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Fermion-number fractionalization without breaking the time-reversal symmetry was recently demonstrated
for a field theory in �2+1�-dimensional space and time that describes the couplings between massive Dirac
fermions, a complex-valued Higgs field carrying an axial gauge charge of 2, and a U�1� axial gauge field.
Charge fractionalization occurs whenever the Higgs field either supports vortices by itself or when these
vortices are accompanied by half vortices in the axial gauge field. The fractional charge is computed by three
different techniques. A formula for the fractional charge is given as a function of a parameter in the Dirac
Hamiltonian that breaks the spectral energy-reflection symmetry. In the presence of a charge �1 vortex in the
Higgs field, only the fractional charge continuously varies and, thus, can take irrational values. The simulta-
neous presence of a half vortex in the axial gauge field and a charge �1 vortex in the Higgs field rerationalizes
the fractional charge to the value 1/2.
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I. INTRODUCTION

The concept of fractional charge emerged from quantum
field theory in 1976 when Jackiw and Rebbi1 showed that
Bose fields can induce a fractional fermion number 1/2 for
the relativistic fermions to which they couple. The proper
conditions for this mechanism of fractionalization are the
following: First, the very notion of a fractional charge de-
mands that the fermion number is a good quantum number.
Second, the Bose fields must trigger the spontaneous break-
ing of a symmetry that opens up a gap in the single-particle
fermionic spectrum within the Born–Oppenheimer approxi-
mation. Third, the Bose fields must support local topological
defects that nucleate single-particle fermionic bound states in
the close vicinity of the defects. Fourth, this many-body
quantum state is a finite energy eigenstate.

The first requirement rules out mean-field descriptions of
superconductors that can otherwise satisfy the remaining
requirements.2–4 The last requirement implies that the frac-
tionalization of the fermionic charge is a long-distance and
low-energy property of the many-body system, while the
second and third ones ensure a degree of robustness against
local perturbations. This, in turn, suggests that the lessons
learned from the quantum field theories in Ref. 1 could more
generally apply to microscopic models encountered in solid
state physics, thereby, opening the possibility of a “table-top”
measurement of the fractional charge.

In fact, the work of Su et al.5 implies that the one-
dimensional example in Ref. 1 can be thought of as an ef-
fective field theory that captures the relevant interactions be-
tween phonons and electrons in polyacetylene.5,6 Excitations
with exotic quantum numbers �in relation to the fundamental
electron constituents of the system�, such as neutral objects
carrying spin 1/2 or charge �1 objects carrying zero spin,
localize around a domain wall in the dimerization pattern of
polyacetylene at the cost of a finite energy. Subsequent to
this work, it was shown that exotic fermionic quantum num-

bers in one dimension are not restricted to fractional
values7–10 but can be continuously tuned by a small breaking
of an energy-reflection symmetry assumed in Refs. 1 and 5
and defined below.

With the discovery of the fractional quantum Hall effect,
which is a different paradigm for charge fractionalization,
one in which spontaneous symmetry breaking plays no role
was proposed by Laughlin11 for two-dimensional systems
with a strong breaking of the time-reversal symmetry.11,12

Central to this paradigm is the notion of topological order,
which is a global property that characterizes an otherwise
featureless incompressible liquid state of matter by the finite
degeneracy of the ground state if the system is defined on a
surface of nontrivial topology, with the degeneracy depend-
ing on the genus of the surface.13 The fractional charge is
intimately connected to this ground-state degeneracy, which
leaves no room for a continuously varying fractional charge
and, in particular, for an irrational charge. Since then, the
preferred route toward charge fractionalization without the
time-reversal symmetry in two and more dimensions has oc-
culted any mechanism based on spontaneous symmetry
breaking, presumably because it is believed that the energy
cost for fractional charges is prohibitive in all but one dimen-
sion.

However, as a matter of principle, this need not be so as
was already shown by Jackiw and Rebbi1 in three-
dimensional space when coupling Yang–Mills fields through
the minimal coupling to Higgs fields and to Dirac fermions.
The quantization of Dirac fermions in the static background
of a t’Hooft–Polyakov monopole nucleates a fermionic
bound state with the fractional charge 1/2 at a finite cost in
energy.

Of course, one might object that this three-dimensional
example of charge fractionalization is unlikely to be realized
on the energy scale of the eV that governs solid state physics,
which is a prerequisite for a table-top measurement of charge
fractionalization.14 We do not know of a realistic three-
dimensional model for band electrons coupled to bosonic
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collective modes that mimics Dirac fermions and Higgs
fields coupled with each other and minimally coupled to
Yang–Mills in the continuum limit. In the two and three di-
mensions, band theory generically predicts an insulating or a
metallic state of matter. In one dimension, the Fermi surface
is generically realized by an even number of discrete points,
thus, providing the low-energy and long-wavelength limit of
the tight-binding model with a Dirac structure for free.

Semimetals, the most famous example of which is graph-
ite, are exceptions to the hegemony of the band-insulating
and metallic states of matter. Graphite is made of sheets of
graphene, a honeycomb lattice made of carbon ions bound
through sp2 orbitals, and where the fourth valence electron of
each atom lazily revels predominantly between planar
nearest-neighbor sites. The Fermi surface at half filling for an
isolated graphene sheet is made of two isolated points.15 The
excitation spectrum around these two Fermi points endows
the band electrons with a four-component Dirac structure
owing to the Nielsen–Ninomiya16 theorem.

Although this example of fermion doubling is often
viewed as a curse for the realization of quantum
anomalies,17–19 it is this very property that opens the door to
a charge fractionalization without the breaking of the time-
reversal symmetry through spontaneous symmetry breaking,
as shown by Hou et al.20 The real-valued static fluctuations
depicted in Fig. 1�a� about the uniform nearest-neighbor hop-
ping amplitudes of graphene are, in the continuum limit, rep-
resented by a complex-valued Higgs field that interacts with
the four-component Dirac fermions. In the Born–
Oppenheimer approximation, a constant value of this
complex-valued Higgs field spontaneously breaks an effec-
tive axial U�1� symmetry of the continuum limit and opens
up a gap in the single-particle fermion spectrum. If the phase
of this complex-valued Higgs field is defective such that it
carries a vortex, it nucleates single-particle midgap states
that carry the fractional charge �1 /2 per state. The energy

cost is not finite, however. In the continuum approximation,
it logarithmically grows with the separation between the vor-
tices. On the lattice, it even linearly grows with the vortex
separation if the wave vector of the fluctuation of the hop-
ping amplitude is commensurate with the reciprocal lattice.

