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We investigate theoretically the magnetic levels and optical properties of zigzag- and armchair-edged hex-
agonal graphene quantum dots �GQDs� utilizing the tight-binding method. A bound edge state at zero energy
appears for the zigzag GQDs in the absence of a magnetic field. The magnetic levels of GQDs exhibit a
Hofstadter-butterfly spectrum and approach the Landau levels of two-dimensional graphene as the magnetic
field increases. The optical properties are tuned by the size, the type of the edge, and the external magnetic
field.
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Graphene is a single atomic layer consisting of a two-
dimensional honeycomb lattice of carbon atoms. This system
has attracted intense attention because of fundamental phys-
ics and promising applications in nanoelectronics.1,2 It exhib-
its high crystal quality, an exotic Dirac-type spectrum, and
ballistic transport properties on a submicron scale. Graphene
samples are usually fabricated by micromechnical cleavage
of graphite and have excellent mechanical properties that
make it possible to sustain huge electric currents. The lateral
confinement of Dirac fermions in graphene is still an enig-
matic and extremely challenging task due to the well-known
Klein paradox. The Klein paradox makes it impossible to
localize the carriers in a confined region utilizing an electro-
static gate. The confinement of Dirac fermions at a nano-
meter scale is one of the central goals of graphene-based
electronics and has attracted increasing interest.3–8 Recently,
it was demonstrated experimentally that graphene can be cut
in the desired shape and size.1,2 Recent progresses in fabri-
cating and characterizing stable graphene nanostructures pro-
vides the opportunity to explore the various remarkable
optical9–11 and transport properties12 of these structures.

In this work, we investigate theoretically the electronic
structure and optical properties of zigzag- and armchair-
edged hexagonal graphene quantum dots �GQDs� �see Fig. 1�
utilizing the nearest-neighbor tight-binding model. The dan-
gling bonds at the edges are passivated by hydrogen atoms.
The model has been successfully used for fullerene mol-
ecules, carbon nanotubes, and other carbon-related
materials.13–16 The Hamiltonian of GQDs can be written as
H=�i�ici

†ci+��i,j�ti,jci
†cj, where �i is the site energy, tij is the

transfer energy between the nearest-neighbor sites, and ci
†

�ci� is the creation �annihilation� operator of the � electron at
the site i. When considering a magnetic field B applied per-
pendicularly to the plane of a GQD, the transfer integral tij

becomes tij = tei2��i,j, where �ij =
e
h�ri

rjdl ·A is the Peierls
phase. A= �0,Bx ,0� is the vector potential corresponding to
the magnetic field B along the z axis, which is perpendicular
to the graphene plane. In our calculation, we take �0=h /e as
the unit of the magnetic flux and �=�3Ba0

2 /2 as the mag-
netic flux through a plaquette, where a0=2.46 Å is the lat-
tice constant of graphite. The difference between the values

of �i and tij for the atoms at the edge and the center is
neglected. The relevant parameters used in our calculation
are �=0 and t=−3.033.15 The eigenvalues and eigenstates
can be obtained from the secular equation det��−H�=0,
where Hii=0,H�i,j�= tei2��i,j.

Figure 1 shows the electronic density distributions of the
zigzag and armchair-edged graphene quantum dots �ZGQD
and AGQD, respectively�, in the absence of a magnetic field.
The size of a dot is characterized by N, the number of hex-
agonal units along an edge. Figures 1�a� and 1�b� show the
probability distributions of the highest valence level �HVL�
and the lowest conduction level �LCL� for the ZGQD with
small size �N=2�. The probability distributions of the HVL
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FIG. 1. �Color online� Electronic density distributions of the
HVL and LCL in the absence of a magnetic field. Panels �a� and �b�:
HVL and LCL for the Nz=2 ZGQD. Panels �c� and �d�: the same
with Nz=12. Panels �e� and �f�: the same with AGQD, but NA=9.
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and LCL correspond to the bonding and antibonding states
that are localized at the corner of the hexagonal GQD. In
contrast to conventional semiconductor quantum dots where
the ground state is localized at the center of the dot, the
ground states for the conduction and valence bands, i.e.,
HVL and LCL, localize at the middle of each edge in the
ZGQD 	see Figs. 1�c� and 1�d�
 as the size of the ZGQD
increases. This feature can be understood as follows: the
Dirac fermion in a ZGQD behaves like a confined photon in
a cavity and the lowest mode is the whispering gallery mode,
which also localizes at the boundary of the cavity. The dif-
ference between the bonding and antibonding states becomes
smaller as the size of the ZGQD increases. The difference
between the edge states of a ZGQD and a graphene nanorib-
bon is that the edge state of the ZGQD localizes at the
middle of the edge of GQD, in contrast to the homoge-
neously distributed edge state of a zigzag graphene
nanoribbon14,17 or a zigzag triangular GQD.18 This occurs
because the contribution of each carbon atom at the edge of
a ZGQD to the edge state is different, while it is the same for
a zigzag nanoribbon or a zigzag triangular GQD. The density
distributions of the LCL and HVL in an AGQD 	see Figs.
1�e� and 1�f�
 extend more completely over the whole GQD
region and are very different from that in a ZGQD. This
difference is indeed caused by the different topological ge-
ometry of the boundary of the graphene nanostructures.

