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We investigate the evolution of an electron undergoing coherent tunneling via adiabatic passage �CTAP�
using the solution of the one-dimensional Schrödinger equation in both space and time for a triple well
potential. We find the eigenspectrum and complete time evolution for a range of different pulsing schemes.
This also provides an example of a system that can be described with the tools from both quantum optics and
condensed matter. We find that while the quantum optics description of the process captures most of the key
physics, there are important effects that can only be correctly described by a more complete representation.
This is an important point for applications such as quantum information processing or quantum control where
it is common practice to use a reduced state space formulation of the quantum system in question.
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I. INTRODUCTION

The fabrication and control of mesoscopic quantum sys-
tems is of continued interest from both a fundamental and
practical point of view. One of the most exciting aspects of
this is the convergence between quantum optics and quantum
electronics. While these have been traditionally treated as
separate but related fields, the raft of new experimental and
theoretical results have shown many important links between
these topics. This is especially true in quantum information
processing and quantum control where the techniques and
concepts used in one physical system are regularly applied to
the other. An important aspect of this convergence of quan-
tum optics and electronics is the interoperability of the tools
used to describe their respective systems.

To explore the convergence between quantum optics and
quantum electronics, we consider the recent analysis of
stimulated Raman adiabatic passage �STIRAP�, which was
originally developed in the quantum optics framework,1 ap-
plied to spatial coherence of electrons, in which case it is
termed coherent tunnelling via adiabatic passage2 �CTAP�.
This is an example of a nontrivial time-dependent problem
that has both a quantum optics and condensed-matter version
and that is of interest in both communities. The CTAP pro-
tocol has been suggested as a means to transport electrons
from one potential well to another via adiabatic manipulation
of the ground-state wavefunction. The transport of spins us-
ing this protocol has been proposed as the basis of quantum
computing schemes.3,4 Similarly, transporting single atoms5,6

and Bose–Einstein condensates7,8 within harmonic traps have
also been investigated. CTAP has recently
been demonstrated using photons in triple-core optical
waveguides, using modulated separations between the
cores.9–11

The development of the CTAP protocol was carried out
directly from the quantum optics framework, which trans-

lates to an ideal localization assumption. In this work, we
relax this assumption and investigate the protocol in a man-
ner more appropriate to a realistic quantum nanoelectronic or
solid-state setting, and highlight the differences and com-
monalities of the approaches to each physical context. The
results of our analysis are directly applicable to the imple-
mentation in the quantum dot setting, including gate
defined12–18 and donor based Coloumb confined2 single elec-
tron systems.

To this end, this paper necessarily focuses on describing
few state quantum systems using tools common to either the
quantum optics or condensed-matter communities. The theo-
retical treatment of CTAP and other related schemes19–25 that
involve the coherent behavior of electrons often employs the
finite state �FS� approximation, also variously known as the
tight-binding or modal approximation. As such, the electron
is located at one of a number of localized sites and can tunnel
coherently between these sites. The evolution of the system
is then solved using matrix mechanics using the finite state
space. In this model, the mathematics of the system evolu-
tion is often equivalent to a few state quantum optics prob-
lem, especially when considering donor electrons in semi-
conductors or quantum dots containing few electrons. This
approach has become particularly important given recent
work on quantum control and quantum computing in both
quantum optics and the solid-state.26,27

We investigate the generic problem of the link between
the finite state model parameters with those that can be de-
termined from conventional solid-state physics and the solu-
tion to the Schrödinger equation in one dimension using
wave mechanics. We use CTAP as a specific example where
the appropriate time variation of the potentials is calculated
for a series of square wells separated by finite barriers. We
discuss the analysis of the resulting eigenspectrum and then
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perform one-dimensional �1D� time-dependent calculations
to investigate the system evolution.

At this point, it should be noted that the solution of the
spatially varying wavefunction for an arbitrary three-
dimensional �3D� potential is the more sophisticated and ul-
timately correct treatment. At best, the FS treatment is a
physically motivated approximation for treating the shuttling
of electrons between quantum dots or donor sites. Here, we
choose a midpoint between FS and full 3D where the dynam-
ics are dominated by the potential variation in only one of
the three dimensions, the other two dimensions consisting of
tight confining potentials. Most of the essential physics in-
volving barrier penetration and finite confinement enter the
problem at this 1D level. Further effects introduced in the
full 3D problem are mostly system specific, depending on
both the characteristics of the host lattice and the nature of
the confining potentials. Investigating the similarities and
differences between the Schrödinger wave �SW� description,
even in 1D, and the finite state approximation provides im-
portant insight into the validity of this approximation.

