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The magnetotransport properties of antidot lattices containing artificially designed grain boundaries have
been measured. We find that the grain boundaries broaden the commensurability resonances and displace them
anisotropically. These phenomena are unexpectedly weak but differ characteristically from isotropic Gaussian
disorder in the antidot positions. The observations are interpreted in terms of semiclassical trajectories, which
tend to localize along the grain boundaries within certain magnetic-field intervals. Furthermore, our results
indicate how the transport through superlattices generated by self-organizing templates may get influenced by
grain boundaries.
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I. INTRODUCTION

Superlattices imposed on two-dimensional electron gases
�2DEGs� by lateral patterning have revealed many fascinat-
ing effects over the past two decades. One version of such
superlattices are antidot lattices, where the potential maxima
lie above the Fermi energy.1–3 The longitudinal magnetore-
sistance shows resonances at magnetic fields where the cy-
clotron orbit is commensurate with the lattice,2 an effect
which originates from the classically chaotic character of
such systems, as demonstrated by simulations based on the
Kubo formalism.4,5 This model has also been used to explain
the nonlinear Hall resistance of antidot lattices,6 which can
even become negative at small magnetic fields.2 Many quan-
tum effects in lateral superlattices have been reported as
well. For example, B-periodic oscillations superimposed on
the commensurability oscillations have been explained by
quantization along closed orbits7,8 in square lattices. In hex-
agonal lattices, a transition from Altshuler-Aronov-Spivak
oscillations at small magnetic fields to Aharonov-Bohm os-
cillations at larger fields has been observed.9–11 Moreover,
the long-standing prediction of the Hofstadter butterfly,12 the
fractal energy spectrum of a periodic potential in strong mag-
netic fields, has been experimentally confirmed in weak pe-
riodic superlattices.13–15 Antidots have furthermore been
used to demonstrate the quasiparticle character of composite
fermions in a very intuitive way.16

These results have generated the quest to drive lateral
superlattices deeper into the quantum regime, which requires
smaller lattice constants. With established techniques reach-
ing their limits around periods of 100 nm,13,15 self-
organizational schemes offer themselves as an alternative.
Potential approaches include masks from porous alumina17

or from diblock copolymers.18 Recently, Melinte et al.19

demonstrated that a diblock copolymer system in the spheri-
cal phase can be used to generate a two-dimensional lateral
superlattice in a Ga�Al�As heterostructure with lattice con-
stants below 40 nm. Diblock copolymer systems in the hex-
agonal columnar phase have already been used to pattern,
e.g., ferromagnet/normal metal hybrid systems20 as well as

semiconductor surfaces.21 However, in many self-organizing
systems, domain formation and the corresponding disorder at
the grain boundaries �GBs� poses a limitation to the period-
icity of the patterns.18,19 Based on this background, it is rel-
evant to investigate how GBs in two-dimensional superlat-
tices influence the transport properties. This issue has not yet
been addressed to the best of our knowledge. Beyond that,
the study of such mesoscopic GBs is of fundamental rel-
evance. First of all, GBs in natural polycrystalline conduc-
tors typically trap charged impurities, which dominate the
influence of the GBs on the conduction electrons.22,23 The
artificially designed, mesoscopic GBs in lateral superlattices,
on the other hand, are free of such impurities and therefore
allow us to study the purely geometrical impact of a GB.
Second, the electronic wave packets in antidot lattices can be
highly localized on the scale of the lattice constant and thus
within the GB, a situation which is not possible in conven-
tional conductors.

Here, we report an investigation of artificial but realistic
GBs defined in a hexagonal antidot lattice. The GBs have
been generated by Monte Carlo simulation with appropriate
boundary conditions, followed by a pattern transfer into
2DEG via conventional lithographic techniques. We observe
a surprisingly weak, but nevertheless characteristic, aniso-
tropic damping and shift of commensurability resonances in
the magnetoresistance. These experimental results are sup-
ported by numerical simulations within the Kubo formalism.
The calculations reveal that the resistance anisotropy has its
origin in a small, magnetic-field-dependent fraction of elec-
tron trajectories that tend to localize along the GBs over
large magnetic-field intervals. The paper is organized as fol-
lows: In Sec. II, we present the sample preparation and the
experimental setup. Section III contains the experimental re-
sults and their interpretation. Section IV gives a summary
and conclusions.