Figures 2�a� and 2�b� show the density of states �DOS� of
ZGQDs and AGQDs, respectively, with different sizes in the
absence of a magnetic field. The total number of the carbon
atoms in ZGQD and AGQD are 6Nz

2 and 6�3Na
2−3Na+1�,

respectively. From the figures, we find that there is no edge
state in a small ZGQD and the edge state appears when the
size of the ZGQD increases according to the states at zero
energy. Meanwhile, there is never an edge state for the
AGQD. To demonstrate how the edge state appears, we plot
the energy gap, i.e., the energy difference between the LCL
and the HVL, as a function of the size �N� of the GQD in
Fig. 2�c�. The energy gap decreases as the size of the GQD
increases. Interestingly, the energy gap of the zigzag �arm-
chair� GQD decays to zero quickly �slowly� as the size of the
GQD increases. When the size of the AGQD approaches
infinity, the gap decreases to zero, i.e., we recover the two-
dimensional graphene case. The calculated energy gap for

the AGQD falls off as 1 /N�1 /L 	see the solid line in Fig.
2�c�
, where L is the length of each edge of the hexagonal
GQD. This dependence of the band gap on the size of GQD
is very different from that of a conventional semiconductor
quantum dot, which behaves as 1 /L2.

Figures 3�a� and 4�a� depict the magnetic field depen-
dence of the energy spectrum of a ZGQD and an AGQD
exhibiting a clear Hofstadter-butterfly characteristic, which is
fractal and exhibits self-similarity.14,19–21 As the magnetic
flux increases, the magnetic levels in the GQD, i.e., the so-
called Fock–Darwin levels, approach the Landau levels 	see

FIG. 2. �Color online� Density
of states of �a� ZGQD and �b�
AGQD. We use a Gaussian func-
tion f�E�=e−�E − E0�2/�2

with a
broadening factor �=0.05 eV to
smooth the discontinuous energy
spectra. �c� The gap of ZGQD and
AGQD as a function of the size,
and the function of the fit line is
a /N with a=4.9 eV.

FIG. 3. �Color online� �a� The DOS and energy spectrum of the
Nz=12 ZGQD in a magnetic field. We use a Gauss function with a
broadening factor of 0.1 eV to smoothen the discontinuous energy
spectra. 	�b� and �c�
 The magnetic energy level fan near the Dirac
point, i.e., the zero energy point. The red lines in �b� correspond to
the Landau level of two-dimensional graphene. �d� the DOS at the
Dirac point, as a function of the inverse flux � /�0, where we use a
Gauss function with a small broadening factor of 0.01 meV.
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the red lines in Figs. 3�b� and 4�b�
 in graphene En

=sgn�n���3ta0 /2lB��2�n�, where lB=�	 /eB is the cyclotron
radius, n is an integer, and sgn is the sign function.

Figures 3�c� and 4�c� show in detail how the magnetic
levels of ZGQD and AGQD approach the zeroth Landau
level at small magnetic flux. As the magnetic flux increases,
more energy levels approach the zeroth Landau level in
pairs. The degeneracy of the energy level at zero energy will
reach its maximum value 2N for � /�0=1 /2N. When the
magnetic flux increases further, the degeneracy of the energy
level at zero energy is lifted fast. This feature can also be
seen in Fig. 3�d�, which plots the DOS at the Dirac point.
This figure indicates that the degeneracy, i.e., the number of
energy levels at the zero energy, approximately decreases
inverse linearly with the magnetic flux � /�0. These figures
clearly demonstrate that the energy spectrum of the GQD
possesses electron-hole symmetry when we neglect the
second-nearest-neighbor interaction. The DOS and the mag-
netic level fan of the AGQD are similar to that of the ZGQD
except at small magnetic flux. Comparing Fig. 3�c� to Fig.
4�c�, the magnetic levels in the AGQD are distinct from
those in the ZGQD at small magnetic flux because the
ZGQD shows the edge state and AGQD does not for the
levels near the Dirac point in the absence of the magnetic
field. Therefore, the magnetic levels exhibit distinct behavior
as the magnetic flux increases. The DOS of the AGQD 	see
Fig. 4�d�
 also shows a steplike feature as the magnetic flux
at the Dirac point increases.

