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We present a microscopic picture of quantum transport in the Aharonov-Bohm �AB� interferometer taking
into account the electron interaction within the Hartree and the spin density-functional theory approximations.
We discuss the structure of the edge states for different number of Landau levels in the leads, their coupling to
the states in the central island, and the formation of compressible/incompressible strips in the interferometer.
Based on our results, we discuss the existing theories of the unexpected AB periodicity, which essentially rely
on specific phenomenological models of the states and their coupling in the interferometer. Our work provides
a basis for such theories, giving a detailed microscopic description of the propagating states and the global
electrostatics in the system at hand.
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I. INTRODUCTION

The recent years have witnessed a renewed interest in
studies of magnetotransport in quantum Hall systems in con-
fined geometries.1–7 These studies are motivated in part by
the prospect of topological quantum computing,5–7 as well as
by fundamental interest to explore novel exciting physics
related to, e.g., exotic fractional statistics in two-dimensional
systems.1 Some recent studies have revealed new unexpected
features in systems that have been extensively studied in the
nineties and that seemed to be well understood since then.
This includes, for example, an unexpected periodicity of the
Aharonov-Bohm �AB� electron interferometer in the integer
quantum Hall regime of the edge-state transport revealed in
the experiments of Camino et al.2,3

A typical Aharonov-Bohm interferometer2,3,8–11 includes
an electron island coupled to the leads by two quantum point
contacts �QPCs� �see Fig. 1�a��. At a given magnetic field
there are f leads propagating edge states in the leads. The elec-
tron density in the constrictions of the QPC is smaller than in
the leads, and hence, only the lowest fc states are fully trans-
mitted through the constriction, whereas the remaining high-
est f leads− fc states are partially or fully reflected. A typical
conductance of the AB interferometer as a function of mag-
netic field exhibits a steplike structure with plateaus sepa-
rated by wide transition regions.2,3,8–11 This structure of the
conductance reflects successive depopulation of the magne-
tosubbands in the constrictions. The plateau regions corre-
spond to the field regions where the QPC openings are fully
transparent �the transmission coefficient through an indi-
vidual QPC is an integer, T� fc� and the transition regions
between these plateaus correspond to the partial transparent
QPC openings �the transmission coefficient is a noninteger,
fc�T� fc+1�. In the latter case, reflection on the QPC open-
ings inside the island confines the partially transmitted �fc
+1�-th state between two QPCs, which gives rise to pro-
nounced AB conductance oscillations in the transition re-
gions between the plateaus. Note that in the weak-coupling
regime when the number of propagating states in the con-
strictions is reduced below one, fc=0, the AB oscillations are
suppressed by the single-electron charging effects.9–11 In this
case the charge of the electron island inside the interferom-

eter becomes quantized and the conductance exhibits famil-
iar Coulomb blockade �CB� peaks corresponding to the
addition/removal of one electron to/from the interior of the
central island.

According to the conventional theory of the Aharonov-
Bohm interferometer, its conductance shows a peak each
time the enclosed flux �=BS changes by the flux quantum
�0=h /e, ��BS�=�0.12 Thus, the conductance of the interfer-
ometer as a function of the magnetic field exhibits the peri-
odicity

�B =
�0

S
, �1�

with S being the area of the island. The enclosed flux through
the interferometer can also be varied at a fixed magnetic field
by changing a gate voltage. In the case when the area
changes linearly with the change in the gate voltage, �S
=��Vg, the expected periodicity is

�Vg = �0/�B . �2�

The first experimental study of the AB interferometer in
lateral GaAs heterostructures was performed by van Wees et
al.8 They reported a good agreement between the theory and
the experiment with some deviation from Eq. �1� for the case
of several propagating modes in the constrictions �fc�2�.
They attributed this deviation to the effect of magnetic field
on the location of the edge states corresponding to different
fc. Since these pioneering experiments, the interpretation of
the AB oscillations based on Eq. �1� has been widely ac-
cepted. However, in recent experiments of Camino et al.2,3

the validity of the conventional theory of the AB oscillations
in lateral semiconductor heterostructures has been ques-
tioned. In particular, Camino et al. demonstrated that period-
icity of the AB oscillations as a function of the magnetic field
depends on the number of fully transmitted states in the con-
striction fc and is well described by the dependence