II. SAMPLE PREPARATION
AND EXPERIMENTAL SETUP

Conventional modulation-doped GaAs /Al0.2Ga0.8As het-
erojunctions with a 2DEG 100 nm below the surface were

PHYSICAL REVIEW B 77, 235311 �2008�

1098-0121/2008/77�23�/235311�6� ©2008 The American Physical Society235311-1

http://dx.doi.org/10.1103/PhysRevB.77.235311


grown by molecular-beam epitaxy. The pristine 2DEG has an
electron density of n=3.2�1015 m−2 and a mobility of �
=68 m2 /Vs, corresponding to an elastic mean-free path of
l=6.4 �m and a Drude scattering time of �D=26 ps at
liquid-helium temperatures. Since all components of the �an-
isotropic� resistivity tensor must be accessible, we defined a
square �20�20 �m2� van der Pauw geometry with eight
contacts by electron-beam lithography and subsequent ion-
beam etching with low-energy �250 eV� Ar+ ions.24 The etch
depth was 20 nm, which is sufficient to deplete the 2DEG.
For ohmic contacts to the 2DEG, we alloyed Ni/AuGe pads
in the heterostructure.

The 2D lattice containing a GB was numerically gener-
ated by using a standard Metropolis Monte Carlo simulation
algorithm with periodic boundary conditions and a repulsive,
two-dimensional Yukawa potential which is cut off after
three lattice constants.25 Without any initial conditions �i.e.,
seeds�, this would generate a perfectly hexagonal lattice. In
order to enforce the formation of a GB, we defined two
seeds, each consisting of 19 sites arranged in perfectly hex-
agonal geometry separated by 20 lattice constants and ro-
tated with respect to each other by an angle of �=21.8° �see
Fig. 1�a��. This corresponds to the �7 coincidence site lattice
within one of the standard classification schemes for
GBs,26,27 meaning that one out of seven lattice sites coin-
cides in an overlay of the two grains. It belongs to the set of
energetically favorably GBs according to various models28

and occurs frequently in real systems �see, for example,
Puglisi et al.,29 Fig. 3a or Black et al.,30 Fig. 1c�. We believe,
however, that the experimental results reported below are
rather insensitive to the kind of coincidence site lattice, and
note that we are unaware of a scheme for classifying GBs
according to the microscopic details at the boundary, which
would probably be most appropriate for our experiments.

The simulated lattices with GBs were transferred to the
pattern generator of an electron-beam writer. The GBs were
oriented parallel to the mesa edge in the y direction. The
superlattices were patterned by electron-beam lithography
and ion-beam etching as described above. The average lattice
constant was a=600 nm with a lithographic antidot diameter
of dlith=200 nm. We opted for patterning antidot lattices
with a large ratio, deff /a�0.7, where deff is the effective
electronic antidot diameter, in order to amplify effects due to
disorder at the GBs as compared to lattices with smaller
deff /a ratios at the expense of the number of observable com-
mensurability oscillations in similarly patterned arrays.31 Fi-
nally, on two of the samples, a Ti/Au �20 nm/200 nm� top
gate was evaporated.

The magnetoresistance was measured in a helium gas
flow cryostat with a variable-temperature insert and a super-
conducting magnet with a maximum field of B=8 T, which
is applied perpendicular to the plane of the 2DEG. For tem-
peratures at 100 mK, a 3He / 4He dilution refrigerator was
used. All measurements were performed in a four-probe
setup using standard lock-in techniques with a current of 100
nA at frequencies of 13.7 Hz.

We did not observe any GB effects on antidot lattices
containing just one GB along the y direction as indicated in
Fig. 1�a� �not shown�. Therefore, the simulated GB was pe-
riodically replicated without disturbing the regular hexagonal

lattice parts outside the grain-boundary area �see Fig. 1�b��.
The average distance between the two GBs was dGB
�2.5 �m. This is much larger than the periods of one-
dimensional superlattices showing commensurability
effects.32,33 Therefore, we can exclude the possibility of com-
mensurability effects due to the one-dimensional GB super-
lattice. At the same time, dGB is larger than the spatial exten-
sion of a GB, such that its character is retained.