Figure 5 describes the density distributions of the LCL
and HVL in the ZGQD and AGQD at small magnetic flux
� /�0=0.01. Interestingly, the density distributions of the
LCL and HVL penetrate into the center of the GQD for the

ZGQDs, which is very different from the AGQD case where
both the electron and hole are dominantly localized in the
center of the GQD. The density distributions for the ZGQD
and AGQD show a C6v symmetry. This characteristic is
caused by the magnetic confinement when the magnetic
length lB becomes comparable with the size of the GQD. In
addition to those differences, the LCL and HVL of the zigzag
GQD show an opposite symmetry order with respect to that
of the armchair GQD, i.e., the LCL �HVL� and HVL �LCL�
of the ZGQD �AGQD� belong to the E1�E2� and E2�E1� rep-
resentations at zero magnetic field 	see Fig. 6
.

The optical properties of GQDs are promising for poten-
tial applications in optic–electronic devices based on
graphene. Therefore, we calculate the absorption spectra of
GQD 
�	��= �e2

m0
2�0cn�V

�c,v��� · Pcv�2��Ec−Ev−	��, where n
is the refractive index, c is the speed of light in vacuum, �0 is
the permittivity of vacuum, m0 is the free-electron mass, and
�� is the polarization vector of the incident light along the x
direction. The coupling between the sp2 states and the pz
state is neglected since we are only interested in the optical
properties of the GQD near the Dirac point, i.e., at the low
energy regime. The momentum matrix22 is �n�p�m�
= im0 /	�r�r�cr

�cr��r�−r��pz ,r�H�pz ,r��. The momentum op-
erator px�py� has E2 symmetry and its direct product with all
the irreducible representations of the C6v group can be found
in Table I. We divide the levels of the GQD into two different
families: A1 ,A3 ,E1��1 and A2 ,A4 ,E2��2. The symmetry
requires that only transitions between the valence and con-
duction band levels belonging to the different families �1
and �2 are allowed. Notice that the initial or final states of
the transition should belong to the E1 or E2 representations.
In Figs. 6�a� and 6�d�, we label the level structure of a Nz
=12 and Na=9 GQD near the Dirac point as C1−Cn for
conduction bands with ascending order and V1−Vn for va-
lence bands with descending order, respectively. The conduc-
tion Ci and valence band levels Vi belong to the distinct
families �1 and �2, respectively. For example, if Ci belongs
to the family �1, i.e., A1, A3 or E1, Vi must belong to the
family �2, i.e., A2, A4 or E2, or vice versa. For zigzag GQDs

FIG. 4. �Color online� The same as Fig. 3, but for the Na=9
AGQD
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FIG. 5. �Color online� �a� and �b� show the density distributions
of the HVL and LCL for the Nz=12 ZGQD in the presence of the
magnetic flex � /�0=0.01, respectively. �c� and �d� are the same as
�a� and �b�, but for the Na=9 AGQD.
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with even Nz, the conduction band levels, from bottom to
top, exhibit different symmetries, i.e., E2, A3, E1, A2, etc.,
and the corresponding valence band levels show E1, A4, E2,
A1, etc. For the zigzag GQDs with odd Nz, the conduction
band levels display the opposite �same� symmetries E1, A4,
E2, A1, etc. to the conduction �valence� band levels of zigzag
GQDs with even Nz. For the armchair GQDs, the lowest
conduction band level always shows the symmetries E1, A4,
A2, E2, etc. from bottom to top and this order is independent
of the size �Na� of the armchair GQD.