While this paper focuses on solutions to the one-
dimensional Schrödinger equation, the analysis and method-
ology applies to many real systems, as coherent tunneling
can often be treated as a one-dimensional problem. In GaAs
quantum dots for instance, the separability of the spatial de-
grees of the wavefunction often allows the dynamics in one
dimension to be treated independently of the confinement of
the wavefunction in the other two dimensions.13 A notable
exception is the charge states associated with isolated dopant
atoms in semiconductors, where the Coulombic nature of the
trapping potential introduces divergences, which must be
handled with some care. In this case, our analysis still pro-
vides some insight as similar qualitative behavior is seen in
these systems when compared to other forms of trapping
potentials.

In the following section, we discuss the links between the
approaches used in quantum optics �the FS model� and those
commonly used in condensed-matter physics �the SW
model�. We then introduce CTAP in Sec. III as an example of
a nontrivial adiabatic process, which can be modeled using
either formalism. As CTAP is an adiabatic process, much
insight can be gained by plotting the eigenspectrum. In Sec.
IV, we find the eigenenergies and wavefunctions using the
SW formalism and use this to estimate the adiabatic time
scale. Using the FS description of CTAP, the population of
the central well is predicted to be exactly zero in the adia-
batic limit. Using the SW formalism, Sec. V, we can put

quantitative bounds on this population. Finally in Sec. VI,
full time-dependent evolution is calculated for the CTAP pro-
cess and this is used to investigate the fidelity of transfer as a
function of switching speed. This allows direct comparison
between the FS and SW descriptions.

II. THE DOUBLE WELL SYSTEM AND THE LINK
TO QUANTUM OPTICS

The canonical system for investigating two-state quantum
mechanics in the solid-state is the double-well potential,
whereas in atom optics it is the two-level atom in the rotating
wave approximation. Much of the mathematical properties of
these two descriptions are trivially equivalent, which leads to
them being often used almost interchangeably. In this paper,
we are primarily concerned with the points where this
equivalence becomes nontrivial and ultimately breaks down,
especially in the case of multiwell systems. To motivate the
discussion and introduce the relevant formalism, we will first
point out several important features of the two-state and/or
double-well system as background.

Consider a one-dimensional system consisting of two po-
tential wells separated by a finite potential barrier �Fig. 1�.
We assume that the potential barrier between the wells is
sufficiently high that each well contains at least one “bound”
state. We also assume that the wells are narrow enough that
the higher lying eigenstates of the system are sufficiently
removed from the lowest two states that we can approximate
the system as a two-state system. The Hamiltonian governing
the evolution of the lowest two eigenstates can be written as

H = � EL − �

− � ER
� , �1�

in a basis ��L� and �R�� comprised of the ground states of the
left- and right-hand wells, respectively. The coupling be-
tween states � is just a function of the height and width of
the finite barrier and EL and ER correspond to the energies of
each well defined separately, given an infinite barrier. It is at
this point that the analogy with a two-level atom in the ro-
tating frame from quantum optics is made. In a driven two-
level atom problem, the off-diagonal terms are given by the
intensity of the driving field �the Rabi frequency� while the
diagonal terms come from the energy mismatch between the
bare transition and the frequency of the driving field �the
detuning�. In the square-well problem, the link between this
reduced state space and the original spatially dependent
wavefunction is then contained in the calculation of � for a
finite barrier.

The solution of the double-well problem is most often
constructed by matching boundary conditions of the solution
to the Schrödinger equation in each region separately.28 In
the case of the double well, the solution does not have a
closed form but can be evaluated numerically. The calcula-
tion of � then reduces to finding the energy gap ��SAS� be-
tween the two lowest �symmetric and antisymmetric� eigen-
states of the double-well system. Figure 2 gives the value of
�SAS for two wells of width L separated by a barrier of width
w and height V0. The energy is expressed in normalized units

FIG. 1. The canonical two square well, finite barrier
problem.
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�E��, which corresponds to the ground-state energy of an
infinite well of width L.

A second method of solving the 1D Schrödinger involves
direct numerical discretization of the wavefunction, and will
be used later for solving an arbitrary 1D potential problem. If
we discretize the region of interest into n points x1 ,x2 , . . . ,xn
separated by �x, the wavefunction can then be computed at
each point �k=��xk�. We then express the second derivative
as a finite difference equation

�2��xk�
�x

�
�k+1 − 2�k + �k−1

��x�2 , �2�

which allows us to construct the Hamiltonian of the system
on a discrete lattice

HSW�xk� = V�xk� −
�k+1 − 2�k + �k−1

��x�2 , �3�

and express the Schrödinger equation as a matrix equation.
For our purposes, we truncate the matrix at either end, which
corresponds to infinite potential boundary conditions, V�x0�
=V�xn+1�=�. Diagonalizing this Hamiltonian matrix gives
the eigenvalues, the lowest ones of which are good approxi-
mations to the system eigenenergies. Similarly, the wave-
functions will be the eigenvectors corresponding to these ei-
genvalues. While this method is not particularly
sophisticated, it does allow the inclusion of arbitrary poten-
tial shapes, which will be important later. In addition, be-
cause the resulting matrix is tridiagonal, this diagonalization
process can be performed quickly and efficiently with mod-
ern sparse solving routines.29

III. CTAP IN A REALISTIC POTENTIAL

To illustrate the link between the finite state and
Schrödinger wave approaches, we take as an example a re-

cently proposed technique for moving electrons spatially us-
ing coherent, adiabatic evolution. As this scheme is the direct
electrical analog of STIRAP, the existing analyses specifi-
cally uses the FS model. Here, we investigate the state evo-
lution and pulse design for this system using the SW ap-
proximation. The full treatment of the spatial extent of the
electron is ultimately the more correct description as it does
not assume that the electron is tightly bound to one of the
sites included in the finite state basis set.