Figure 1�c� shows the distribution of nearest-neighbor
�NN� distances in the GB lattice. The NN distances show
marked deviations from Gaussian disorder. Compared to a
Gaussian NN distribution with the same average distance a
and the same single standard deviation of 0.1a, a long tail of
large distances is observed, while the majority of the NN
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FIG. 1. �a� A section of the hexagonal lattice generated by the
Monte Carlo simulation containing a �7 grain boundary character-
ized by the angle �=21.8°. �b� Top view of the patterned sample
prior to the deposition of the top gate, as seen in a scanning electron
microscope. A stripe of the lattice around the GB along the y direc-
tion is replicated across the van der Pauw square in the center of the
mesa that contains the 2DEG �light gray�. �c� Histogram of the
nearest-neighbor distances of the designed GB lattice, measured in
units of the average lattice constant a. For this purpose, the repli-
cation of the GB lattice has been extended to 104 antidots. A Gauss-
ian fit gives a mean value of 1 with amplitude and �=0.10 in units
of a as fit parameters.
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distances are slightly reduced, resulting in a histogram peak
at a NN distance of �0.96a, in combination with a suppres-
sion of very small NN distances. This indicates that within
the domain wall, a few antidots with large NN distances are
present which compress the surrounding lattice locally. We
note that since in our Monte Carlo simulation the Yukawa
potential was cut off at three lattice constants, all antidots in
the apparently ordered regions do feel the presence of the
grain boundaries. Very small NN distances below �0.9a,
however, are suppressed due to the repulsive potential used
in the Monte Carlo simulation. As a result, the maximum of
the measured NN distribution is larger than that one of its
Gaussian fit, and the peak appears significantly sharper
around its maximum. Four samples of this geometry and of
nominally identical values dlith /a have been measured. They
all show qualitatively very similar behavior. Here, we
present data from the two samples where the effects were
most pronounced. In addition, two single domain hexagonal
lattices in the same sample geometry have been measured for
control purposes.

III. EXPERIMENTAL RESULTS AND INTERPRETATION

In Fig. 2�a�, the longitudinal magnetoresistances Rxx and
Ryy for a single domain hexagonal antidot lattice and for the
lattice containing the GBs �as reproduced in Fig. 1� are
shown. For better comparison, all measurements were nor-
malized to their zero-field value. The measurements show
the characteristic commensurability oscillations of antidot ar-
rays. Within the simple commensurability picture, the cyclo-
tron radius of the electrons roughly matches the orbital ra-
dius around one and seven antidots at magnetic fields of
�230 and �100 mT, respectively.34 The resonance around
three antidots is weakly pronounced and hidden in the wing
toward lower magnetic fields of the resonance around one
antidot. The suppression of this resonance is also observed in
our simulations for antidots with large d /a ratios and is a
simple geometrical effect. We also observe a weak resonance
at B�450 mT which corresponds to electrons caught in be-
tween three adjacent antidots, as possible in arrays with large
d /a ratios.31 Moreover, a smooth resistance enhancement is
observed up to magnetic fields of around 0.5 T. At this mag-
netic field, the cyclotron radius roughly equals the width of
the electron gas at the bottleneck between adjacent antidots.
From this consideration, the effective antidot diameter is es-
timated to be deff�460 nm up to deff�520 nm depending
on the sample and the top gate voltage.

The observation of the commensurability oscillations
demonstrates their resilience with respect to GBs. However,
compared with the single domain lattice, the commensurabil-
ity peaks in the GB lattice are significantly damped and
somewhat broadened. The peak position in the GB lattice
that corresponds to the cyclotron motion around a single an-
tidot is shifted to larger magnetic fields, while the positions
of the other two resonances are approximately constant. This
peak shift is about 5% for Ryy and 10% for Rxx and cannot be
explained with deviations of the lattice constants from the
designed values since the accuracy of the electron-beam
writer allows for 1% deviation at most. Rather, we interpret

this displacement as a consequence of the NN distribution.
The sharp peak of NN distances at a reduced value corre-
sponds to a locally reduced lattice constant, which is re-
flected in the position of the resonance around a single anti-
dot while the resonance around seven antidots is less
sensitive to this effect since it averages over more NN dis-
tances.