Jackiw and Pi21 showed that the energy cost of a vortex
in the complex-valued Higgs field can be made finite if
the complex-valued Higgs field and the Dirac fermions
minimally couple to the two real-valued Bose fields that
realize the vector components of an axial gauge field and if
this axial vector gauge field also supports vortices. A
honeycomb-lattice regularization of an axial gauge field
without a vortex is shown in Fig. 1�b�.22 Alternative realiza-
tions of an axial vector potential also arise when the
graphene sheet is curved23–25 or wrapped into fullerenes,26,27

into nanotubes,28,29 and about a cone.30,31

Charge fractionalization in one dimension can be continu-
ously tuned by breaking an energy-reflection symmetry,
which is defined below. This property survives in two dimen-
sions and gives a mechanism for charge fractionalization that
is fundamentally different �and thus, potentially observable�
from the mechanism for charge fractionalization that relies
on topological order. By relaxing the condition of a finite
energy to that of a logarithmically diverging energy, it was
argued in Ref. 20 that a small staggered chemical potential
that distinguishes carbon ions sitting on the now nonequiva-
lent triangular sublattices of the honeycomb lattice can make
the fractional charge irrational. This irrational charge was
calculated analytically in the continuum limit and numeri-
cally for the lattice regularization in Ref. 22. Remarkably, it
was also found that the condition for finite energy in the
continuum limit, i.e., the presence of a vortex in the axial
vector potential, removed any dependence of the fractional
charge on the staggered chemical potential.

The purpose of this paper is to give three detailed and
alternative derivations of the fractional charge that supple-
ment the derivation in Ref. 22. Graphene is, of course, not
the only road to a semimetal in two dimensions. Threading
the elementary plaquettes of a square lattice with half a flux
quantum32 also realizes two nonequivalent Dirac points at
half filling. The Higgs field is then realized by a columnar
pattern of dimerization, whereas, the axial vector gauge field
is realized by a staggered pattern of dimerization.22 It was
numerically shown in Ref. 33 that the Z4 vortex defined by
the four possible columnar patterns occupying the four quad-
rants of the square lattice pins the fractional charge �1 /2 at
the site where the four columnar patterns meet. The Z4 vor-
tex is a discontinuous version of the vortices numerically
studied in Ref. 22. The fact that different lattice regulariza-
tion of vortices carries the same fractional charge illustrates
the fact that the fractional charge is independent of the short-
distance regularization. This property will become obvious in
the analytical calculations of the fractional charge that we are
going to present.

The paper is organized as follows: The quantum field
theory is defined in Sec. II. The charge induced by the vor-
tices in the Higgs or axial gauge fields is related to the spec-
tral asymmetry in Sec. III. The spectral asymmetry is com-
puted in Sec. IV. The fractional charge is computed for the
second time by a perturbative expansion of the Dirac propa-

(a) (b)

FIG. 1. �Color online� The honeycomb lattice is shown in �a�
and �b�. The honeycomb lattice has two interpenetrating Bravais
sublattices colored in blue �lighter shading� and black �darker shad-
ing�, respectively. The electronic hopping amplitude is enhanced on
thick red bonds while it is reduced on the thin yellow bonds relative
to the magnitude t of the nearest-neighbor hopping amplitude. The
so-called Kékule pattern dimerization pattern in �a� opens an energy
gap for the single-particle fermionic levels and it maps to the
complex-valued Higgs field of Ref. 20 in the continuum limit. A
dimerization pattern that shifts the relative separation of the Dirac
points is shown in �b�. In the continuum limit, it maps to the axial
vector potential introduced in Ref. 21.
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gator in Sec. V. Finally, the fractional charge is computed on
the basis of symmetry arguments in Sec. VI. A summary
comprises the last section, which is Sec. VII.

II. DEFINITIONS

In recent papers,20–22 we developed the theory of charge
fractionalization in planar models with topological defects
encoded by vortices. The models are elaborations on
graphene, with dynamics linearized around the two Dirac
points �the two inequivalent points in the first Brillouin zone
at which the conduction and valence bands of graphene
meet�. In a familiar fashion, the Schrödinger equation for the
Bloch states at low energies and a long wavelength measured
relative to the Dirac points takes a Dirac-type 4�4 matrix
form for a four-component “spinor,” which interacts with
further scalar and gauge fields. The scalar field and the gauge
fields are induced by fluctuations in the hopping amplitudes
of the underlying microscopic tight-binding model. In this
section, we start with definitions.

In the second quantization, the planar Hamilton density
reads

H = �†�� · �p − �5A5� + ���1 − i�5�2� + R��� � �†H� .

�2.1�

Here, �† and � are creation and annihilation operators for
four-components Dirac fermions, respectively, p=−i��x ,�y�,
A5 is an axial vector gauge potential �A5

x ,A5
y�, �1 and �2 are

the real and imaginary parts of a complex scalar field �
=�1+ i�2, and � is a field that acts like a staggered chemical
potential, where the staggering is governed by the matrix R.
All fields depend on the three-vector x�= �t ,r�= �t ,x ,y�. The
matrices in H are conventional 4�4 Dirac matrices:

� = �	x,	y� � �� 0

0 − �
�, � � �0 1

1 0
�,

�5 � − i	x	y	z = �1 0

0 − 1
� , �2.2a�

where the “third” 	 matrix,

	z � �
3 0

0 − 
3
� , �2.2b�

participates in the definition of �5 and also coincides with the
matrix R�	z. �The matrices 
1,2,3 are the standard Pauli
matrices.�

The Lagrange density corresponding to Eq. �2.1�,

L = i�†�t� − H , �2.3a�

is presented in the covariant notation as

L = �̄����i�� + �5A5�� − ��1 − i�5�2� − �3��� ,

�2.3b�

with

�0 � �, �̄ � �†�0, � � �� = � 0 − �

� 0
�,

�3 � �R = �	z = � 0 − 
3


3 0
� . �2.3c�

�In Eq. �2.1�, we set the axial scalar gauge potential A5
0 to

zero.�
Two gauge transformations leave the model unchanged.