We begin by reviewing the FS treatment of CTAP. Given
a single electron that can be localized in one of three distinct
spatial regions, we describe this in a basis of three states that
are nominally the ground state of the electron at each of the
three sites. These spatial locations are analogous to energy
levels in a multilevel atom in quantum optics. Obviously the
first approximation here is that the excited states of the quan-
tum wells can be ignored in this process. This means that any
physics derived from the population of these higher levels is
essentially lost, but we will discuss this later.

We assume that the tunnel barrier between the dots can be
modulated in such a way that we may vary the coherent
tunneling rates �or matrix elements� between dots. This pro-
cess is directly comparable to laser mediated transitions be-
tween levels �in the rotating frame� of a multilevel atom �see
Fig. 3�. In the finite state model, the Hamiltonian is given by

HFS = � 0 − �12 0

− �12 � − �23

0 − �23 0
	 , �4�

where � is the offset energy �detuning� of the central site
relative to the end sites, �12 and �23 are tunnel matrix ele-
ments and we have set the energies of the first and last sites
equal.

The eigenstates of this Hamiltonian are1,2

�D+� = sin �1 sin �2�a� + cos �2�b� + cos �1 sin �2�c� ,

�D−� = sin �1 cos �2�a� − sin �2�b� + cos �1 cos �2�c� ,

�D0� = cos �1�a� + 0�b� − sin �1�c� , �5�

where

�1 = arctan��12/�23� ,

FIG. 2. �Color online� The energy gap between the ground and
excited states ��SAS� as a function of the barrier height V0 in units
of E�, for a double-well system comprised of wells of width L
separated by a barrier of width w, as shown in Fig. 1.

|a> |b> |c>

(b)

|a>
|c>

|b>

(a)

∆

κ12

κ23

∆

κ23κ12

FIG. 3. Correspondence of the �a� quantum optics description of
a three level atom with laser transitions which is equivalent to the
finite state approximation and �b� a single electron undergoing co-
herent tunneling between one of three finite wells �SW�. The tunnel
matrix elements between states are �12 and �23, while the single-
photon detuning �central well offset energy� is given by �.
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�2 =
1

2
arctan
���2�12�2 + �2�23�2�/�� . �6�

The eigenenergies of these states are

E� =
�

2
�

1

2
��2�12�2 + �2�23�2 + �2,

E0 = 0. �7�

Applying a specific pulse sequence to modulate the coher-
ent tunneling allows the transfer of the electron between the
two extrema wells. If the barrier closest to the electron is
lowered first, the system adiabatically follows the ground-
state eigenstate spending some time in the central well. This
we refer to as the intuitive direction �ID�. Reversing the
pulse sequence is termed the counter-intuitive direction
�CID� and similarly results in a transfer of the electron but
this time via the 1st excited state of the system. This can be
seen directly from the eigenstates Eq. �5�, where the CID
path transforms from �a� at t=0 to �c� at t= tmax and hence the
goal of the CID sequence is to maintain the system in �D0�
throughout the evolution.

The original work on CTAP �Ref. 2� assumed that the
tunneling rates between wells could be arbitrarily controlled,
whereas here we are specifically concerned with how to
modulate the barrier heights to achieve an arbitrary tunnel-
ing rate variation. It is by investigating this link between the
control of the barrier height and the tunneling rates and as-
sociated issues that we can investigate the link between the
FS and SW descriptions. In this case, the SW version of the
problem is described by a 1D potential consisting of three
wells, separated by finite barriers 
i.e., Fig. 3�b��. The dis-
crete form of the Hamiltonian of the system is then given by
Eq. �3�.

If we start with the conventional CTAP pulsing scheme,
the coupling between states is varied in time in a Gaussian
fashion,

�12�t� = �max exp
−

t − �tmax + ��/2�2

2�2 � �8�

�23�t� = �max exp
−

t − �tmax − ��/2�2

2�2 � , �9�

where �max is the maximum coupling, tmax is the pulse time,
and � controls the width of the pulses in time. To achieve an
equivalent modulation using finite wells, we need to vary the
barrier heights starting from some maximum barrier height
�Vmax�, down to some minimum height �Vmin� and back up to
the maximum. The CTAP pulses are then constructed by ap-
plying identical pulses to both barriers with some time delay
� between them.