�B =
1

fc

�0

S
, �3�

which obviously differs by a factor 1 / fc from the conven-
tional formula in Eq. �1�. On the other hand, the back-gate
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charge period is the same �one electron� for all fc, which is
independent of the magnetic field in stark contrast to Eq. �2�.
Moreover, Camino et al.2 reanalyzed the data of the experi-
ment of van Wees et al.8 and concluded that it is, within
experimental uncertainty, also described by Eq. �3�. �Note
that the same reinterpretation of the van Wees et al. experi-
ment was first proposed by Dharma-wardana et al.13�

It should be stressed that Eqs. �2� and �3� represent a
significant departure from the conventional description of the
AB oscillations based on Eq. �1�. The latter relies on a one-
electron picture of noninteracting electrons, whereas the
former require accounting for electron interaction and/or CB

charging effects. An interplay between the AB and CB oscil-
lations has been experimentally studied by Taylor et al.10 and
Field et al.11 Taylor et al.10 has established a simple condi-
tion for the onset of the CB oscillations in their structure,
namely the dot has to be in the weak-coupling regime with
only partially transmitted states in the constrictions, fc=0.
On the contrary, Field et al.11 found that the coexistence of
the AB and CB oscillations extended even into the open dot
regime when fc�2. The persistence of the Coulomb block-
ade oscillations into the open regime fc�1 was also dis-
cussed by Alphenaar et al.9 Note that the possibility of the
Coulomb charging effects in the strongly coupled regime has
been a subject of interesting discussions for the case of quan-
tum antidots in the integer quantum Hall regime,14 as well as
open quantum dots at zero magnetic field.15 It should also be
mentioned that similar deviations from the standard AB for-
mula that are also well described by Eq. �3� have been very
recently reported by Goldman et al.16 for the case of an
antidot-based AB interferometer.

The effect of electron interaction and Coulomb charging
on the conductance of the AB interferometer in the open
regime of fc�1 was studied by Dharma-wardana et al.,13

and very recently by Rosenow and Halperin.4 Using different
approaches, they both arrived to the same conclusion that the
AB oscillations can be modulated by CB-type effect leading
to the novel periodicity of the oscillations described by Eq.
�3�. However, their models have been based on very different
microscopic mechanisms of interaction and charging in the
interferometer. In the model of Dharma-wardana et al.,13 the
predicted modulation is due to the enhanced screening of the
usual CB oscillations by fully transmitted states through the
constriction effectively acting as metallic strips. In contrast,
the predictions of Rosenow and Halperin4 are based on the
assumption of the coupling between the states in the leads
and the central compressible island inside the interferometer.

Thus, understanding of the role of electron interaction and
charging in the AB interferometer, and identification of the
origin of the unexpected periodicity of the oscillations �Eq.
�3�� require detailed knowledge of the microscopic structure
as well as the coupling strength between different states in
the leads and in the central island. To the best of our knowl-
edge, such calculations have not been reported in the litera-
ture yet. At the same time, this information is essential in
theories like those developed in Refs. 4 and 13 that rely on
specific models of the coupling between states in the inter-
ferometer.