The single domain lattice shows isotropic behavior to a
good approximation, whereas in the lattice containing the
GBs, the transport is anisotropic. All three resonances are
slightly suppressed in the y direction, i.e., along the grain
boundaries, as compared to the x direction �perpendicular to
the GBs�. Especially, the commensurability resonance at B
�240 mT is shifted to smaller magnetic fields in the y di-
rection. Furthermore, Ryy is significantly lower than Rxx at
and above the resonance around a single antidot. We empha-
size that this phenomenology is observed in all our GB lat-
tices. This anisotropy somewhat resembles that one reported
by Tsukagoshi et al.,35 who measured rectangular antidot lat-
tices with unidirectional, Gaussian disorder and observed a
damping of the commensurability oscillations as well as a
shift to smaller magnetic fields for the current perpendicular
to the disorder direction. In analogy to this behavior, one is
tempted to conclude that in the GB lattice, the disorder per-
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FIG. 2. �a� Upper part: Longitudinal magnetoresistances of a
single domain hexagonal antidot array and a GB superlattice. Both
samples were ungated. Lower part: The corresponding resistance
anisotropy A� as defined by Eq. �1�. �b� Temperature dependence of
A� for a second sample containing a GB lattice. �c� Comparison of
the experimentally determined A� of the GB lattice shown in �a�
with the simulations.
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pendicular to the GBs is greater than those parallel to them.
However, we could not think of a way to check this, e.g., by
looking at the x and y components of the NN distributions
since our single domain stripes have different orientations
with respect to each other and many antidots at the grain
boundaries cannot be unambiguously attributed to one do-
main.

We define the resistivity anisotropy A� as

A� �
�xx − �yy

�xx + �yy
, �1�

In the van der Pauw geometry used, A� is equivalent to a
correspondingly defined resistance anisotropy36,37 and nicely
illustrates the anisotropy effects described above. In the
lower part of Figs. 2�a� and 2�b�, A��B� for our measure-
ments is reproduced. While A� for the single domain lattice
shows only a weak magnetic-field dependence and stays al-
ways smaller than 5%, it shows peaks at the commensurabil-
ity resonances and a broad shoulder extending from �250 to
�500 mT, with a maximum up to 10% in the GB lattice.
Moreover, A� has a minimum close to B=200 mT, where
the absolute values can even get negative. Figure 2�b� shows
that the temperature dependence of A� between 2 and 16 K is
quite weak, suggesting a classical origin. Additional mea-
surements at T=0.1 K in a different cooldown �not shown�
revealed no significant change of the effects as compared to
2 K.

We proceed by interpreting our experimental results with
the help of semiclassical simulations based on the Kubo
formalism.4 The magnetoconductivity tensor was calculated
in the lattice geometries as patterned in the heterostructure.
The antidots were modeled as hard-wall circles with diam-
eters similar to deff, namely, 460 nm. For each value of the
magnetic field, we computed the trajectories of 105 electrons
at the experimentally determined Fermi level of EF
=10 meV in this potential landscape. The step width for the
magnetic field was 	B=2 mT. The electrons start with ran-
dom directions of the Fermi velocity and at random positions
within an area of 10�20 antidots. This large start area
proved to be necessary to capture the transport properties of
the whole GB within acceptable computation times. The
electron trajectories are computed to a length of 75 �m from
which we calculate the velocity correlation function,
Cij�t ,B���vi�t ,B�v j�0�� �i , j=x ,y� for every value of B.38

Here, the brackets denote averaging over all trajectories. The
components �ij�B� of the magnetoconductivity tensor for a
degenerate two-dimensional electron gas follow from

�ij�B� =
m�e2


�2 	
0

�

�vi�t,B�v j�0��e−t/�Ddt . �2�

Here, m�=0.067me represents the effective electron mass in
GaAs. Furthermore, the Drude scattering time, �D=26 ps,
corresponding to a mean-free path of 6.4 �m is used as
measured on the unpatterned 2DEG �Sec. II�. In order to
compare our experimental results with the simulations, the
conductivity tensor is converted into a resistivity tensor.

The simulations agree reasonably well with the main
structure of the measured A��B�, as can be seen in Fig. 2�c�.
The peak around 0.1 T and the minimum close to 0.2 T
followed by a peak around 0.4 T are reproduced with an
amplitude close to the measured one. Since the simulations
are carried out at zero temperature, this agreement supports
our observation that thermal smearing is relatively unimpor-
tant. The simulated resistivity anisotropy for a single domain
lattice, both without disorder as well as with isotropic disor-
der with a standard deviation of �=0.1a �not shown�, does
not show any structure, in accordance with the experimental
results obtained by us as well as by Takahara et al.39 How-
ever, the shift of the commensurability resonance around one
antidot toward larger magnetic fields as compared to the
single domain lattice is not observed in the simulations. We
speculate that in addition to the qualitative argument given
above, a more realistic confinement potential is necessary to
generate this effect.