To find an approximate barrier modulation pulse to repli-
cate the behavior of the Gaussian pulses, Eq. �8�, we can
consider the conventional result that the probability of tun-
neling through a finite �but large� barrier of height V0 and
width w is proportional to exp
−w�V0�. If we naively equate
this to the coupling energy, we obtain

exp
− w�V0� � exp
−

t − �tmax � ��/2�2

2�2 � , �10�

and normalizing for the minimum and maximum barrier
heights gives

V�t� =
Vmax − Vmin

�tmax + ��4 �2t − tmax 	 ��4 + Vmin, �11�

which we designate as pulsing scheme I. Figure 4�a� shows
the barrier heights given by Eq. �11� as a fraction of the pulse
time for �= tmax /16, Vmin=10 and Vmax=1000.

To derive a more rigorous pulsing scheme �II�, we can
take the previous calculation of coupling as a function of
barrier height �Fig. 2� and use interpolation to calculate the
required barrier height for a given coupling �. Figure 4�b�
shows this pulsing scheme for a barrier width of w=0.2L.
The functional form of this pulse is very similar to that of
pulse I but with a smooth roll off at the pulse maximum.
While pulse II is more difficult to calculate �as it requires the
numerical solution to the finite well problem� this calculation
need only be performed once with the pulses being then
constructed via lookup tables and interpolation.

The pulses considered so far start and finish with the bar-
riers both “high.” It is also possible to construct a pulse
where only one barrier is initially high, the other barrier
�which is not required to confine the electron initially� can be
started in its “low” state.30 An example of this is

V1�t� = �Vmax − Vmin�cos2�


2

t

tmax
� + Vmin �12�

V2�t� = �Vmax − Vmin�sin2�


2

t

tmax
� + Vmin, �13�

which we designate pulse III, see Fig. 4�c�. In this pulse
scheme there no longer exists an ID pulse and the CID pulse
corresponds to following the 2nd excited state of the system.

FIG. 4. �Color online� Four different pulsing schemes for modu-
lation of a barrier height to result in a CTAP transfer between wells.
In each case, the solid �dashed� curve is the height of barrier 1 �2�
as a function of pulse time. Note the logarithmic scale for pulse IV.
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In a system in which the native barrier position is low and
voltages need to be applied to raise the barrier height, an
alternating pulse of this type may be simpler to implement. It
also does not require timing delays between the pulses, as the
pulse overlap stems from the time-reversal symmetry of the
pulses.

While pulse III is relatively simple to describe and/or
implement, it is not optimal in the sense that the greatest
variation in barrier height is exactly where there is greatest
overlap, resulting in a very narrow energy gap for adiabatic
evolution. A better pulsing scheme would be to construct
pulses that display a trigonometric variation in coupling
rather than barrier height. Again, using Fig. 2 to obtain such
a pulse �IV�, we obtain the pulse scheme shown in Fig. 4�d�,
which requires much finer control in the initial and final
stages of the pulse but results in a much smoother variation
in the coupling over time and large adiabatic gap.

IV. EIGENSPECTRA AND ADIABATIC CRITERIA

Using the method of Sec. II, we can obtain the eigenen-
ergies and eigenstates of the triple well system as a function
of pulse time. In this way, we can construct the eigenspec-
trum, which provides information about the adiabaticity of
the system, as well as determining the population distribution
at each point in time. While in principle the FS formalism
provides this same information, using the SW method allows
the inclusion of realistic spatially varying potentials. This, in
turn, allows calculation of the higher lying states and the
spatial distribution of the wavefunction itself.

In Fig. 5, we show the eigenspectrum of the finite well
system �consisting of three wells of width L separated by two
barriers of width w=0.2L� undergoing evolution due to
modulation of the barrier heights according to pulse II. In
this plot, the manifolds of three states are visible at progres-
sively higher energies. Each of these manifolds corresponds

to a bound state in a well of width L. The width of the wells
has been chosen so that there is a large separation between
each group of three states, which guarantees that the adia-
batic evolution will leave the particle in the ground state of
the occupied well at the end of the pulse sequence.

For this and subsequent calculations involving pulses I
and II, the bottom of the central potential has been raised
such that V�−L /2�x�L /2�=0.1E�, to separate the energies
of the states within each manifold. The sign of this offset
does not qualitatively change the following results, provided
that the energy of the lowest three eigenstates does not ap-
proach those of the next highest manifold of states.

For pulses III and IV, the central well offset is unneces-
sary as the initial condition �with only one barrier high� natu-
rally splits the degeneracy of the first three eigenstates. In
contrast, for all pulses sequences, the left and right wells are
identical, resulting in no offset between their ground-state
energies. This has been shown to be an important
requirement1,2,23 as variation in energy between the initial
and final well results in crossings in the eigenspectrum,
which limits the adiabatic evolution.

