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We investigate the spin-dependent dynamical response of a quantum ring with a spin orbit (SO) interaction
upon the application of linearly polarized, picosecond, asymmetric electromagnetic pulses. The oscillations of
the generated dipole moment are sensitive to the parity of the occupation number in the ring and to the strength
of the SO coupling. It is shown how the associated emission spectrum can be controlled via the pulse strength
or a gate voltage. In addition, we inspect how a static magnetic flux can modify the nonequilibrium dynamics.
In the presence of the SO interaction and for a paramagnetic ring, the applied pulse results in a spin-split,
nonequilibrium local charge density. The resulting temporal spin polarization is directed perpendicular to the
light-pulse-polarization axis and oscillates periodically with the frequency of the spin-split charge density. The
spin-averaged, nonequilibrium charge-density possesses a left-right symmetry with respect to the pulse-
polarization axis. The calculations presented here are applicable to nanometer rings fabricated in heterojuctions

of III-V and II-VI semiconductors containing several hundreds of electrons.
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I. INTRODUCTION

Advances in nanotechnology opened the way for the syn-
thesis of artificial nanostructures with sizes smaller than the
phase coherence length of the charge carriers.! The elec-
tronic properties of these systems are dominated by quantum
effects and interferences.”> Particularly interesting are ring
structures which served as a paradigm for the demonstration
of various aspects of quantum mechanics.” Currently avail-
able phase-coherent rings vary in a wide range in size and
particle density.>® On the theoretical side, various features
of the equilibrium properties of quantum rings (QRs) are
well understood and documented.” Recently nonequilibrium
dynamics triggered by external time-dependent electromag-
netic (EM) fields has been the subject of research.”?’ In
particular it has been shown that irradiations with picosec-
ond, time-asymmetric, low-intensity light fields generate
charge polarization and charge currents (CCs) in a qualita-
tively different manner than in the case of applied harmonic
laser fields. Currently, asymmetric pulses are producible with
a duration from a few hundred femtoseconds up to
nanoseconds.?'~2> The optical cycle of the electric field of the
asymmetric pulse consists of a short half-cycle followed by a
much longer and weaker half-cycle of an opposite polarity.
Hence, under certain conditions, the external field acts as a
unipolar pulse and therefore it is referred to as a half-cycle
pulse (HCP).

In this study we focus on quantum rings as those fabri-
cated out of a dimensional electron gas formed between het-
erojuctions of III-V and II-VI semiconductors. Spin-orbit in-
teraction (SOI) is crucial in these materials. The influence of
the SOI on the equilibrium properties of these rings has al-
ready been studied*®?” (for more recent works we refer to
Refs. 28-33). In this work, we shall consider the spin-
dependent nonequilibrium dynamic of the ring with SOI
driven by HCPs and in the presence of a magnetic flux, a
problem which, to our knowledge, has not been addressed so
far. As shown below, the applied pulse triggers an oscillating
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charge polarization with frequencies dependent on the num-
ber of particles, the strength of SOI, the intensity of the light,
and the applied static magnetic flux. The energy scale is set
by field-free eigenfrequency of the ring. Furthermore, it is
shown that even though the light does not couple directly to
the spin (at the intensities considered here) the presence of
SOI leads to a temporal spin splitting in the nonequilibrium
local charge density. The resulting nonequilibrium, local spin
polarization is perpendicular to the light-pulse-polarization
axis. It oscillates with the same frequency of the spin-split
charge density and thus its time average vanishes. Experi-
mentally, the induced polarization is measurable by detecting
the associated radiation emission. In fact, the driven rings
can be utilized as a source for harmonic generation. As
shown below the power spectrum is, to some extent, tunable
by an external static field that controls the strength of the
Rashba spin-orbit (SO) coupling.

This work is organized as follows: at first we shall derive
the Hamiltonian of the ring with SOI coupled to the HCP’s
field and in the presence of a static magnetic flux. In Sec. II,
we discuss the initial carriers’ wave functions and energies
with and without SOI. In Sec. III, we consider the time-
dependent dynamics for the system when applying the pulse
field. In Sec. IV, we present our calculations for the dipole
moment of the ring. Detailed numerical calculations and dis-
cussions are contained in Sec. V.

II. QUANTUM RINGS WITH SPIN-ORBIT INTERACTION
A. Hamiltonian

We shall consider a QR with a SO interaction subjected to
a time-dependent electromagnetic field. In a minimal-
coupling scheme the single-particle Hamiltonian®® reads

2

Hy= —— + V(r) - e® + %(&x ).+ uB-6, (1)

2m*

where II=p+eA, p is momentum operator, e is the charge of
the carrier, and A is the vector potential of the external EM
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field. The term V(r) in Eq. (1) is the potential confining the
particles to the QR; the third term in Eq. (1) is the scalar
potential ® of the EM field and the fourth term is the Rashba
SOI with the coupling constant ag. The components of ¢ are
Pauli matrices. The last term in Eq. (1) is the Zeeman term
describing the coupling between the electrons’ magnetic mo-
ment up and the magnetic component of the EM field.