There is the local axial gauge symmetry

�→ ei��5�, A5� → A5� + ���, �→ e2i��, �→ � ,

�2.4�

where � is a real-valued field and the index �= t ,x ,y. Also,
there is the global phase symmetry,

�→ ei�, A5� → A5�, �→ �, �→ � , �2.5�

where  is a real-valued number that acts on the four com-
ponents of the spinors. The latter leads to the conserved fer-
mion �charge� number current.

J� � �̄��� = ��,j� = ��†�,�†���, ��J
� = 0. �2.6�

We shall show that the charge

Q =� d2r��r� �2.7�

fractionalizes when the background Bose fields are topologi-
cally nontrivial.

The model possesses the usual discrete symmetries under
the parity transformation P defined by

P:	
�t,x,y� →�t,− x,y� ,

��t,x,y� →i�3�1��t,− x,y� ,

A5
t,y�t,x,y� →A5

t,y�t,− x,y� ,

A5
x�t,x,y� →− A5

x�t,− x,y� ,

��t,x,y� →��t,− x,y� ,

��t,x,y� →− ��t,− x,y� ,


 �2.8�

the charge conjugate transformation C defined by

C:	
�i →�ij

1 �̄ j ,

A5� →− A5�,

� →��,

� →� ,

 �2.9�

and the time-reversal transformation T defined by

T:	
�t,x,y� →�− t,x,y� ,

��t,x,y� →�1�5�†�− t,x,y� ,

A5
��t,x,y� →A5

��− t,x,y� ,

��t,x,y� →���− t,x,y� ,

��t,x,y� →��− t,x,y� ,

 �2.10�

where one should remember that T is antiunitary so that a
complex conjugation of coefficients is implied.

The theory possesses another discrete symmetry:
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� →i�3�5� ,

A5� →− A5�,

� →��,

� →− � .

 �2.11�

In the lattice �the honeycomb lattice relevant to graphene, for
example�, the definition of parity depends on the axis used
for the reflection; the transformation in Eq. �2.8� corresponds
to a reflection with respect to an axis that cuts through the
bonds of the honeycomb lattice.

When the staggered chemical potential � is dropped, i.e.,
the last term in the square brackets of Eq. �2.1� or �2.3b� is
absent, the matrix R anticommutes with the remaining ma-
trices in the single-particle Hamiltonian H of Eq. �2.1�.
Therefore, R maps positive energy eigenfunctions �E to the
negative energy eigenfunctions �−E and vice versa,

�H��=0�E = E�E, R�E = �−E. �2.12�

We call this an “energy-reflection symmetry.”
We shall examine the Dirac theory with a specific vortex

configuration for the Bose field �, which is taken as a static
background, and with another specific vortex configuration
for the axial gauge field A5

�, which is also taken as a static
background. The polar decomposition of the scalar field � is

��r� = ��r�ein�, r = �x2 + y2, � = arctan
y

x
, �2.13�

where the magnitude � of � vanishes at the origin ��r=0�
and tends to a nonvanishing ���� for large r. The integer n
measures the vorticity encoded by the singular nature of the
phase of the complex field � at the origin. The axial gauge
potential vanishes in the time component

A5
0�r� = 0, �2.14a�

while the spatial component reads

A5
i �r� = − n�ij

rj

r2a5�r� , �2.14b�

where a5�r� vanishes at the origin and tends to 1/2 at large r.
The line integral over Eq. �2.14b� along any closed curve
that encircles the origin once yields the same number, which
is proportional to the vorticity n. Finally, the chemical poten-
tial �, also taken as a static background, is without topologi-
cal structure and achieves a nonvanishing value ���� at in-
finity. We shall take � to depend only on r, but it could also
be constant.

In the absence of the staggered chemical potential, the
Dirac equation possesses �n� zero-energy, normalizable solu-
tions. These are the midgap states, which are eigenstates of
R. Mostly, we consider the n=−1 case, with a single midgap
state �0, which remains bound even in the presence of the
axial vector potential; turning on the axial vector potential
changes the wave function profile, but the zero eigenvalue
remains. We assume that there are no other bound states.
When the staggered chemical potential is present but never
very large, the midgap state migrates to a shifted eigenvalue;
however, it still remains isolated in the gap.

III. QUANTUM MECHANICAL ANALYSIS

The following argument shows that without the staggered
chemical potential �, the charge is −1 /2 when there is a
single normalizable midgap state �0 that is unoccupied.
�When this midgap state is occupied, the charge is −1 /2+1
= +1 /2.� The charge density arises from filling the negative
energy continuum states of the Dirac equation,

��r� = �
−�

0

dE��E
†�r��E�r� − �E

†�r��E�r��

=
1

2
�

−�

�

dE��E
†�r��E�r� − �E

†�r��E�r�� , �3.1�

where the second equality follows from the first due to the
energy-reflection symmetry present in the problem at �=0.
The quantity �E

†�E is constructed from reference states that
solve a Dirac equation with a topologically trivial back-
ground and also possess the energy-reflection symmetry. In
other words, the topologically determined charges that we
compute are measured relative to a reference charge of a
system with a topologically trivial background and possess-
ing the energy-reflection symmetry. This procedure is needed
to remove infinities. The reference wave functions �E form a
complete set. The continuum wave functions �E in the pres-
ence of the vortex, which we call as the vortex states, are not
complete; the midgap state is missing:

��r − r�� = �
−�

�

dE�E
†�r��E�r��

= �
−�

�

dE�E
†�r��E�r�� + �0

†�r��0�r�� . �3.2�

It therefore follows from combining Eq. �3.1� with Eq. �3.2�
that

��r� = −
1

2
�0

†�r��0�r� , �3.3�

and

Q =� d2r��r� = −
1

2
. �3.4�

In the presence of the staggered chemical potential �, the
energy-reflection symmetry is no longer available to pass
from the first to the second equality of Eq. �3.1�. However,
we may proceed as follows: We suppose that the reference
states still possess the energy-reflection symmetry, so in Eq.
�3.1�, we may still use this symmetry for the reference
states34 to obtain

�
−�

0

dE�E
†�E =

1

2
�

−�

�

dE�E
†�E =

1

2
�

−�

�

dE�E
†�E +

1

2
�b

†�b.

�3.5�

The last equality is again the statement of completeness of
the continuum reference states and the continuum vortex
states supplemented by the isolated bound state �b, which is
no longer at zero energy but has migrated to some other
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value in the gap between the continuum states. Using Eq.
�3.5� in the first equality of Eq. �3.1� leaves

��r� = −
1

2
�b

†�r��b�r� −
1

2
�

−�

�

dE sgn�E��E
†�r��E�r� .