Figure 6 shows the eigenstates of the three well system at
three different points during pulse sequence II, whose
eigenspectrum is shown in Fig. 5. The eigenstate correspond-
ing to the CID pathway for CTAP is given by the first excited
state �the solid line� in each subfigure. Note that the electron
is well localized at the beginning and end of the pulse, but
the spatial location of the eigenstates has swapped. At the
halfway point of the pulse sequence, the eigenstates are su-
perpositions of all three well states as well as having some
non-negligible population within the barriers. In contrast to
the FS model, the population in well 2 is not zero, even in
the limits of long time and ideal coupling, due to the ex-
tended nature of the wavefunction. However, in common

FIG. 5. �Color online� Eigenspectrum of the three well system
as a function of time within pulse sequence II. The insert shows the
three lowest eigenvalues in the central region of interest where the
characteristics of the eigenstates are changing fastest.

FIG. 6. �Color online� Eigenstates of the three well system as a
function of time within pulse I plotted at �a� t / tmax=0.2, �b�
t / tmax=0.5, and �c� t / tmax=0.8. The eigenstates are the ground state
�dashed�, first excited �solid� and second excited state �dotted�, re-
spectively, where the CTAP pulse corresponds to the first excited
state. Note, the potential is shown in arbitrary units for comparison.
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with the FS model, the central well population is strongly
suppressed for the CID pathway state. We discuss this in
more detail in Sec. V.

We can perform the same analysis to obtain the
eigenspectrum of the other pulse schemes, which are shown
in Fig. 7. Note that, given the similarity between pulses I and
II, the eigenspectrum from Fig. 5 is not presented here. From
Fig. 7, we immediately see that pulse III is indeed a poor
choice as it results in a very small �but nonzero� gap between
the first and second excited states. In contrast, pulse IV pro-
vides a smooth variation in the energies of the system with a
similar gap size to that resulting from pulses I and II.

Once we can calculate the eigenspectrum of the system,
we can also estimate a time scale over which the system
evolution is adiabatic. To estimate this, we use

A
�i�t�,� j�t�� =
�� j�t��

�H
�t ��i�t��

��� j�t��H�� j�t�� − ��i�t��H��i�t���2

�14�

as the adiabaticity of a transfer between eigenstates �i and
� j .31 We can then define the adiabaticity of the CTAP pro-
cess as

ACTAP�t� = max�A
�1�t�,�2�t��,A
�2�t�,�3�t��� , �15�

where the �’s are the first three eigenstates of the system
�ordered by energy� at a given time t in the pulse sequence
and following �2 corresponds to the CID pathway. In this
case, adiabaticity is achieved if ACTAP�t��1 for all t. This
method has the advantage that an estimate for the minimum
pulse time required is obtained without explicitly integrating
the time dependence. The disadvantage is that it provides no
information on the fidelity �probability of successful transfer�
of a given pulse sequence, which still requires numerical
integration. Figure 8 shows tmaxACTAP�t� as a fraction of the
pulse time for each of the viable pulse sequences. Looking at

the maximum of the adiabaticity, we expect that pulse IV can
be applied up to four times faster than pulse I. It is interest-
ing to note that the adiabaticity predicts a difference in the
behavior of pulses I and II, despite the similarity of the cor-
responding eigenspectra. We also see that the maxima of
ACTAP�t� are not at the middle of the pulse sequence, in
contrast to the FS model.

V. CENTRAL WELL POPULATION

One of the defining features of CTAP protocol in the FS
formalism is that the central well is unpopulated in the adia-
batic limit. One key question is whether this feature is pre-
served when including the effects of realistic 1D potentials.
Using the finite state formalism, the population is predicted
to be exactly zero for infinitely slow evolution due to the
precise cancellation of the components of the wavefunction,
which correspond to the middle well. Therefore, the fraction
of population in the central well due to the finite wells rep-
resents an important difference between the FS and SW de-
scriptions. When performing simulations on the effects of
decoherence and fabrication defects,23,32 it is essential to in-
clude these deviations from the FS picture as these represent
one of the principle error modes. Nonadiabatic corrections
will also introduce some population in higher lying states �as
seen in the conventional Landau–Zener problem� although
this effect is replicated, at least qualitatively, in the FS for-
malism.

Using the exact diagonalization over a finite lattice, we
can see that for a finite barrier the population is not zero,
even in the perfectly adiabatic limit. This nonzero population
results in the system now being susceptible to decoherence
and other effects that depend on the population of well 2. As

FIG. 7. �Color online� Eigenspectrum of the three well system
as a function of time for �a� pulse III and �b� pulse IV. Note the very
small energy gap for pulse III, due to the smaller tunneling rate at
the midpoint of the pulse sequence.