The electric and magnetic fields E(r,f)=-V®(r,7)
—0JA(r,1)/dt and B(r,7)=V X A(r,?) are invariant under the

local gauge transformations,*3 CID’(r,t):q)(r,t)—592‘%;—"l and

A’(r,t)=A(r,1)+Vx(r,?). Introducing a unitary operator R
=exp[—iex(r,t)/h] we find

A

a,
R R

#

R

%(OA' X H)Zl/é% = [6— X (g—ilf)(/ﬁl‘[eie)(/h)]z

=%[&x '], II'=p+ecA’.

The transformed Hamiltonian reads

2

=+ V() = e +%(&>< H’)Z+I’%B(H’ X A)- 6

(2)

Within the Coulomb (or radiation) gauge, i.e., ®=0 and
V-A=0 we obtain

= [p+e(A : V)()]2
2m

*
m

24
V =
+V(r)+e o
AR A
+ ;{0' X [p+e(A+Vy)l.

+ mf{[p +e(A+Vy)] X A}- 6. (3)

In what follows we employ a plane-wave vector potential
A=A, e'®T@) 1 cc and a gauge function x(r,/)=—A(r)-r,
where k and w are the wave vector and the frequency of the
EM field. Furthermore we note that in our case the light
propagates perpendicular to the plane of the ring. The thick-
ness d of the ring will be on the order of nanometers. Thus,
in the present study 1>Kk-r, r=d and the dipole approxima-
tion is justified, even though the radius a of the ring could be
in the micrometer range. With Vy(r,r)=—A(z) and
o) _ %=—l"E(I) we find

ot

H' = Hgop + Hy(1), (4)
where
A P2 AR
Hgor= -+ V(r)+— (6 Xp), (5)
2m h

is the Hamiltonian of a quantum ring with SO interaction,
and

H\()=—er-E(1) + uzB@0) - 6. (6)

Switching over to cylindrical coordinates and integrating out

the radial dependence, 1:1501 attains the form?°-33
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FIG. 1. (Color online) (a) Schematic illustration of the spin ori-
entation exhibited by the eigenstates of an ideal one-dimensional
ring. (b) and (c) show schematically the energy spectra for the roral
angular-momentum quantum number « at different SO coupling

strengths w=cos™! y.

. ﬁ2 2 a
Hgor= —*2<i(9¢+ ﬁ) - (o, cos o+ o, sin @)
2m’a 0 a ’
. ¢ AR . hwpg
X(10¢+—0 _ZZ(% cos ¢ — o, sin <p)+7crz,
(7
where (9(p=£, ¢do=hle is the unit of flux, ¢p=Bma® is the

magnetic-flux threading the ring, a is the radius of the ring,
and wz=2ugB/f. In Eq. (7) we added a static magnetic field
in addition to the applied light field.

III. SPIN-DEPENDENT CHARGE POLARIZATION
INDUCED BY A SINGLE EM PULSE

A. Ground-state wave functions and the spectrum of the ring

The energy spectrum of a QR with SOI has been dis-
cussed in several works.?*-3? Consistent with Ref. 28 we find
for the angular single-particle wave functions \I’i(go) (the in-
dex T refers to the transpose),

V(@) = e ™12915(y, @), (8)

where S and n denote the spin and the integer angular quan-
tum numbers and

(y,¢) = (@’ boe'e)T 9)
are spinors in the angle-dependent local frame and

a' =cos(y/2),b" =sin(y/2),

a' =—sin(y/2),b" = cos(y/2). (10)

In the absence of the static magnetic field, the angle vy is
given by (cf. Fig. 1)

tan y=— Qp=— wplwy, hwp=2apla, hwy=h*(m"a>).

The local spin orientation is inferred from the relations
ho P .
S(r); = E(sm ¥ cos @é, +sin y sin @é, +cos yé,) (11)

and
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h
S(r), = E[Sil’l(ﬂ— Y)cos(m + @)é, + sin(m — y)sin(7 + ¢)é,

+cos(m— y)é,]. (12)

Thus v is the angle illustrated in Fig. 1(a). The limit Qg
— %, ie., for a very strong SOI coupling, y— —m/2 which
corresponds to the plane of the ring. The eigenenergies have
the following structure:

2
Eﬁ=@{(n—xs)2—%], (13)
xs_ﬁ-%, (14)

where w=\yl+Q123=1/cos v and S==*1 stand for up and
down spins. We emphasize that, hereafter, the terms up and
down (labeled, respectively, T and |) refer to directions in
the local frame, as illustrated in Fig. 1.