�3.6�

It remains to evaluate the remaining integral, which is rec-
ognized as the “� invariant,” and also called as “spectral
asymmetry.” Note that with energy-reflection symmetry, the
integral vanishes, which leads to the previous result �Eq.
�3.3��. In the above derivations, it is assumed that the
“vacuum” is defined with the midgap state �0 unoccupied,
and furthermore, that the migrated state �b has a positive
energy so that it remains unoccupied in the definition of the
vacuum. If the midgap state is occupied and/or the migrated
state has a negative energy, there occurs a sign change in Eq.
�3.3� that affects to the first term of Eq. �3.6�.

IV. SPECTRAL ASYMMETRY AND FRACTIONAL
CHARGE

We begin by putting the Hamiltonian equation �2.1� in a
more convenient form. This is done with the following uni-
tary transformation:

H → Ĥ = THT−1, �4.1a�

where

T � � i
− 
+

− i
+ 
−
�, T−1 = T†, 
� �

1

2
�1 � 
3� .

�4.1b�

The result for Ĥ is

Ĥ = �− � D
D† �

� , �4.2a�

where the differential operator D and its adjoint D† are given
by

D = i
i��i + �ijA5
j � + i�1 + 
3�2, �4.2b�

D† = i
i��i − �ijA5
j � − i�1 + 
3�2. �4.2c�

With the factorization of the time dependence �u ,v�
=e−iEt�uE ,vE�, the stationary Dirac equation reads

�− � D
D† �

��uE

vE
� = E�uE

vE
� , �4.3a�

or in terms of components,

DvE = �E + ��uE, �4.3b�

D†uE = �E − ��vE. �4.3c�

Generally, � can be a function on space time. In the remain-
der of this section, we shall set it to be a positive constant;
the other background fields, ��r� and A5�r� are position de-

pendent and static, with asymptotes quoted in Eqs. �2.13�.

A. Zero-mode solutions

It is convenient to begin by considering two special cases,
the particular solutions of Eqs. �4.3b� and �4.3c� where either
E=� or E=−�. These solutions would become zero modes
of the Hamiltonian when �=0 and they play a special role
even when ��0.

Let us begin with the case wherein the energy eigenvalue
E=�. Then, from Eqs. �4.3b� and �4.3c�, it follows that

D†u��r� = 0, �4.4a�

u��r� =
1

2�
Dv��r� . �4.4b�

First, we observe that if v��r� were identically zero, u��r�
would also vanish and there is no solution. So we assume
that v��r��0. Then, operating with D† on Eq. �4.4b� and
using Eq. �4.4a� yields D†Dv��r�=0. The following argu-
ment implies that Dv��r�=0. Consider

0 =� d2rv�
† �r�D†Dv��r� =� d2r�Dv��r��2. �4.5�

Here, we are assuming that the spinor v��r� obeys boundary
conditions so that the differential operator D† is indeed the
adjoint of D, i.e., surface terms produced by partial integra-
tions in the intermediate steps in �4.5� vanish. Since the last
integral vanishes, its positive semidefinite integrand must
also vanish and we conclude that

Dv��r� = 0, �4.6�

while Eq. �4.4b� implies that u��r�=0.
Thus, we find that when Eq. �4.6� possesses a normaliz-

able solution, there exists a positive energy bound state with
E=�,

�− � D
D† �

�� 0

v��r� � = �� 0

v��r� �, � d2r�v��r��2 = 1.

�4.7�

A similar reasoning establishes the occurrence of a negative
energy bound state with E=−� when there exists a normal-
izable solution of the equation D†u−��r�=0,

�− � D
D† �

��u−��r�
0

� = − ��u−��r�
0

�, � d2r�u−��r��2 = 1.

�4.8�

The existence of solutions of the equations D†u�r�=0 and
Dv�r�=0 and the number of solutions of each kind are de-
termined by the topological properties of the background
fields A5�r� and ��r�. An index theorem implies

Index�H� = dim ker D − dim ker D† = n �4.9�

where ker denotes kernel and n is the vorticity defined in Eq.
�2.13�. The implication of this index theorem was explicitly
seen in Ref. 3, wherein solutions of D†u�r�=0 and Dv�r�
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=0 were constructed for the case of the highly symmetric
profile of the vector and Higgs fields given in Eqs. �2.13�. It
was found that, for a given vorticity, either one or the other
of these equations has solutions, but not both. Which equa-
tion has solutions depends on the sign of n. It was argued
that the number of solutions is given by �n� and, when n
=�1, the solutions are explicitly found.

The proof of index theorem �4.9� was given in Ref. 35.
The index theorem counts the difference indicated in Eq.
�4.9�. It proves that this is so, independent of the details of
the profile of the vector and Higgs fields but with the as-
sumption that, whatever they are, they are obtained by
smooth deformations of the symmetric configurations in Eqs.
�2.13�. Reference 35 also presented a proof of a vanishing
theorem, which is either dim ker D=0 or dim ker D†=0.
Combined with the index theorem, it implies that

n � 0: dim ker D† = 0, dim ker D = n ,

n � 0: dim ker D† = �n�, dim ker D = 0. �4.10�

A computation of the spectral asymmetry of the Hamil-
tonian in a spirit similar to the one that will be given in the
remainder of this section was originally presented in Ref. 36.
Equation �6.29� of that paper contains a result for the spectral
asymmetry from which the index can be deduced by taking
the parameter � �our �� to zero and which agrees with Eq.
�4.9� above. The general formula for the spectral asymmetry
in Eq. �6.29� of Ref. 36 also agrees with what we shall find
in the following.

B. Nonzero mode spectrum

Now, we shall look for eigenspinors of the Dirac Hamil-
tonian that do not have eigenvalues E=��.

From Eq. �4.3�, we can solve for the lower components of
the spinor in terms of the upper components:

vE�r� =
1

E − �
D†uE�r� . �4.11�

Then, using Eq. �4.3b�, we see that the upper components
must obey the Schrödinger equation DD†uE�r�= �E2

−�2�uE�r�. To find solutions, we begin with the eigenvalue
problem

DD†u��r� = �u��r�, � � 0. �4.12�

We assume that we can find a complete orthornormal set of
solutions of this equation,

� d2ru�
†�r�u���r� = ����, 

�

u��r�u�
†�r�� = ��r − r��1 .