In the present paper we perform such calculations for the
AB interferometer in the integer quantum Hall regime where
electron interaction and spin effects are included within the
spin density-functional theory �DFT�. The utilized approach
corresponds to the first-principles magnetoconductance cal-
culations �within the effective-mass approximation� that start
from a geometrical layout of the device, are free from phe-
nomenological parameters of the theory, and do not rely on
model Hamiltonians.17,18 The power of this approach has
been recently demonstrated for related systems �quantum
dots and quantum wires� where a quantitative agreement
with the corresponding experiments has been achieved.19,20

The paper is organized as follows. A brief description of
the model is given in Sec. II. Section III presents results for

FIG. 1. �Color online� �a� Schematic geometry of the AB inter-
ferometer. Shaded regions correspond to the metallic gates on the
top of the GaAs heterostructure. The geometrical size of the dot is
500�520 nm2. The diagram illustrates the case of fc=1 and f lead

=3 corresponding to one fully transmitting state through the con-
strictions and three propagating states in the leads �for the calcu-
lated wave function for this case, see Fig. 4�. ��b�–�d�� The AB
oscillations for fc=2,1 ,0 calculated for interacting and noninteract-
ing electrons �solid and dashed lines, respectively�. �B shows the
expected periodicity according to Eq. �1�. The arrows in �c� indicate
the magnetic fields corresponding to the calculated LDOS shown in
Fig. 3. The inset in �d� illustrates the wave function due to the first
propagating state in the leads.
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the edge-state structure and coupling between states in the
leads and in the dot calculated within the Hartree approxi-
mation, as well as within the spin-DFT approach. We discuss
the obtained results and outline their relation to the experi-
ment and existing theories in Sec. IV. The conclusion is pre-
sented in Sec. V.

II. MODEL

We consider an electron interferometer defined by split
gates in the GaAs heterostructure in an open quantum dot
geometry similar to those studied experimentally2,3,8–11 �see
Fig. 1�. The geometrical size of the dot is 500�520 nm2,
the geometrical width of the QPC openings is 80 nm, and the
distance from the two-dimensional electron gas to the sur-
face is b=50 nm. The Hamiltonian of the whole system �the
island plus the semi-infinite leads� in the framework of the
DFT within the Kohn–Sham formalism21 can be written in
the form H=H0+V�r�, where

H0 = −
�2

2m��� �

�x
−

eiBy

�
�2

+
�2

�y2	 �4�

is the kinetic energy in the Landau gauge, and the total con-
fining potential

V�r� = Vconf�r� + VH�r� + Vxc
� �r� + VZ, �5�

where Vconf�r� is the electrostatic confinement �including
contributions from the top gates, the donor layer, and the
Schottky barrier�. In modeling of the donor layer we do not
account for random donor distribution leading to a smooth
long-range potential. One can expect that such a potential
can smear out the AB oscillations but it can obviously nei-
ther enhance them nor change their periodicity. The Hartree
potential reads,

VH�r� =
e2

4	
0
r

 dr�n�r��� 1

�r − r��
−

1
��r − r��2 + 4b2� ,

�6�

where n�r� is the electron density, the second term corre-
sponds to the mirror charges situated at the distance b from
the surface, and 
r=12.9 is the dielectric constant of GaAs.
Vxc

� �r� is the exchange-correlation potential in the local spin-
density approximation where � stands for spin-up, ↑, and
spin-down, ↓, electrons, and VZ is a standard Zeeman term.
In calculation of Vxc

� �r�, we utilized a commonly used param-
etrization of Tanatar and Ceperly.22 �A detailed description of
the Hamiltonian can be found in Refs. 17 and 18.� The dot
and the leads are treated on the same footing, i.e., the elec-
tron interaction and the magnetic field are included both in
the lead and in the dot regions. In what follows we will
mostly concentrate on the Hartree approximation �i.e., when
Vxc

� �r�=0�. This is because the main conclusions concerning
the Aharonov-Bohm oscillations in the system at hand are
qualitatively similar for the spinless Hartree case �Vxc

� �r�
=0� and the spin-resolved DFT case �Vxc

� �r��0�.
We calculate the self-consistent electron densities, the po-

tentials, and the conductance on the basis of Green’s function

technique. The description of the method can be found in
Refs. 17 and 18, and thus the main steps in the calculations
are only briefly sketched here. First, we compute the self-
consistent solution for the electron density, the effective po-
tential, and the Bloch states in the semi-infinite leads by the
technique described in Ref. 23. Knowledge of the Bloch
states allows us to find the surface Green’s function of the
semi-infinite leads. We then calculate the Green’s function of
the central section of the structure by adding it slice by slice
and making use of the Dyson equation on each iteration step.
Finally, we apply the Dyson equation in order to couple the
left and right leads with the central section, and, thus, com-
pute the full Green’s function G��E� of the whole system.
The electron density is integrated from the Green’s function
�in the real space�,

n� = −
1

	