1. Weak SOI limit

In the weak SOI limit, i.e., if (y—0) and in the absence
of the static external flux the eigenenergies attain the forms
El:%nz and Eﬁ:%(n+ 1)> which seems inconsistent with
the spin-degenerate ground-state formula E,F%nz [associ-
ated with ﬁ0=2r::az(ia¢)2]. The resolution of this apparent
inconsistency is as follows. Hgg; commutes in a nontrivial
way with K=L_+S§,, which is the z component of the total
angular  momentum, and with §,,=S, sin ycos ¢
+8, sin 7y sin ¢+, cos y, which is the spin component in
the direction determined by the angles y and ¢. Also we can
show that [K,S,,]=0. The simultaneous eigenfunctions of
H, K, and S, are the functions given by Eq. (8). To rotate
the quantization axis of S to the direction S,,, a SU(2)
transformation is necessary, i.e., USZU‘1=S yo» where U
is the transformation matrix, U;;=cos (y/2) exp(-igp/2),
Ujp=-sin (y/2) exp(—ip/2), Uy =sin (y/2) exp(ip/2), and
Uy,=cos (y/2) exp(ie/2). Under the transformation of U~!
the wave functions of SOI become V'= U‘I‘I’f((p)
=12y where yg=(1,0)7 stands for spin-up state and
(0,1)7 for spin-down state. The exponential factor n+1/2 is
the quantum number for the z component of the total angular
momentum, referred to as K‘I’i((p): K\Pi((p), where k=n
+1/2. k is fixed in the process of the SU(2) rotation. On the
other hand, the wave function for H,,, the Hamiltonian for a
ring without SOI, is usually set as Wy=e"¢ys.!” Comparing
W' and W, it is clear that the exponential factors in ¥’ and
W, are different and n in ¥, is the quantum number of or-
bital momentum. This difference manifests itself in the limit
v=0 (i.e., SOI is zero, Hgo;— H,): the wave functions \Ifi(cp)
do not go over in ¥, because they are the eigenfunctions for
different sets of commuting observables. The simultaneous
set for ¥ is H, L,, and S_.

Despite this explanation we may still wonder what is the
physical effect of splitting of the energies on n axis®® in the
limit of vanishing SOI. We inspect therefore the persistent
CC caused by SOI and take the limit of absence of SOI in the
last step. The partial charge persistent current due to the state
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labeled by n and S in the presence of SOI and a static exter-
nal magnetic flux is

¢ 1-Sw
Ins=—é 0(n+—+ 5 (15)
AN T
where Iy=2Eya/ ¢, is the unit of current. When ¢=0, the CC
due to the particle in the n level is I,g=—n for spin up and
I,s=—(n+1) in the limit of zero SOI (we ignored €, and
scaled the current by I)). The total CC is I;=3,1,s. For a

distribution of up spins, the occupied states are n
=0,=*1,=*2,..., for spin-down particles, they are n=-1,
(0,-2),(1,-3),...; the numbers in the same parenthesis

“(...)” indicate states with the same energy. Hence, as ex-
pected, we conclude that the total CCs for up- and down-spin
carriers are zero in the limit of vanishing external magnetic
field and SOI. Note that the lowest occupied state for down
spin is not at n=0 but at n=—1. This means the velocity of
the particle with down spin at n=-1 is zero; in fact, n+1
stands for the quantized velocity for spin-down particles.
Thus, shifting the energy spectrum in the down-spin channel
to the right by one quantum number, the energy spectra for
different spins become the same on the velocity axis which is
consistent with the physical picture.’®

In the presence of SOI the energy spectrum is rewritable
as

ES= %[(K— Swi2 — ¢l dp)* — Q4]

2
=%|:<K—%—xs> —Q§/4]. (16)

For ¢=0 the energies associated with a total angular-
momentum quantum number « are spin split; up spins have
lower energy than down spins, as illustrated in Figs. 1(b) and
1(c). For the case of zero SOI, i.e., for w=1 [cf. Fig. 1(b)],
electrons with spin up and « are degenerate with electrons
having spin down and x—1 quantum numbers; the energy is
given by k—1/2, meaning that the energy levels are spin
degenerate.

B. Time-dependent wave functions and energies after pulse
irradiation

As have been shown in detail,'®!737-3% upon applying at
t=0 a half-cycle pulse with a duration 7,, the time-dependent
electronic states of the ring develop as

W(p,t0=1,) = W3 (@, 1 =0)e/S ¢, (17)
The parameter
7d
a=eap/ﬁ,p=—f E(r)dt (18)
0

is the action (in units of action) taken over by the carriers
from the pulse EM field. The range of validity of solution
(17) has been discussed in Refs. 16, 17, and 38 (for a general
discussion of the properties of the time development operator
we refer to the work of Ref. 37). The coherent state (17) is
not an eigenstate of the ring for > f,; in fact, a state initially
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labeled by the quantum numbers n and S, is expressible in
terms of the ring stationary eigenstates as

1 . S
W0l00) = =3 Cllng Sy ). (19)
N2 ps

where [¥)=1%(y, ¢). From Eq. (17) we deduce the expan-
sion coefficients

5SS 5nn for r=0
cs= L (20)
5SSOZ 0 Jno—n(a) fOr t> to.
The energy at time ¢ is then given by the relations
E0(1) = (W, 0)|[HIW 0 (,1))
= in{ TS [ L | W50 0t)
ng @, ot ny @,
= 2 Bl Colng.So. 1) (21

ns

Substituting Eq. (13) in Eq. (21) we find

2M®U—QQ—Q§} o2

ho
E(n) = 70{ (ng = xs,)* + ;

hoy o

5 5 (23)

Ejg(r > 1) = Ejg(z <0)+

Here O(z) is the Heaviside step function and xg is given by
Eq. (14).