FIG. 8. �Color online� ACTAP�t� plotted for three different pulse
sequences �pulse III is not included as it requires excessively long
pulse times�. From this plot we can estimate that for the chosen
values of Vmax and Vmin, the pulse time must be at least tmax


1 /100�E��−1 to ensure adiabatic evolution.
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the CID pulse should transfer an electron from well 1 to 3
without populating well 2 �according to the FS model�, we
can define the probability of deviation from the ideal result
as the maximum occupancy of the central well and surround-
ing barriers

p2 = 1 − pwell1 − pwell3 = �
−L/2−w

L/2+w

���dx . �16�

In Fig. 9, we plot this probability as a function of both bar-
rier height V1=V2=V0 and barrier width w. This plot shows
that the population is exponentially suppressed but nonzero
for finite barrier, as foreshadowed earlier.

We can also solve this problem analytically in the limit of
large barriers. In the limit that the barriers are high or wide
�or both�, the major contribution to p2 comes from the expo-
nential decay of the wavefunction as it enters the barriers
�rather than population in the central well itself�. We can
therefore model this using the solution for a particle in a box
with one infinite wall and one finite wall. In this case, the
solution is a transcendental equation

k1

k2
= − tan�k1L� , �17�

where k1=�2mE /�2, k2=�2m�V0−E� /�2 and L is the width
of the well. The central region probability is then approxi-
mately the fraction of the particle distribution function which
is inside the barrier. This approximate solution is also plotted
in Fig. 9 and is valid for w�V0�10LE�, i.e., barrier areas
greater than about 10 in normalized units.

VI. TIME EVOLUTION

To calculate the time evolution of an electron in a spa-
tially and temporally varying potential, we use the Crank–

Nicolson method33–35 to approximate the propagator over a
time period �t. The time evolution of the system is then
expressed as

��x,t + �t� = U��t���x,t� , �18�

where the propagator in Cayley form35,36 is

U��t� �
2 − i��t�Ĥ

2 + i��t�Ĥ
. �19�

This allows the time evolution of the system to be calculated
for an arbitrary combination of initial state, potential, and
pulse scheme. While this method is much more computation-
ally intensive than solving the same problem using the FS
formalism, it does describe the effects of finite barriers, spa-
tially distributed wavefunctions and arbitrary potential pro-
files.

In Fig. 10, we plot a series of snapshots showing the
probability distribution, ���x , t��2, as a function of time dur-
ing the application of pulse sequence II. As the barriers are
lowered, the particle starts to penetrate into the barriers �in-
dicated by a spreading of the wavefunction� and then ulti-
mately move from well 1 to well 3 with only an exponen-
tially suppressed population in the well 2.

To study the approach to the adiabatic limit, in Fig. 11,
weplot the final population distribution ���x , tmax��2 as a
function of tmax, using pulse II scaled appropriately for each
tmax. We identify four regions based on the system’s qualita-
tive properties, the simplest being regions �a� and �d�. In
region �a�, the pulse sequence is applied so quickly that the
system does not have time to respond, resulting in no evolu-
tion. In region �d�, the system evolution is slow enough that
the entire transfer is adiabatic, resulting in complete transfer
from well 1 to 3. In the intermediate regions �b� and �c�, the
transfer is slow enough to allow evolution but still nonadi-
abtic in that the other eigenstates are populated during the
pulse, resulting in imperfect transfer. It is interesting to note
that in region �b�, all three wells are populated at the end of
the transfer, whereas in region �c� the final state is only com-
posed of population in well 1 and 3. This population asym-
metry arises because the spacing between the eigenstates is

FIG. 9. �Color online� Occupation probability of the central re-
gion as a function of barrier height and barrier width. Note that for
sufficiently high barriers, the occupancy is largely independent of
barrier width. Even with the barrier at its minimum value during a
CTAP pulse, the population of the central well and the barriers is
less than 0.1 for a barrier width of w=L /20.

FIG. 10. �Color online� Example trace showing evolution of the
probability distribution as a function of time during a CID pulse for
pulse II. Qualitatively similar behavior is observed for the other
pulse sequences.
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nonuniform, due to the offset in the central well potential.
Referring back to Fig. 5, we see that the energy gap between
the second and third eigenstates is larger than that between
the first and second. We can therefore interpret region �b� as
the point at which the transfer is fast enough to populate all
three eigenstates whereas the slower pulse in region �c� can
only populate the lower two states. As the lower two states
are only adiabatically connected to the first and third wells,
this results in the observed population distribution.

To compare the various pulsing schemes, we plot the
probability of successful transfer as a function of the pulse
time �tmax� in Fig. 12, following the similar analysis in Ref.
2. The ordering is as expected from Fig. 8 with a pulse time
of tmax�103 allowing adiabatic transfer for pulse II whereas
pulse IV requires approximately four times longer. While the

fidelity for pulse II and IV are monotonically increasing
functions, the fidelity function for pulse I has a noticeable
oscillation. This is consistent with pulse I being an approxi-
mation to pulse II. Previous work has shown that the fidelity
function of a CTAP pulse �using Gaussian modulation� is
strongly dependent on the spacing between the pulses.37 In
this case, the approximation used to derive pulse I is only
strictly valid near the minimum barrier height �maximum
tunnelling rate� whereas the overlap between the pulses is
strongly controlled by the value of the barriers at t= tmax /2.
This variation in the overlap leads to oscillations in the fi-
delity function.