We cannot resort to the conventional method of Poincaré
sections5 for further analysis since our lattice containing the
GBs is not periodic. We therefore follow a more qualitative
approach and inspect the longitudinal velocity correlation

functions of individual trajectories given by C̃ii�B�
�
vi�t ,B�vi�0�e−t/�Ddt. For different magnetic fields, we
identified trajectories that contribute most to A�. Such trajec-
tories were found by inspection of the differences between

C̃yy�B� and C̃xx�B� in the magnetic-field intervals where the
maximum of A� occurs, namely, around B=400 mT. The
result is exemplified in Fig. 3, where we plot 300 trajectories
starting from one unit cell. The GBs are visualized by repre-
senting the coordination numbers z of the antidots in gray
scale. Coordination numbers of 5 and 7 are present in the
GBs. The diffusion cloud has an anisotropic shape, in con-
trast to the corresponding cloud for a single domain lattice
�not shown�. Rather, the GBs form weak diffusion barriers,

FIG. 3. Main figure: The diffusion cloud formed by 300 electron
trajectories that started from one unit cell �the white area at the
center of the array� at a magnetic field of B=400 mT. For better
visibility, only every 50th trajectory point, corresponding to a tra-
jectory length of 50 nm, is shown. Inset: Zoom of one trajectory
bound to a GB. Note its localization at antidots with a coordination
number different from 6 �the gray tone of an antidot represents its
coordination number: dark gray, z=7; light gray, z=6; and medium
gray, z=5�. The dashed circle indicates the edge of an isotropic
diffusion cloud.
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and characteristic branches of trajectories that extend along
the GBs are visible.

It is found that most of the trajectories in the branches are
localized at a GB for a long time. The inset in Fig. 3 shows
one example of such a trajectory. It can be seen that the
electrons show a tendency to circle around antidots with co-
ordination numbers z of 5 or 7 for some time before they
move on to a neighboring antidot, which often has a z�6 as
well. For the simulations with the parameters of our samples,
this behavior is typical for magnetic fields above 0.3 T. At
smaller magnetic fields, A� is significantly smaller and even
can become negative around B�0.2 T, which indicates that
the electrons diffuse better across the GB than along it. How-
ever, we could not relate this behavior unambiguously to a
particular type of trajectory in the corresponding diffusion
clouds, probably because the effect is too weak.

IV. SUMMARY AND CONCLUSIONS

Longitudinal resistances parallel and perpendicular to ar-
tificially generated grain boundaries in a hexagonal antidot
lattice imposed on a 2DEG in a semiconductor heterostruc-
ture have been measured. We observe that in comparison to a
single domain lattice, the commensurability resonances
broaden and develop a pronounced anisotropy. This suggests
that the disorder across the grain boundaries is stronger than
along them. The effect of the grain boundaries on the elec-
tron trajectories has been visualized by numerical studies and
consists of a slight localization of the electrons along the
grain boundaries for most, but not all, magnetic fields. In a
small magnetic-field interval in between the resonances
around one antidot and seven antidots, both the experiments
and the simulations suggest that an enhanced diffusion across
the grain boundaries is possible as well.

We simulated various GB types and could not identify
characteristic microconfigurations of antidots at the bound-
ary. Therefore, we believe that the effects reported are quali-
tatively independent of the GB type. Future work could ad-
dress several issues in further detail. Our choice of the ratio
of antidot diameter to lattice constant was based on a heuris-
tic argument in combination with our experimental con-
straints. It is unclear how the effects change with this param-
eter. Also, the influence of the modulation strength is an open
question. In particular, it will be worth looking at weakly
modulated systems, which are more likely to be obtained by
self-organizational schemes.19 The exact shape of the antidot
potential, however, seems to be of minor relevance since our
samples have large lateral depletion lengths and with it a soft
potential, and nevertheless the measured resistance anisotro-
pies agree well with the simulations carried out on hard-wall
arrays.

In superlattice structures prepared by self-organization
where GBs might matter, their type, density, and orientation
is per se at best marginally under control, and in samples
containing many grains, the observed broadening of the reso-
nances will be isotropic. However, the disorder generated by
the GBs is non-Gaussian as well as locally anisotropic and
thus different from random disorder. Our results indicate that
even a high density of grain boundaries does not destroy the
specific transport properties of the superlattice, at least in the
classical regime.
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