IV. DIPOLE MOMENT GENERATED BY THE PULSE
UNDER EXTERNAL STATIC MAGNETIC FIELD

Having identified the time-dependent spectrum and eigen-
functions, we focus now on the charge dynamics and the
induced polarization. To this end we inspect the charge lo-
calization parameter, defined as'®!7-3

2
(cos @)%(1) = f del V(.0 cos o,
0

1 S S S S
_ Sk ~S E-E>_)tlh S ~S E-E> . )ik
_22{cn C5_ B En R CS*CS | M EnEn)hY
ns

(24)

From Eq. (13) and relation (20) for the coefficients, the lo-
calization parameter is deduced after some algebra to be

(cos @jg(r) = ah(Q)sin(b)cos[2(ng — x5, )b],

h(Q) = Jo(Q) + Jz(Q), b = wot/Z, (25)
QO =ay2[1-cos(2b)]. (25)

Here J,, is a Bessel function with index n. The partial photo-
induced dipole moment ,uig(t) associated with the initial state
with quantum numbers n,, S,, and the total HCP-induced
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Energy

FIG. 2. (Color online) (a) SA has an integer value; (b) SA is a
half integer; (c) SA lies in the region (/,/+1/2); and (d) SA is in the
region (I+1/2,l+1). The red dashed lines are the SA in each case.

dipole moment along the x axis u50(¢) for the initial spin S,
read

p0lt) = eafcos @)0(1), (26)
ROERDD F(n0,S0,N,0)10(0).. (27)
EflgsEF

f stands for the nonequilibrium distribution function whose
derivation requires the solution of the kinetic equations. In
principle we can employ our recent approach based on the
density matrix,”® but more detailed knowledge on the spin-
dependent decay channels in confined geometry is needed.
Here we inspect the zero-temperature behavior of the in-
duced dipole moment and the associated emission spectrum.
We expect the qualitative features of these physical quanti-
ties to persist at finite temperatures, as we demonstrated for
the case of vanishing SOI.?°

A. Spectral analysis

In the following we focus on the spectral properties. The
SO interaction breaks the energy degeneracy of n and —n
states. As evident from Egs. (14) and (22) the spectrum pos-
sess a symmetry axis (SA) located at xg= ¢/ pg—(1-Sw)/2
(the global additional pulse-associated energy and SOI-
induced energy shift do not affect this symmetry), i.e., the
static magnetic flux and the SOI act as an effective magnetic
field. In Eq. (22) ny is an integer, hence it is advantageous to
introduce the integer parameter /g as the nearest integer that
is less than xg and defined as (o=1 or |)

A0.=.Xs—ls, (28)

whose meaning is illustrated in Figs. 2(c) and 2(d). We dis-
tinguish four cases (a)—(d) corresponding to A,=0,1/2,
A,E€[0,1/2],and A,E[1/2,1] (cf. Fig. 2). A =1 is equiva-
lent to A,=0, thus A, is periodic with changing SA and
varies within the fundamental interval [0, 1]. Furthermore,
we introduce

235438-4



PHOTOINDUCED NONEQUILIBRIUM SPIN AND CHARGE...

A,=]172-4A,, (29)

as the distance between the SA and the half integer axis.
These four cases in Fig. 2 are valid for up- and down-spin
states.

1. Spinless particles

The two spin states, up and down, need to be considered.
Allowing each of these two spins to occupy the four configu-
rations shown in Fig. 2 results in 16 combinations. For sim-
plicity, we consider at first only one kind of spins and states
which can be any of the four cases depicted in Fig. 2. De-
pending on the total number of electrons in the ring N two
situations are distinguished:

(1) N is an even integer. For case (a) in Fig. 2 [for brevity
we refer hereafter to cases (a), (b), ... and write I[y=[, A,
=A, and xg=x]| the occupied states are at n0=%(l—m),
I=(m=1), ..., 1= 1,1,1+1,0+2, ... ,1+(m~1),5(I+m). Here,
e.g., %(l —m) means half occupation on the state character-
ized by the quantum number /—m. The dipole moment in this
case, ,LL(ea)(N ,1), reads

1y (N 1) = a®(t — 19)h(Q)sin b, cos[2(n — x)b],

ng
=a0(t — 1)) h(Q)sin(Nb)cos(b). (30)
For (b)—(d) cases, we have ny=I-(m-1),...,1-1,1,1+1,
1+2,...,1+(m—1),l+m. Accordingly we deduce
(peay(N, 1) = a®(t = 1) h(Q)sin(Nb)cos[ (1 — 24)b],

(31

where A=x—1. In case (a), A=0, then Eq. (31) will reduce to
Eq. (30). The dipole moment for even occupation has, in
general, the form

W (N,A 1) = a®(t — 1) h(Q)sin(Nb)cos[ (1 — 2A)b].
(32)