For comparison, the solution of the same problem using
the FS formalism with appropriate energies is also shown in
Fig. 12. For the pulsing scheme given by Eq. �8�, the fidelity
increases monotonically �solid line� although the maximum
gradient of this line is larger than that predicted using the
SW formalism. The fidelity obtained using the FS formalism
is also plotted for a Gaussian barrier modulation where the
separation between pulses has been doubled �dashed line�,
illustrating the onset of oscillations in the fidelity due to
mismatch in the pulse timing.

The choice of pulse modulation is therefore important
with the maximum transfer speed ultimately controlled by
the adiabatic criteria for the transfer. To optimize the transfer
rate, it would therefore be useful to design a pulse sequence
which minimizes the adiabatic criteria while still connecting
the initial and final states via an adiabatic pathway.38 In prac-
tice, this optimization would also need to take into account
any restrictions on the rate at which the barriers can be var-
ied as well as the maximum and minimum values the barrier
height can take.

VII. CONCLUSION

Recent progress in theoretical and experiment control of
quantum systems has highlighted the link between quantum
optics and coherent solid-state devices. Many of the key de-
velopments have benefited from the close mathematical and
conceptual relationship between these fields. This has al-
lowed a fast uptake of ideas, where a concept in one field can
be quickly mapped to the other. We have investigated aspects
of this link, specifically where they apply to the use of adia-
batic passage techniques in solid-state systems. The charac-
teristics of the eigenspectrum and evolution of an electron in
a triple well system was studied for different time-varying
potentials. These results are directly applicable to electron
shuttling in confined electron systems such as quantum dots
or between donor sites.

While the analogy between the two formalisms studied is
strong enough to guide future work, care must be taken,
especially when using realistic potential profiles to predict
the outcomes of future experiments. For more sophisticated
and accurate calculations, it will be ultimately necessary to
include more physics than is contained in the finite state
approximation. This is particularly evident in the example
considered in this paper when trying to determine the prob-
ability of success for various pulse designs and switching
times at the limit of the adiabatic window. At this point, the

FIG. 11. �Color online� Plot showing the final state of the sys-
tem as a function of the total time of pulse II. Note the four key
regions �a�, �b�, �c�, and �d� described in the text, which correspond
to four regions of qualitatively different behavior.

FIG. 12. �Color online� Fidelity of the pulse as a function of the
total pulse time, shown for three different pulses. The FS solution to
this problem is also shown �solid line� with Gaussian overlapping
pulses as well as the same problem with a timing mismatch �dashed
line� such that the time separation between the pulses is doubled.
The oscillations in the fidelity stem from this imperfect overlap in
the pulses.
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spatial wave model predicts both qualitatively and quantita-
tively different behavior to the finite state model, in terms of
both transfer fidelity and failure modes. In these situations,
the solution of the spatially varying wavefunction is essential
for an accurate description of the system dynamics.

The goal of our work is to assess the validity of the usual
�quantum optics motivated� approach to the CTAP process
where the spatial dependence of the phenomenon is ignored.
Our model analysis, using the explicit solution of the time-
dependent Schrödinger equation, demonstrates the validity of
the usual CTAP approach, pointing out at the same time
some of the limitations arising from the neglect of the
spatial-dependence in the standard �and extensively used�
CTAP theory. We are particularly interested in the applica-
tion of CTAP in the solid-state quantum information process-
ing in quantum dot or semiconductor donor systems. Since
such solid-state CTAP experiments are still very far in the
future, we have used a minimal model so as not to compli-

cate the conceptual issues by unnecessary numerical details.
A real experimental situation will necessitate going beyond
this minimal model, which may turn out to be complicated in
real solid-state systems.

ACKNOWLEDGMENTS

The authors wish to acknowledge useful discussions with
A. M. Martin and D. P. George. J.H.C. acknowledges the
support of the Alexander von Humboldt Foundation and
S.D.S. acknowledges research support from the LPS-NSA.
A.D.G. and L.C.L.H. acknowledge the Australian Research
Council for financial support �Projects No. DP0880466 and
No. DP0770715, respectively�. This work was supported in
part by the Australian Research Council, the Australian Gov-
ernment, the U.S. National Security Agency and the U.S.
Army Research Office under contract number W911NF-04-
1-0290.