�4.13�

Generally, the spectrum will contain both bound and con-
tinuum states. For continuous spectra, the right-hand side of
the first equation above should be replaced with a Dirac delta
function and the summation on the left of the second equa-
tion should be replaced by an integral. We shall assume that
these replacements, where needed, are understood in Eq.

�4.13�. We can use the two-component spinor u��r� to con-
struct a normalized four-component spinor which solves the
stationary Dirac equation. For each eigenvalue �,

�E�r� = ��� + �2 − �

2�� + �2 �1/2� u��r�
D†

�� + �2 − �
u��r� �,

E = �� + �2, �4.14a�

�E�r� = ��� + �2 + �

2�� + �2 �1/2� u��r�
− D†

�� + �2 + �
u��r� �,

E = − �� + �2. �4.14b�

For every u�, which is a solution of the Schrödinger equation
�4.12� with positive eigenvalue ��0, we obtain two solu-
tions of the Dirac equation: one with positive energy E
=��+�2 and one with negative energy E=−��+�2. Unlike
the zero modes that we discussed in Sec. IV B, wherein there
was either a positive or a negative energy solution, here, the
positive and negative energy solutions of the Dirac equation
are paired: For each positive energy solution, there is a nega-
tive energy solution and vice versa. This implies that, if there
are bound states other than the zero modes, they must occur
in positive and negative energy pairs. Thus, bound states,
other than the zero modes, will not contribute to the spectral
asymmetry. We will explicitly see this in the following.
However, for states in the continuum spectrum, the pairing
tells us only that the spectrum symmetrically occurs about
zero: For example, there is a continuum spectrum in the sym-
metrically placed regions E��m2+�2 and E�−�m2+�2. It
does not tell us about the density of states in these regions,
which can still be asymmetric.

C. Charge density

Let us examine the charge density of the ground state of
the system that we are considering. The charge density is
given in Eq. �3.6�:

��r� =
1

2
u−�

† �r�u−��r� −
1

2
v�

† �r�v��r�

−
1

2 
E���

sgn�E��E
†�r��E�r� . �4.15�

Here, we have included both types of zero modes. Depend-
ing on the sign of the vorticity, only one of them will be
nonzero and will have a multiplicity given by the magnitude
of the vorticity. A sum over these degenerate wave functions
is implied in the first two terms on the right-hand side of Eq.
�4.15�. We have also assumed that � is positive, so that v� is
a positive energy state and u−� is a negative energy state. We
shall restore the possibility that � could have a negative sign
later, where it will simply lead to a flip in sign from the
contribution of the zero modes.

Now, using Eqs. �4.14a� and �4.14b�, we find that the third
term in the right-hand side of Eq. �4.15� is
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��r� =
1

2
u−�

† �r�u−��r� −
1

2
v�

† �r�v��r�

+ 
��0

�

2�� + �2�u�
†�r�u��r� −

1

�
�D†u��r��†D†u��r�� .

�4.16�

Using the fact that u� satisfies the Schrödinger equation
�4.12� leads to

��r� =
1

2
u−�

† �r�u−��r� −
1

2
v�

† �r�v��r�

+ 
��0

�

2��� + �2
�u�

†�r�DD†u��r�

− �D†u��r��†D†u��r�� . �4.17�

The last terms in this expression are a total derivative,

��r� =
1

2
u−�

† �r�u−��r� −
1

2
v�

† �r�v��r�

+ � · 
��0

�

2��� + �2
�u�

†�r�i�D†u��r�� . �4.18�

The total charge is a volume integral of the charge density. If
we volume integrate the last term in the equation above and
use Gauss’ theorem, it will be expressed as a line integral on
the circle at infinity of the quantity that is to the right of the
derivative operator. Thus, we see that the charge will depend
on the asymptotic form of the wave functions. We observe
that, consistent with our discussion after Eqs. �4.14a� and
�4.14b�, since the wave functions of bound states exponen-
tially fall off at large distances, bound states will not contrib-
ute to the charge. Only continuum states are important. Fur-
thermore, studying the asymptotics of the continuum states
will allow us to compute the total charge. What will make
the task easy is the fact that the volume integral of the part of
the last term in Eq. �4.18� will pick up contributions which
go like 1 /r.

Before we do that, we reorganize the expression for the
charge density. We use the identity

�

2�� + �2
= �

−�

� d�

2�

�

� + �2 + �2 , �4.19�

and the Schrödinger equation �4.12� to rewrite Eq. �4.17� as

��r� =
1

2
u−�

† �r�u−��r� −
1

2
v�

† �r�v��r� + � · �
−�

� d�

2�

��
��0

u�
†�r�

1

DD†

�

DD† + �2 + �2 i�D†u��r�� ,

�4.20�

or, as the basis-independent expression

��r� =
1

2
u−�

† �r�u−��r� −
1

2
v�

† �r�v��r�

+ � · �
−�

� d�

2�
tr�r�

P

DD†

�

DD† + �2 + �2 i�D†�r� ,

�4.21�

where “tr” denotes a trace over Dirac matrices and P is a
projection operator onto states orthogonal to the zero mode
wave functions. �We shall make use of the expression only
where �r�→� and the zero-mode wave functions have van-
ishing contribution. For this reason, explicit use of this pro-
jection will never be needed.�

Case A5=0. Let us first consider the case wherein the
axial vector gauge field is absent. In the asymptotic region,
the Higgs field is

��r� � �1�r� + i�2�r� = �ein� + O�r−2�,

�i��r� = − in�ij
rj

r2�ein� + O�r−3� . �4.22�

With

DD† = − �1
2 − �2

2 + ���2 + � · ���1 + i
3�2� , �4.23�

we see that the derivatives of the Higgs field provide a long-
ranged potential �1 /r in the Schrödinger equation �4.12�.

It is easy to find the asymptotic behavior of the propaga-
tors in Eq. �4.21� by perturbative expansion in the deviation
of the operator in Eq. �4.23� from the free operator
�DD†��=m=−�1

2−�2
2+m2. For example,

�r�
1

DD† + �2 + �2 �r��

=� d2p

�2��2eip·�r−r�� 1

p2 + �2 + �2 + �2

− � · ���1�r� + i
3�2�r��� d2p

�2��2eip·�r−r��

�
1

�p2 + �2 + �2 + �2�2 + ¯ . �4.24�

The right-hand side in this equation has a support in the
region where ��r−r���1 as it exponentially falls off with
the distance �r−r�� when this distance is greater than 1 /�.
The second term on the right-hand side of Eq. �4.24� goes
like 1 /r and the corrections to it, which are represented by
¯, fall off faster and will not be needed.