(2) N is an odd integer. Similar steps as in the proceeding
case can be performed, leading us to conclude that

wO(N,A, 1) = a®(t — 1) h(Q)sin(Nb)cos[ (1 — 2A)b].
(33)

2. Spin-% particles and ¢p+0

For spin—% particles the energy spectrum is spin depen-
dent. The position of the spectrum SA is different for the two
spin states, i.e., x;=¢/py+(w=1)/2 and x| =x;—w. Thus,
the relative distance between these two SAs depends on the
external flux and SOI parameter w. Scanning these param-
eters the spectra of up and down spins are tuned to any of the
four cases shown in Fig. 2. In what follows we use for cases
in Fig. 2 that correspond to the spin-down and the spin-up
states the symbols (i) (i,j=a,b,c,d)—e.g., case (ab) means
that the down-spin spectrum corresponds to case (a), whereas
the up-spin spectrum is as in case (b)—hence there are 16
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combinations of such pairs to be considered. In the follow-
ing, we consider four different occupations in the ring for up-
and spin-down states and these 16 combinations in detail.

(1) Even number of pairs. For N=4m, where m is an
integer (N is the total number of electrons in the ring) there
are 2m spin-up particles and 2m spin-down particles occupy-
ing the respective spectra, meaning that

MO(N,t) = u(N/2,A,,1). (34)

(2) Odd number of pairs. If N=4m+2 then 2m+ 1 spin-up
particles and 2m+ 1 spin-down particles populate the respec-
tive spectra and

w’(N, 1) = u(NI2,A 1), (35)

(3) Even number of pairs plus an extra particle. Here we
write N=4m+1. (i) For 2m spin-up particles and 2m+ 1 spin-
down particles we find ,uf(Zm,t):,uf(Zm,AT,t) and u'(2m
+1,0)=u’2m+1 ,El,t). Cases (ab), (ac), (ad), (cb), and (db)
belong to this type. (ii) If there are 2m+1 spin-up particles
and 2m spin-down particles in the ring we infer u!(2m
+1,t)=,u”(2m+1,&T,t) and Mi(Zm,t)=,u"'(2m,Ai,t). Cases
(ba), (ca), (da), (bc), and (bd) belong to this category. (iii) If
we have 2m spin-up particles and 2m spin-down particles
plus one extra particle, we shall analyze the populated state
of the extra particle. For example, cases (aa), (bb), (cc), (dd),
(cd), and (dc) are possible situations. Careful calculation of
all cases results in the formula

ey = aO(1 — 1) R(Q)sin(b)cos[ (2m + 1 = 2A,)b], (36)

where A, =A.

(4) Odd number of pairs plus an extra particle. For N
=4m+3 we distinguish the following: (i) For 2m+1 spin-up
particles and 2m+2 spin-down particles we infer u!(2m
+1,0)=p°2m+1,A,1) and uw'2m+2,0)=u2m+2,A,1).
Cases (ab), (ac), (ad), (cb), and (db) belong to this type. (ii)
For 2m+2 spin-up and 2m+ 1 spin-down particles we deduce
w Cm+2,1)=u2m+2, A1) and wm+1,1)=u(2m
+1,A 1»1). Cases (ba), (bc), (bd), (ca), and (da) are examples
for this situation. (iii) For 2m+ 1 spin-up and for 2m+1 spin-
down particles plus an extra particle [cf. cases (bb), (cc),
(dd), (cd), and (dc)], we find for the dipole moment

ey = @O(1 — 1) R(Q)sin(b)cos[(2m + 1 + 2A,)b], (37)
where A, =A.

3. Spin-} particles with (¢=0)

w=1 I+w

If =0 then x;==-, x=——", and AT"'AL:l applies.
The symmetry axes for up- and down-spin states have the
same distance from the nearest integer axes to the left and to
the right sides to the SAs. The dipole moments are spin
degenerate. (1) Even number of pairs and ¢=0. For N=4m
we find u!(N, 1) =ui(2m, A ,1). (2) Odd number of pairs and
¢=0. For N=4m+2 we conclude ,uf(N,t)z,u,?(2m+ 1 ,ET,t).
(3) Even number of pairs plus an extra particle. If N=4m
+ 1, only possible combinations are (aa), (bb), (cd), and (dc).
The spin degeneracy of the extra particle is caused by the
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crossing of the energy levels with opposite spins. The dipole
moment reads

wl(N,1) = %a@(t — 19)h(Q){sin(2mb)cos[ (1 — 2A,)b]

+sin[(2m + 1)b]cos(2A,D)}. (38)

If A;=0, Eq. (38) delivers the dipole moment for the case
(aa), whereas A;=1/2 applies for the case (bb) and others for
cases (cd) and (dc). (4) Odd number of pairs plus an extra
particle. For N=4m+3, only (aa), (bb), (cd), and (dc) are
applicable. The dipole moment is

w(N,1) = %a@)(r — to)h(Q){sin[(2m + 1)b]cos[(1 - 2A,)b]

+ sin[ (2m + 2)b]cos(25Tb)}. (39)

In the event ET=0, Eq. (39) yields the dipole moment for

case (bb), whereas &T=1/ 2 is valid for the case (aa) and
others for cases (cd) and (dc).