1 N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann,
Annu. Rev. Phys. Chem. 52, 763 �2001�.

2 A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hol-
lenberg, Phys. Rev. B 70, 235317 �2004�.

3 L. C. L. Hollenberg, A. D. Greentree, A. G. Fowler, and C. J.
Wellard, Phys. Rev. B 74, 045311 �2006�.

4 A. D. Greentree, S. J. Devitt, and L. C. L. Hollenberg, Phys. Rev.
A 73, 032319 �2006�.

5 K. Eckert, M. Lewenstein, R. Corbalan, G. Birkl, W. Ertmer, and
J. Mompart, Phys. Rev. A 70, 023606 �2004�.

6 K. Eckert, J. Mompart, R. Corbalan, M. Lewenstein, and G.
Birkl, Opt. Commun. 264, 264 �2006�.

7 E. M. Graefe, H. J. Korsch, and D. Witthaut, Phys. Rev. A 73,
013617 �2006�.

8 M. Rab, J. H. Cole, N. G. Parker, A. D. Greentree, L. C. L.
Hollenberg, and A. M. Martin, Phys. Rev. A 77, 061602 �2008�.

9 S. Longhi, Phys. Rev. E 73, 026607 �2006�.
10 S. Longhi, J. Phys. B 40, F189 �2007�.
11 S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, Phys.

Rev. B 76, 201101�R� �2007�.
12 D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 �1998�.
13 W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T.

Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys.
75, 1 �2002�.

14 L. Gaudreau, S. A. Studenikin, A. S. Sachrajda, P. Zawadzki, A.
Kam, J. Lapointe, M. Korkusinski, and P. Hawrylak, Phys. Rev.
Lett. 97, 036807 �2006�.

15 D. Schroer, A. D. Greentree, L. Gaudreau, K. Eberl, L. C. L.
Hollenberg, J. P. Kotthaus, and S. Ludwig, Phys. Rev. B 76,
075306 �2007�.

16 M. Rogge and R. Haug, Physica E �Amsterdam� 40, 1656
�2008�.

17 K. Grove-Rasmussen, H. I. Jøargensen, T. Hayashi, P. E. Linde-
lof, and T. Fujisawa, Nano Lett. 8, 1055 �2008�.

18 C. B. Simmons, M. Thalakulam, N. Shaji, L. J. Klein, H. Qin, R.
H. Blick, D. E. Savage, M. G. Lagally, S. N. Coppersmith, and
M. A. Eriksson, Appl. Phys. Lett. 91, 213103 �2007�.

19 J. Fabian and U. Hohenester, Phys. Rev. B 72, 201304�R�
�2005�.

20 B. Michaelis, C. Emary, and C. W. J. Beenakker, Europhys. Lett.
73, 677 �2006�.

21 D. Petrosyan and P. Lambropoulos, Opt. Commun. 264, 419
�2006�.

22 C. Emary, Phys. Rev. B 76, 245319 �2007�.
23 I. Kamleitner, J. Cresser, and J. Twamley, Phys. Rev. A 77,

032331 �2008�.
24 T. Brandes, F. Renzoni, and R. H. Blick, Phys. Rev. B 64,

035319 �2001�.
25 J. Siewert, T. Brandes, and G. Falci, Opt. Commun. 264, 435

�2006�.
26 M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information �Cambridge University Press, Cambridge,
2000�.

27 R. Chakrabarti and H. Rabitz, Int. Rev. Phys. Chem. 26, 671
�2007�.

28 C. Cohen-Tannoudji, B. Diu, and F. Lalo, Quantum Mechanics
�Wiley, New York, 1977�.

29 W. H. Press, Numerical Recipes in FORTRAN 77: The Art of
Scientific Computing, 2nd ed. �Cambridge University Press,
Cambridge, England, 1996�.

30 S. J. Devitt, A. D. Greentree, and L. C. L. Hollenberg, Quantum
Inf. Process. 6, 229 �2007�.

31 A. Messiah, Quantum Mechanics �North-Holland, Amsterdam,
1965�, Vol. 2.

32 P. A. Ivanov, N. V. Vitanov, and K. Bergmann, Phys. Rev. A 70,
063409 �2004�.

33 J. Crank and P. Nicolson, Proc. Cambridge Philos. Soc. 43, 50
�1947�.

34 J. Crank and P. Nicolson, Adv. Comput. Math. 6, 207 �1996�.
35 S. S. M. Wong, Computational Methods in Phyiscs and Engi-

neering �Prentice-Hall, Englewood Cliffs, NJ, 1992�.
36 A. Goldberg, H. M. Schey, and J. L. Schwartz, Am. J. Phys. 35,

177 �1967�.
37 A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hol-

SPATIAL ADIABATIC PASSAGE IN A REALISTIC… PHYSICAL REVIEW B 77, 235418 �2008�

235418-9



lenberg, Micro- and Nanotechnology: Materials, Processes,
Packaging and Systems II �SPIE—The International Society of
Optical Engineers, University of NSW, Sydney, 2005�, Vol.

5650, pp. 72–80.
38 V. S. Malinovsky and D. J. Tannor, Phys. Rev. A 56, 4929

�1997�.

COLE et al. PHYSICAL REVIEW B 77, 235418 �2008�

235418-10