Using asymptotic expression �4.24� in Eq. �4.21�, we ob-
tain

��r� =
1

2
u−�

† �r�u−��r� −
1

2
v�

† �r�v��r�

− � ∧ � �

8��2�m2 + �2
���i � � − i � ���� + ¯� .

�4.25�

Upon integrating this expression, we obtain
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Q = −
1

2
Index�H�

−
�

2��2 + �2

1

4�m2� dl · ���i � � − i � ���� ,

�4.26�

where, in the first term in the right-hand side, we have re-
membered that the number of zero modes is determined by
the index and the line integral in the second term is taken on
the circle at infinite radius. Using index theorem �4.9� and
the asymptotic expression for � in Eq. �4.22�, we obtain

Q = �−
1

2
sgn��� +

�

2��2 + �2�n . �4.27�

We have restored the possibility that � could be negative in
the first term by recalling that the sign of the energy of the
zero modes is determined by �.

Case A5�0. The second case is when there is also an
axial vector gauge field with asymptotic form

A5
i �r� = − n�ij rj

2r2 + O�r−2� , �4.28�

so that the covariant derivative of the Higgs field falls off at
infinity,

�� + 2iA5���r� = O�r−2� . �4.29�

Here, we have assumed a power-law fall off that is suffi-
ciently fast for our purposes. In fact, for a classical field
theory with a vortex solution, the covariant derivative expo-
nentially falls off with distance from the vortex. Then,

�r�
1

DD† + �2 + �2 �r��

= exp�− i
3�
r

r�
d� · A5�

�� d2p

�2��2eip·�r−r�� 1

p2 + �2 + �2 + �2 + ¯ .

�4.30�

The corrections represented by ¯ fall off at least as fast as
1 /r2 as r→�. The line integral in the phase factor is to be
taken along a straight line between r and r�. �Since the axial
magnetic field also goes to zero for at least as fast as r−2 as
r→�, the path is not important for our purposes.�

The trivial asymptotic form of Eq. �4.30� means that the
background fields do not contribute to the relevant
asymptotic of the last term in Eq. �4.21� and the volume
integral of that term vanishes. It, therefore, does not contrib-
ute to the total charge. We find that the charge in this case is
entirely determined by the zero modes,

Q = −
1

2
Index�H�sgn��� = −

n

2
sgn��� . �4.31�

This is dramatically different from the result for the case
without an axial vector gauge field quoted in Eq. �4.27�. As
we have seen, the difference can be attributed to the asymp-
totics of the background field configurations. Another way to
understand it is to realize that, when the Higgs field ap-
proaches its asymptotic form, its covariant derivatives as
well as the axial magnetic field fall off quickly enough at r
→�, so that stereographic projection can be used to map the
problem of solving the Dirac equation on the plane to the
problem of solving it on the sphere �where the vector field is
a connection on a Wu–Yang monopole bundle�. Then, the
entire spectrum is discrete and, by the arguments following
Eqs. �4.14a� and �4.14b�, we can see that all nonzero-mode
solutions of the Schrödinger equation with eigenvalue � re-
sult in pairs of solutions of the Dirac equation: one positive
E=��+�2 and one negative energy E=−��+�2 state. For
this reason, only the zero modes can contribute to the spec-
tral asymmetry and the contribution must be proportional to
the index.

As is well known, the axial gauge field is needed to render
the vortex energy finite; it screens the infinite energy coming
from the scalar field. Evidently, it also screens the irrational
charge which arises from the staggered chemical potential.
Some further insight into this phenomenon is given below.

V. FIELD THEORY ANALYSIS

An alternative method for finding the charge induced by
the vortex background makes use of a field theoretic evalu-
ation of the expectation value of the current in the vacuum
state for the Dirac field operators in the vortex background,

J��x� = ��̄�x�����x�� = − Tr���S�x,x�� , �5.1�

where S�x ,y� is the Dirac field propagator for the Lagrange
density �Eq. �2.3b��.

We consider first the theory without the axial gauge field
and present Eq. �2.3b� as

L0 = �̄�i���� − ��� , �5.2a�

where

� = �1 − i�5�2 + �3� � �1 − i�5�2 + �3�3. �5.2b�

Evidently, we need to invert

S−1�x,y� = − i�i���� − ����x − y� . �5.3�

This can be perturbatively done in a gradient expansion for
�. We set

��x� = M + ���x�, M = ��0�, ���x� = x�����0� .

�5.4�

In a graphical representation, a thick line denotes S�x ,y�
while a thin line represents the free propagator

S0�x,y� =� d3p

�2��3

i

p” − M
eip�x−y�, p” � ��p�. �5.5�
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Hence, we have

�5.6�

with integration over the z variables understood. The result
of the calculation is

J� =
− 1

8�m3�
�	��abc�a�	�b���c =

− 1

8�
��	��abcna�	nb��nc,

�5.7a�

where

m2 = 
a=1

3

�a
2 = �2 + �2, na =

�a

m
, a = 1,2,3. �5.7b�

The second equality in Eq. �5.7a� shows that J� is manifestly
divergence free. �The overall sign is set by the requirement
that the isolated gap state is filled.�

To evaluate the induced charge, we observe that the
charge density for static fields is

� =
− 1

8�m3�
ij�abc�a�i�b� j�c. �5.8�

With our profile Eq. �2.13�, this becomes

��r� =
n

4�r

d

dr

��r�
m�r�

, �5.9�

whose spatial integral yields

Q =� d2r��r� = �n

2

��r�
m�r�

�
0

�

= �−
1

2
sgn���0�� +

1

2

����
m����n ,

�5.10�

since the amplitude � vanishes at the origin. This charge can
be an irrational quantity, reducing to �n /2 as the staggered
chemical potential tends to �0.

It is noteworthy that the induced current �Eq. �5.7a�� ex-
hibits an SO�3� algebraic structure even though neither the
Lagrange density in Eq. �5.2a� nor the propagator in Eq.
�5.3� put such structure into evidence. We shall explain be-
low how this comes about.

Another interesting point is that the current can take a
simpler form after fields are redefined. First, we rewrite Eq.
�5.7a� in terms of � and ��:

J� =
i��	�

8�m3 ����	�������� − �	������� − ����
��� .