V. NUMERICAL RESULTS AND DISCUSSIONS
A. Experimental feasibility and general remarks

In this section we present and analyze numerical results
for the HCP-induced polarization of a ballistic quantum ring.
In view of an experimental realization it is important to iden-
tify the realistic range of the parameters such as the strength
of the SOI and the associated quantities. The range of the
ring size and external field strength are chosen according to
current experimental feasibility.

The Rashba SOI was already investigated for numerous
semiconductor quantum wells such as In,Ga;_,As/InP quan-
tum wells,** Iny 53Gag 47As/Ing 5,Gag 45As heterostructures,*!
and GaSb/InAs/GaSb quantum wells.*> Spin-interference ef-
fects in a ring with Rashba SOI which was built in a InGaAs/
InAlAs heterostructure were the subject of Ref. 43, and the
Aharonov-Casher phase was inspected in II-VI semiconduc-
tor quantum rings, such as HgTe/HgCdTe ring.** In the con-
text of the present work it is important to estimate the real-
istic range for the SO angle v for the relevant semiconductor
materials. For In,Ga,_,As/InP quantum well,*’ aj varies in
the range [0.7 X 107", 1.1 X 107'"" eV m] when an applied
gate voltage varies from +1.5 to —2.5 V; this corresponds to
v being in the ranges [-34°,-47°], [-74°,-79°], and
[-82°,-85°] for rings with 100 nm, 500 nm, and 1 wm
radii, respectively (m*=0.037m,, where my is the free-carrier
mass). For Ing 53Gay 47As/Ing 5,Gag 45As materials,*! ay var-
ies in [0.5% 107", 1.0X107!! eV m] if the external gate
voltage changes from +1.5 to —1 V; correspondingly vy var-
ies in [-33°,-52°], [-73°,-81°], and [-81°,-86°] for
rings with 100 nm, 500 nm, and 1 wm radii, respectively
(m*=0.05m,). For GaSb/InAs/GaSb quantum well** the val-
ues of 7y are on the same order as above.

With regard to available pulses, a wide range of pulse
durations and strengths has been realized.?!=>> As clear from
the above analysis the pulse parameter which is decisive for
the electron dynamics is « as given by Eq. (18). For pulse
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with a sin-square shape and a duration of 7,=1 ps we
achieve for a ring with radius 1 wm a transferred action of
a,=0.1, a,=1, and a3=10 if the peak electric-field strength
is tuned to, respectively, £,=1.32 V/cm, E,=13.2 V/cm,
and E5=132 V/cm. It is this range of a which we use in the
present numerical calculations. In the figures below we just
provide a.

From a general point of view we can expect four fre-
quency scales to be relevant for the time-dependent charge
and spin dynamics: (1) The global energy scale is set by the
size of the system. Hence, the fundamental frequency is
given by wy=7%i/(m*a*) and the natural time scale is 7,
=4/ w, which for the ring sizes at hand is tens of picosec-
onds. (2) As for any fermionic system, the Fermi energy Ep
sets the scale for the fast (femtosecond) charge dynamics
associated with excitation near E. Since we are dealing with
an isolated ring the Fermi energy is expressible in terms of
the number of particles N and the relevant frequency is there-
fore Nwy. (3) A further frequency wg is associated with SOI-
influenced dynamics: wg=2ay/(fia). For our systems wy can
be on the order of w, opening the possibility for controlling
quantum interferences, e.g., by tuning the strength of SOI
(via a gate voltage). (4) Further modifications are brought
about by the applied pulse which (for the pulses of interest
here) induces a multitude of excitations near E with further
associated frequencies, as detailed below. These physical ex-
pectations are confirmed by the general structure of the cal-
culations for the induced dipole moments according to Egs.
(25), (30), (32), (33), (36), and (37).

B. Zero static magnetic field

At first we investigate the case of vanishing static flux
(¢$=0). In Fig. 3 the time dependence of the dipole moment
is shown for different SO angles y and pulse strengths a.
Because of the spin degeneracy we consider only one spin
channel. The total number of particles is N=4m. The time is
measured in units of the system’s time scale tp=477m*a2/ h.

The four time scales mentioned above are clearly visible.
As inferred from Egs. (30), (32), (33), (36), and (37) the net
time-dependent dipole moment grows linearly with the pulse
field strength at small « [note for a<<1/2 and Q <1, we
have h({2)=1]. The fast oscillation in the dipole moment is
related to the transition between the levels near E, (Rabi
flopping). With increasing « more levels are excited giving
rise to higher contributing harmonics (cf. @=1 and a=3 in
Figs. 3 and 4).

