0.6 0.8 1.0

S
ω

/E
F

0.0

0.4

0.8

1.2
m=0, qy=0, qz=0

FIG. 3. Undamped intrasubband �m=0� plasmon excitation en-
ergy as a function of the transverse wave vector qx �in units of
2� /ax�. The solutions are based on Eq. �25� for qy =0 and qz=0. All
other parameters employed in obtaining Fig. 2 are the same.

qz/kF

0.0 0.1 0.2 0.3 0.4 0.5

S
ω

/E
F

0.0

0.4

0.8

1.2

1.6

2.0

2.4

FIG. 4. The plasmon excitation energy, in units of the Fermi
energy EF, as a function of qz /kF, for a 2D array of coaxial tubules
of outer and inner radii R1=14 Å and R2=11 Å, respectively. The
lattice constants in both x and y directions were chosen as 35 Å.
The solutions were obtained from Eq. �25�, when both ax ,ay→�.
The parameters used in the calculation are the same as in Fig. 2.

qxax/2π
0.0 0.4 0.8

S
ω

/E
F
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0.4

0.8

1.2

1.6

2.0
qz=0, m=0,±1

FIG. 5. For a 1D periodic array, the plasmon excitation energy,
in units of the Fermi energy EF, as a function of qx, in units of
2� /ax. Here qz=0, the radius of each tubule is 11 Å, and the period
is ax=35 Å. All other parameters are the same as in Fig. 2.

qxax/2π
0.0 0.2 0.4 0.6 0.8 1.0
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ω

/E
F
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0.4

0.8
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1.6

2.0
qy=0, qz=0, m=0,±1

FIG. 6. For a 2D periodic array, the plasmon excitation energy,
in units of the Fermi energy EF, as a function of qx, in units of
2� /ax. Here qy =qz=0; all other parameters are the same as in Fig.
2.
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The energy gap between split modes is very much deter-
mined by the distance between the tubules. When ax or ay
increases, the separation between the split modes decreases,
reducing to zero as the limits ax ,ay→�. Our numerical
analysis shows that the amount by which the branches is split
depends on their frequency. To understand the results in Fig.
7�a� better, we plot the dispersion relation for a pair of single
wall nanotubes in Fig. 7�b� with ax=25 Å and all other pa-
rameters are the same as in Fig. 7�a�. The two highest modes
in Fig. 7�b� are symmetric ��S� and antisymmetric ��A�
modes. When the third nanotube is introduced in Fig. 7�a�, a
third high-frequency mode appears ��1, �2, and �3�. Since
the nanotube with its center located at x=ax is not separated
by the same distance from the nanotube with its center at the
origin and the nanotube with its center at y=ay, the plasmon
modes �1, �2, and �3 are not equally spaced. There is a total
of nine plasmon modes in Fig. 7�a� and six plasmon modes
in Fig. 7�b�, but not all of them could be seen in these plots.
In Figs. 8�a� and 8�b�, we fixed the value of the longitudinal
wave vector at qz=0.2kF and plotted the intrasubband plas-
mon excitation energies as functions of ax. Figure 8�a� was
obtained for three nanotubes with ay =25 Å, whereas, Fig.
8�b� was calculated for two nanotubes on the x axis with one
of them fixed at the origin. The radius of each of the nano-
tubes was chosen as 11 Å and all other parameters are the
same as in Figs. 7�a� and 7�b�. The highest plasmon modes

are degenerate in the limit ax→� in Fig. 8�b� for the pair of
nanotubes. The �1 and �2 modes become degenerate as ax
→�. The �3 mode splits off from these two modes when the
ax coordinate is large due to the finite Coulomb interaction
between the nanotubes on the y axis. As a matter of fact, the
�3 branch is flat for large ax since the Coulomb interaction
between nanotubes is not affected in this limit. The low-
frequency branches shown in Figs. 8�a� and 8�b� clearly have
a weak dependence on the variation of the Coulomb interac-
tion with ax. When ax�25 Å, the �2 and �3 modes anti-
cross, indicating that beyond this distance the Coulomb in-
teraction is strongest between the two nanotubes on the y
axis. In general, as shown in Eq. �17�, the modes with m
=0 and m�0 are coupled to each other. To illustrate the way
in which the Coulomb interaction modifies the plasmon
modes for the three tubules, we only present results for m
=0. In a strict sense, the plasmon excitations cannot be cat-
egorized as intrasubband and intersubband plasmons as for a
single tubule.

V. SUMMARY

In concluding this paper, we would like to point out that
we used a simple electron-gas model to obtain the low-
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FIG. 7. The intrasubband plasmon excitation energy, in units of
the Fermi energy EF, as a function of qz /kF, for the three single wall
nanotubes described in Sec. II. The radius of each tubule was cho-
sen as 11 Å and the centers of the tubules are at ax=25 Å and
ay =25 Å in �a�. In �b�, there are only two nanotubes with one fixed
at the origin while the position of the second nanotube on the x axis
is at ax=25 Å. All other parameters are the same as in Fig. 2.
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FIG. 8. The intrasubband plasmon excitation energy, in units of
the Fermi energy EF, as a function of qz /kF, for the three single wall
nanotubes described in Sec. II. The radius of each tubule was cho-
sen as 11 Å and the separation between the center of the tubules on
the y axis is ay =25 Å in �a� while the coordinate of the third tubule
on the x axis is varied. In �b�, there are two nanotubes with one
fixed at the origin while the center of the second one on the x axis
is varied. All other parameters are the same as in Fig. 2.
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frequency plasmon excitation spectrum of a 2D periodic ar-
ray of parallel nanotubes and a bundle of three nanotubes.
The nanotubes are assumed doped32 in which the charge car-
riers are introduced onto the graphene tubules by means of
intercalation, which can be done in carbon fibers or C60.

33

Each nanotube consists of coaxial cylindrical tubules. The
starting point of these calculations was to model the elec-
tronic band structure of the tubules by a quasi-free-electron
gas confined to the surface of an infinitely long cylinder of
finite radius. There was no tunneling of electrons between
tubules. The random-phase approximation was employed to
calculate the plasmon dispersion equation. Plasmon excita-
tion energies were obtained numerically for a single-wall
nanotube array as a function of the wave vector qz along the
nanotube axes, with transverse wave vector qx. The Coulomb
interaction between nanotubes acts to split the single-

nanotube plasmon modes. We also obtained the periodic de-
pendence of the plasmon energies on qx reflecting the trans-
lational symmetry of the lattice. Our calculations should
serve as a framework for more elaborate computations using
the tight-binding method for the band structure for the higher
energy plasmon excitations on nanotubes. In our formalism,
we showed that plasmon excitations cannot be labeled by the
intrasubband or intersubband angular-momentum quantum
numbers due to the Coulomb interaction between charge car-
riers on different tubules.
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