For Nz=12 ZGQD, the lowest optical-absorption peak
�peak A� corresponds to the transition between the lowest
conduction band level C1 with E2 symmetry and the highest
valence band level V1 with E1 symmetry. The second and
third lowest transitions correspond to the transition between
the level C2�C3� with A3�E1� symmetry and the level V3�V2�
with E2�A4� symmetry and the level C1�C4� and V4�V1�, re-
spectively. But the strengths of these three transitions are
very small, therefore these transitions are not clearly seen in
the contour spectrum in Fig. 7 at � /�0=0. The strong ab-
sorption peak �peak D� appears at E=0.26 eV, correspond-
ing to the transition between the level C3 with E1 symmetry
and the level V3 with E2 symmetry. This strong absorption
arises from the large moment matrix �n�p�m� between these
states.

For Na=9 AGQD, the lowest peak �peak A� is similar to
that in the zigzag GQD, corresponding to the transition be-
tween C1 and V1. But the second peak �peak B� is different
from those of the zigzag GQD. This peak corresponds to the
transition between the level C2�C4� with A4�E2� symmetry
and the level V4�V2� with E1�A3� symmetry. The third strong
peak �peak C� indicates the transition between the level C4
with E2 symmetry and the level V4 with E1 symmetry. Strong
absorption takes place when the initial �Vi� and final states
�Ci� have either E1 or E2 symmetry. As the size of the GQD
increases, the absorption peaks shift to a long wavelength for
both ZGQD and AGQD. The absorption peaks of the ZGQD
shift to the long wavelength faster than those of the AGQD.
The relative strength between the peak D and A increases as
the size of the GQD increases for ZGQDs. But for AGQDs,
the relative strength between the peak C and A is almost
independent of the size.

Next, we discuss the effect of a magnetic field on the
optical spectrum of a GQD. Here, we only focus on the small
magnetic flux case �see Fig. 7�. The spectra of two distinct
GQDs, the zigzag and armchair GQDs, exhibit quite a dif-
ferent behavior due to their different level structures and the
oscillator strengths determined by the boundary especially
for the LCL and HVL, which localize at the edge of ZGQD.
The spectra of the two distinct GQDs show that the strengths
of the transitions vary as the magnetic field increases. In

FIG. 6. �Color online� �a� and �d� are the level
diagram for Nz=12 ZGQD and Na=9 AGQD
without the magnetic field, where different sym-
metries are represented by different colors and
lines: black solid, black dashed, red solid, red
dashed, green solid, and green dashed lines for
the E1, E2, A1, A2, A3, and A4 irreducible repre-
sentations of the C6v symmetry, respectively. �b�
and �c� The jointed density of state �JDOS� and
the optical-absorption spectrum 
 for Nz=12
ZGQD. We used a Gauss function with different
broadening factors: 0.02 and 0.005 eV for the
black and red lines. �e� and �f� are the same as �b�
and �c�, but for the Na=9 AGQD.

TABLE I. Direct products of the E2 representation for the mo-
mentum operator px�py� with all the irreducible representations of
the C6v group. The results are presented as direct sums of all pos-
sible irreducible representations of the C6v group. The notations of
symmetries are adopted from Ref. 23.

Direct product Direct sum

E2 � A1 E2

E2 � A2 E1

E2 � A3 E2

E2 � A4 E1

E2 � E1 A2 � A4 � E2

E2 � E2 A1 � A3 � E1

(b) N =9a( ) N =12za (b) N =9a

FIG. 7. �Color online� The contour plot of the magneto-optical
spectra of �a� the zigzag and �b� the armchair GQD, respectively.
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particular, the strong absorption lines exhibit �B asymptotic
behavior corresponding to the transitions between the con-
duction and valence band Landau levels at a high magnetic
field. We also find anticrossings in the spectra since the mag-
netic field induces the mixing of the levels belonging to the
different families.

In summary, we investigated theoretically the magnetic
levels and the optical spectrum in GQDs. In contrast to con-
ventional semiconductor QDs, the LCL and HVL exhibit an
edge-state feature, i.e., a nonzero probability of being at the
edge of the sample, and the density distribution depends sen-
sitively on the type of boundary of GQDs and the magnetic

field strength. The magnetic levels of GQD display a
Hofstadter-butterfly characteristic and approach the Landau
levels of two-dimensional graphene as the magnetic field in-
creases. The magneto-optical spectrum of a graphene quan-
tum dot in the interesting energy range �0–3 eV� is promising
for carbon-based electronics applications. The position and
strength of the absorption peaks can be tuned by the size of
the GQD, the type of the edge of the GQD, and the external
magnetic field.
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