The SOI strength (quantified by ) has a dramatic influ-
ence on the low-frequency modulation of the dipole-moment
envelope. The low frequency is associated with the differ-
ence between the frequencies of the involved levels near Ep,
which is on the scale of wy. In fact, as inferred from Eq. (32)
vy can be tuned as to influence the phases of the involved
wave functions changing thus the interference pattern and
removing eventually the slow oscillations altogether. This
happens at y=—60°, as shown in Fig. 3. When || is in-
creased further the slow modes appear again. This is insofar
important as vy can be modified by an external gate voltage
thus offering the possibility of engineering the emission
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spectrum via an applied static electric field and opening the
way for testing experimentally our theoretical predictions.
For this reason we inspect the power spectrum* produced by
the nonequilibrium charge oscillations in the QR by evaluat-
ing

Plw)= w(te .

wlw) = (40)

-0

Figure 4 shows the power spectrum for different strengths of
the pulse a. As evident from these calculations the frequency
scale is set by wy/2. In Fig. 4 the number of particles occu-
pying the single spin states is N=50; for small « only the
state at E is excited leading to the appearance of two fre-
quencies at (N—1)wy/2 and (N+1)w,/2. With increasing a,
more levels are excited and correspondingly further frequen-
cies in unit of wy/2 emerge at 47,45,... and 53,55,57,...
[see Fig. 4(a)]. In this context we note that a very short HCP
contains almost all frequencies. Nevertheless, at low intensi-

10°4 @ 0=0.01 10
0=0.05
1 o=0.1 4
= L e a=05 | 7 10
5 1074 ! §
£ £ 1074
=, 1073 ] &
: e
£ . g 10°4
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5 1074 o 5 7
: N g
o o
(=9 1 0—61 =%
10°4
1074
PSS S L 10° . . .
44 46 48 50 52 54 56 48 49 50 51 52
Frequency (o/(w,/2)) Frequency (o/(w,/2))

FIG. 4. (Color online) The emission spectrum for different pulse
strengths (quantified by a) and SOI strengths (indicated by 7). In
(a) a is varied at y=0, whereas in (b) 7y is variable at fixed «
=0.01; in both cases N=100.

ties only a limited number of states in the ring can be ex-
cited. The reason is obvious from Eq. (23). The highest en-
ergy level achieved upon excitation is Ep+%iwya?/4. Hence
there is an excited energy cutoff set by the field intensity
(available photons) and limits consequently for a certain «
the number of possible frequencies observable in the power
spectrum (as seen in Fig. 4).

Figure 4(b) shows the SOI shifts of the frequencies: with
increasing |y| the frequency at 49 moves toward a higher
frequency, while the frequency at 51 moves to a lower fre-
quency. For the angle y=-60° we infer A=1/2 and the two
frequencies merge into one frequency. Further increasing the
SOI strength, i.e., A>1/2, the frequency peak from 51 con-
tinues moving to 49, while the frequency peak from 49 ap-
proaches 51 until they coincide for A=1 (or A=0). This
behavior of frequencies is repeated periodically with increas-
ing SOL

As detailed above the dipole moment depends sensitively
on the occupation numbers. Figure 5 shows an example of
the dipole-moment dynamics for N=4m+2 contrasted with
the case N=4m. We remark that since A+A=1/2 we have
A= O( ) for A—-(O) Thus for N=4m, when the dipole mo-
ment increases with A in A€[0, 2:| the dipole moment de-
creases for the case N=4m+2. Furthermore, the parity of the
occupation number is very important for the property of di-
pole moment of the ring. For example, for A=A, the case
N=4m (N=4m+1) behaves similarly to N=4m+2 (N=4m
+3) in which cases the occupations are even (odd). However,
the even case is qualitatively different from the odd case (not
shown in Fig. 5). If A# A the oscillations of the dipole mo-
ment are different in all the cases depicted in Fig. 5.

C. Finite static magnetic field

A static external magnetic field lifts the spin degeneracy
of the dipole moment. The induced dipole-moment dynamics
becomes spin dependent (cf. Fig. 6). The slow-frequency
shift between the dipole-moment oscillations in the up-spin
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and down-spin channels is readily understood from the en-
ergy splitting [cf. Eq. (23)]. The power spectra for the up-
and down-spin dipole oscillations [Figs. 6(c) and 6(d)]
clearly reveal the frequency shift.

For more insight into the role of the SOI we investigate
the spin-resolved local charge density before and after the
pulse. The probability density associated with the level la-
beled by n, and S, is pﬁg 2. Before the pulse
the charge density is a unit charge uniformly distributed
around the ring, i.e., py=1/(27). Upon applying the pulse
we find

(@, >0) = pg+ Ap, (.1 > 0), (41)

where the second term is the spin-resolved, field-induced
charge-density variation (ICDV) which we evaluated and
find,

1 o]
Apig(@,t > O) = ;{Z J2n+1[20’ sin(2n + l)b]
n=0

Xcos(2n+ 1) o —2(ny — xSO)b]

+ > Jo[2a sin(2nb)]

n=1

X cos 2n[<p—2(n0—x50)b]}. (42)

The total spin-resolved charge density is obtained from a
sum over the occupied levels pSO((p,t>O)=N50p0+ ApS(op,t
>0), where N s, is the total particle number in the S, spin
channel. The term Ap%0(¢,#>0) for the even pair occupation
case is