�5.11�

Next, we define

� = 2m��1 − ���2, � = m�1 − 2���2� , �5.12�

thereby expressing the current in Eq. �5.11� as

J� =
i

2�
��	��	�

���� =
i

4�
��	��	������ − ����

�� .

�5.13�

This shows that J� is a total divergence and is manifestly
conserved.

Next, we write the current when the axial gauge potential
is present. Rather than calculating from first principles, we
appeal to local axial gauge invariance and promote all of the
derivatives in Eq. �5.11� to covariant derivatives

D� � �� + 2iA5�. �5.14�

However, the resulting expression is not conserved but it can
be made conserved by adding an axial gauge invariant term,
which is linear in the axial gauge field. In this way, we arrive
at

J� =
i

8�m3�
�	����D	����D��� − �	�����D��� − ��D��

����

+
1

2�

�

m
F5
�, �5.15�

where F5
� is the axial dual field strength

F5
� �

1

2
��	�F5	� = ��	��	A5�. �5.16�

As a check, the coefficient of the last term in Eq. �5.15� can
be computed from the relevant graph. When the axial gauge
potential contribution to Eq. �5.15� is separated, Eq. �5.15�
equals

J� =
i

8�m3�
�	�����	�������� − �	��������� − ���������

+
��	�

2�
�	��mA5�� . �5.17�

Therefore, the axial gauge potential’s contribution to the
charge density is

�� = −
�ij

2�
�i��mA5

j� , �5.18�

which, for A5
� as in Eq. �2.14�, equals

���r� = −
n

2�

1

r

d

dr
���r�

m�r�
a5�r�� , �5.19�

and its contribution to the total charge is

�Q =� d2r���r� = −
n

2

����
m���

, �5.20�

since a5���=1 /2 while a5�0�=0. This cancels the continuous
dependence on ���� found in Eq. �5.10�, which leaves the
same rational result obtained in the absence of the staggered
chemical potential.

Note that with variables defined as in Eq. �5.12�, the cur-
rent in the presence of the axial gauge field reads
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J� =
i

2�
��	��D	����D��� +

1

2�
�1 − 2���2�F5

�

=
i

4�
��	��	���D�� − �D��

� − 2iA5�� , �5.21�

or when the gauge field is separated,

J� =
i��	�

2�
��	�������� +

��	�

2�
�	��1 − 2���2�A5��

=
i��	�

4�
�	������ − ����

� − 2i�1 − 2���2�A5�� .

�5.22�

Therefore, the total divergence feature and the conservation
of the current are again explicitly exhibited also in the pres-
ence of the axial gauge field. In particular, for the charge
density, we have

� =
i

4�
�ij�i����Dj�� − ��Dj���� +

1

2�
�ij�iA5j . �5.23�

Upon integration over space, the first term is cast on the
circle at infinity, where the covariant derivatives of � vanish.
The second term shows that the induced charge is exactly the
vortex flux, which is equal to n /2 for A5 as in Eq. �2.14�.

VI. INDUCED CHARGE FROM SYMMETRY
ARGUMENTS

As we observed in Sec. V, the form of the induced current
�Eq. �5.7a�� without an axial gauge field A5

� exhibits an SO�3�
algebraic structure despite the absence of any such symmetry
in the Lagrange density �Eq. �5.2a��.37 In this section, we
explain why this is so. Also we obtain expressions for the
induced fractional charge from symmetry arguments.

Our starting point is the Lagrange density �Eq. �2.3b��,
with the mass terms collected into �, as in Eq. �5.2b�, but
written as

L� = �̄����i�� + �5A5�� − mMana�� , �6.1a�

where

M1 = 1, M2 = − i�5, M3 = �3. �6.1b�

The background fields mna, which are functions on �2+1�
dimensional space time, are given by

n1 =
�1

m
, n2 =

�2

m
, n3 =

�

m
, �6.2�

which, since m2= ���2+�2, satisfy the local constraint

1 = n1
2 + n2

2 + n3
2 � n2. �6.3�

Despite the suggestive form in which the three-dimensional
vector n is written above, the Lagrange density �Eq. �6.1a��
is not SU�2� symmetric because the Ma matrices do not sat-
isfy the su�2� algebra.

However, it is the induced current �Eq. �5.7a�� and not the
starting Lagrange density �Eq. �6.1a�� that exhibits the sym-

metry. Thus, let us turn our attention to the U�1� charge
current induced by the background field mn,

J��x� =
� D��̄,��ei�d3xL���̄�����x�

� D��̄,��ei�d3xL�

. �6.4�

In Eq. �6.4�, we are free to change integration variables as
long as this transformation leaves the current unchanged.
This we do through the nonunitary transformation

�̄ = �̄�5�
3, � = � , �6.5�

for some arbitrarily chosen constant unit vector N. Thus, the
induced current �Eq. �6.4�� is now given by

J� =
� D��̄,��ei�d3xL���̄ ���

� D��̄,��ei�d3xL�

’ �6.6a�

where the transformed Lagrange density reads

L� = �̄� ��i�� + �5A5�� − m!aNa�� , �6.6b�

with  �=�5�
3�� and !a=�5�

3Ma satisfying

� �, ��� = 2g���,

�!a,!b� = 2i�abc!c,

� �,!b� = 0. �6.6�

Since �5 does not commute with all !a,

�!1,�5� = �!1,�5� = 0,

�!3,�5� = 21 ,

�!3,�5� = 0, �6.7�

L� is an SU�2� singlet at A5
�=0 only.

A. Induced charge without axial flux

In the absence of an axial gauge field, the Lagrange den-
sity �Eq. �6.6b�� with A5

�=0 is an SU�2� singlet. The induced
current and charges must therefore be SO�3� singlets given
by

J� = C
1

8�
��	��abcna�	nb��nc, �6.8a�

Q =� d2rJ0�t,r� = C
"

4�
, �6.8b�

where " is the spherical angle �in units of 4�� covered by
the mapping between the base space r�R2 and a closed
curve on the surface of the two spheres �Eq. �6.3�� to the
lowest order in a gradient expansion. Thus, we arrived at our
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previous result except that the factor C must still be deter-
mined.