- 10
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Q
\O
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z o 3
g o}
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£ 0t/ : X FIG. 6. (Color online) The time dependence
s E O/O/ ‘ % of the dipole moment for up and down spins un-
g = 10° f - der a nonzero static magnetic field is shown in (a)
= E ° (d) and (b). The power spectra corresponding to the
= ot dd i hown in (c) and (d), re-
2o up and down spins are shown in (c) an , re
2 / spectively. Here ¢=0.25, y=-70°, a=0.1, and
S ® e _
R % \.\ N=100.
° )
./ \.\.
107 o ® h
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FIG. 7. (Color online) A snapshot of the pulse-ICDV as a func-
tion of the azimuthal angle ¢ at the time 7/7,=2.005. The pulse
parameter is @=0.1, and N=100. Full (open) dots show the ICDV
in the up (down) spin channel. The solid curve stands for the spin-
averaged ICDV.

a - 1
Ap*(@,t>0)= = 2 ———[Jo,(Q1,) + J20(Q1,)]
| = 2n+1

X sin[NSO(Zn + 1)b]cos(2n + 1)<,DSO(t)

.
+ E Z[‘]Zn—l (QZn) + J2n+1 (QZn)]
n=1

Xsin(Ng, 2nb)cos 2nes (1) ( , (43)

where Q,,=aa sin(2n+1)b, Q,,=aa sin(2nb), and goso(t)
=~ (1-244)b.
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Equation (43) indicates a spin-dependent phase of Ap%
caused by the interplay of SOI, the static magnetic field, and
the pulse field. Interestingly the phase shift evolves with
time. Figure 7 shows the time evolution of the spin-
dependent ICDV. In all cases depicted in Fig. 7 the static flux
is absent. For y=0 we observe, as expected, how the pulse
kicks the charge density along the pulse-polarization axis.
For the given time moment, the missing charge density
around ¢=1r is pushed to the region around ¢=0. For a finite
SO interaction (|y|>0) we observe a spin splitting of ICDYV,
meaning that the pulse induces temporally and locally a finite
spin polarization P=p;—p/, even though the system is ini-
tially paramagnetic. The time integral of the pulse-induced,
local spin polarization vanishes, however. Technically, we
infer that the SOI results in a SU(2) flux that produces op-
posite phase shifts on the azimuthal angle with the same
magnitude for a zero-static magnetic field, i.e.,
@r()=¢+ (1-2A,)b. These shifts cause a rotation around
the ring of the symmetry axes of the spin-up and the spin-
down densities, respectively, clockwise and anticlockwise
(see Fig. 7). When y=-60° (A;=1/2), the up and down
ICDVs merge into one curve after one period. The periodic
rotation is subject to the condition A;=1/2. The spin-
averaged ICDYV, i.e., Ap:ApﬁApl, is always symmetric
with respect to the x axis. At ¢=0 and 7 ICDV is spin
degenerate for all times [ P(¢)=0].

The time evolution of the spin-resolved ICDV is depicted
in Fig. 8. The symmetry axes of the pulse-induced spin-up
and spin-down ICDVs rotate around the ring, respectively,
anticlockwise and clockwise with time (which is the opposite
behavior when increasing SOI). Accordingly the total ICDV
oscillates along the x axis and possesses a left-right symme-
try with respect to x. The local and temporal spin polariza-
tion P is symmetric to the y axis and oscillates along it with
the same frequency as p; (or p;).

FIG. 8. (Color online) The
time and spatial dependence of the
ICDV shown in polar coordinates
in (a)—(d) at different times after
the pulse. The filled circles repre-
90 sent the up-spin ICDV and the
open circles indicate the down-
spin ICDV. The parameters are a

30 =0.1, ¢=0, y=—40°, and N=100.
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VI. CONCLUSIONS

In summary, we investigated the dynamical response of a
quantum ring with SO interaction upon the application of a
linearly polarized time-asymmetric weak-electromagnetic
pulse. It is found that the dipole moment along the pulse-
polarization axis is spin degenerate when there is no external
magnetic field. The dipole moment oscillates with time and
the SOI provides an envelope function or shifts of the oscil-
lation frequencies of dipole moment. Stronger pulse fields
can excite higher and lower harmonics. Moreover the enve-
lope functions for different parities of the occupation number
on the ring are different. When a static external magnetic
field is applied, the spin degeneracy is removed. The spatial
and temporal dependences of the pulse-ICDV indicate that
the SOI results in a SU(2) flux leading to a splitting of the

PHYSICAL REVIEW B 77, 235438 (2008)

phases of the up- and down-spin states. The symmetric axes
of the ICDV for the up and down spins are rotated equally
clockwise and anticlockwise when increasing SOI. The total
ICDV and the local and temporal polarization of the charge
density are symmetric to, respectively, the light polarization
axis and the axis perpendicular. The pulse-induced polariza-
tion is experimentally accessible by measuring the power
spectrum of the emitted radiation.
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