We can fix the constant C using our results for the frac-
tional charge derived in the simple case when there is no
staggered chemical potential: The charge is Q=−1 /2 when
the midgap state is empty and Q=1 /2 when the midgap state
is filled. There is an ambiguity for the charge as given in Eq.
�6.8b� if the bound state is at exactly zero energy because
then, it can be filled or empty, but this can be lifted by con-
sidering the case where �→0+ with 0+ a positive infinitesi-
mal. In this case, the bound state solution exists for an anti-
vortex �n=−1� and E=−� �see Refs. 20 and 21 and Sec. III�,
so that the level is filled and the charge is thus Q=1 /2.

Because �→0+, or equivalently, n3→0+, the spherical
angle traced by the antivortex in the n1,2 plane is just one full
hemisphere �traced in the negative orientation�: " /4�=
−1 /2. Hence, the constant C=−1, leading to the induced
current

J� = −
1

8�
��	��abcna�	nb��nc, �6.9a�

and the induced charge

Q = −
"

4�
. �6.9b�

B. Abelian formulation, including an axial flux

Here, we shall show that the induced charge in the pres-
ence of vortices in the off-diagonal masses and in an axial
vector gauge potential is the same as that in a problem with
constant off-diagonal mass and effective Abelian gauge flux.
To this end, we make a further unitary transformation on the
Lagrange density �6.6b�,

�̄ = #̄U, � = U†# . �6.10a�

The unitary matrix U is generated by the 4�4 matrices !a
and is fixed by demanding that it takes the space-time depen-
dent vector n in the fixed unit vector N,

�!aNa� = U�x��!ana�x��U†�x� . �6.10b�

It follows that U commutes with  � but not with �5. With
N= �0,0 ,1�, this is achieved by choosing38

U�x� = e−i��x�/2!3e+i	�x�/2!2e+i��x�/2!3, �6.11a�

where the polar angle 	 and the azimuthal angle � param-
eterize n,

n = �sin 	 cos �,sin 	 sin �,cos 	� . �6.11b�

The new Lagrange density reads

L# = #̄� ��i�� + B�� − m!3�# , �6.12a�

where the matrix B� is

B� = U�5U†A5� + Ui��U
†. �6.12b�

Now, once the vector N is fixed to �0,0,1�, all the infor-
mation about the original mass vortex and axial vector-gauge

vortex is combined in B�. The induced charge we want to
compute is linear in these potentials �with higher orders sup-
pressed by powers of m−1�. Indeed, to linear order, the cur-
rent can only depend on the component of B� along the a
=3 direction. To see this, consider a further rotation around
the a=3 direction by a constant angle �,

B� → e+i�/2!3B�e
−i�/2!3. �6.13�

The current is invariant under this rotation, but the compo-
nents of B� along the a=1,2 directions do change. Hence,
the induced current, at linear order, must not be a function of
these components and it must solely depend on the compo-
nent along the a=3 direction:

b� =
1

4
tr�!3B�� =

1

4
tr�!3�U�5U†A5� + Ui��U

†��

=
1

2
��� −

1

2
���� + 2A5��cos 	 . �6.14�

We thus arrive at the result that the induced current and
charge, which have been computed by using the Lagrangian
�6.12a�, are the same as those computed by using the simpler
Lagrange density

L# = #̄� ��i�� + b�!3� − m!3�# . �6.15�

Finally, one last change of variables

#̄ = �̄!3, # = � , �6.16a�

which does not affect the current, �again because of a trivial
Jacobian in the path integral� and a redefinition of Dirac
matrices

�̄� = !3 �, �6.16b�

which preserves their Clifford algebra, gives the result that
the induced current

J� =
� D��̄,��ei�d3xL���̄�̄���

� D��̄,��ei�d3xL�

�6.17a�

can be simply obtained from the Lagrange density with the
gauge potential b� and constant mass m

L� = �̄��̄��i�� + �5b�� − m�� . �6.17b�

The flux due to b� is the only quantity left that retains any
information on the mass and axial vortices, and thus, it is the
only variable controlling the value of the induced current and
charge. The induced current must be an axial gauge invariant
quantity, and thus, must be constructed from the axial flux
due to b�. The total charge, in particular, must be propor-
tional to the total flux

�5 =
1

2�
� d2r�� ∧ b��r� , �6.18�

i.e.,
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Q = C�5. �6.19�

The prefactor C is determined for the special case without a
staggered chemical potential ��→0+� and without an axial
flux, in which case Q= +1 /2. In this situation, the polar
angle 	�r�→� /2, cos 	�r�→0, and b��r�→ 1

2����r� as r
→�, so that, for an antivortex, the axial flux due to b� is
simply half the vorticity of the azimuthal angle ��r�: �5=
− 1

2 . This fixes the constant C=−1. We conclude that

Q = − �5. �6.20�

Equation �6.20� is the expression that we seek for the charge
induced by static vortices in the mass and in the axial vector-
gauge fields.39 We now consider the following two cases
�when ��0�.

�i� Static case with staggered chemical potential, no axial
flux, and vorticity n in the mass, i.e., cos 	�r�→� /m as r
→� and a5=0: The flux is �5=n 1

2 �1−cos 	�r→��� and the
induced charge equals

Q = −
n

2
�1 −

�

m
� . �6.21�

�ii� Static case with staggered chemical potential and an
axial vortex that screens the mass vortex, i.e., cos 	�r�
→� /m and ����r�+2A5��r�→0 as r→�: The last term in
Eq. �6.14� drops out and so does the dependence on the polar
angle 	�r�, along with the dependence on the staggered
chemical potential. The flux, due to b�, is simply half the
vorticity of the azimuthal angle ��r�, �5= 1

2n, and thus, the
charge is pinned at the rational value

Q = −
n

2
. �6.22�

VII. SUMMARY

The fractional charge induced by vortices supported by a
complex-valued Higgs field carrying a U�1� axial gauge
charge of 2 that couples to massive Dirac fermions in �2
+1�-dimensional space time was computed by three different
techniques based on �i� the computation of a spectral asym-
metry, �ii� a one-loop perturbative computation of the con-
served fermion-number current, and �iii� expressing the frac-
tional charge in terms of an Abelian axial flux, respectively.
The fractional charge can continuously vary as a function of
an energy-reflection symmetry breaking parameter, and thus,
can take irrational values. Remarkably, this fractional charge
rerationalizes to the value 1/2, taken in the presence of the
spectral energy-reflection symmetry if an axial gauge field
covariantly couples to both the Higgs and Dirac fields.
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