−�

�

I�G��r,r,E��fFD�E − EF�dE , �7�

where fFD is the Fermi–Dirac distribution. This procedure is
repeated many times until the self-consistent solution is
reached and we use a convergence criterium �ni

out−ni
in� / �ni

out

+ni
in��10−5, where ni

in and ni
out are the input and output den-

sities on each iteration step i.
Finally the conductance is computed from the Landauer

formula, which in the linear-response regime is

G� = −
e2

h



−�

�

dET��E�
� fFD�E − EF�

�E
, �8�

where the transmission coefficient for the spin channel �,
T��E�, is calculated from the Green’s function between the
leads.17,18 All the calculations reported in the present paper
are performed for the temperature T=0.2 K. Note that the
reason for choosing this temperature instead of the base cry-
ostat temperature of the experiment3 is purely computational:
it takes much less computational efforts to achieve conver-
gence at a higher temperature; at the same time, all the re-
sults and conclusions reported in the paper remain practically
unaffected.

To outline the role of the electron interaction, we also
calculate the conductance of the open dot in the Thomas–
Fermi �TF� approximation where the self-consistent electron
density and potential are given by the standard TF equation
at zero field. This approximation does not capture effects
related to electron–electron interaction in quantizing mag-
netic field such as formation of compressible and incom-
pressible strips; and hence, it corresponds to noninteracting
one-electron approach where the total confinement is given
by a smooth fixed realistic potential �see Refs. 17 and 18 for
details�.

In order to provide correct interpretation of the results
reported in this paper, it is important to outline the validity
and limitations of the present approach. Our calculations cor-
respond to a so-called “standard approach”24 based on the
ground-state DFT in the Landauer formula. It has been dem-
onstrated that this approach accurately describes the conduc-
tance in the regime of the strong coupling when the conduc-
tance of the QPCs connecting the device region and the leads
exceeds the conductance unit G0 �=2e2 /h for the spin-
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degenerate electrons�. This corresponds to the case when
charge quantization inside the device is not expected to oc-
cur. In this regime the “standard approach” was shown to
reproduce not only qualitatively but, in many cases, even
quantitatively the observed conductance of metallic
nanowires,24 as well as GaAs lateral heterostructures.19,20

However, the reliability of this approach has been ques-
tioned for the case of the weak coupling where the QPC
conductance drops below the conductance unit G0 such that
charge inside the device becomes quantized �i.e., in the Cou-
lomb blockade regime�.18,24,25 This is due to the uncorrected
self-interaction errors in the standard DFT approach �related
to the lack of the derivative discontinuity in the exchange-
correlation potential� for the case when localization of charge
is expected to occur. Because of this, we do not expect the
present approach to provide a reliable conductance for the
case of the weak coupling fc=0 �Fig. 1�d��, where the ex-
periments exhibit the Coulomb blockaded conductance.9,10

While the present approach is not expected to account for
single-electron tunneling in the conductance �leading to the
Coulomb blockade peaks�, one can expect that it correctly
reproduces a global electrostatics of the interferometer and
microscopic structure of the quantum-mechanical edge states
regardless whether the conductance is dominated by a single-
electron charging or not. This is because the interferometer
contains a large number of electrons, i.e., 400–500, and,
thus, the electrostatic charging caused by a single electron
hardly affects the total confining potential of the interferom-
eter. Thus, the results of the present study provide an accu-
rate information concerning the locations of the propagating
states and the structure of compressible/incompressible strips
in the interferometer. Our calculations are also expected to
provide a detailed information concerning the coupling
strengths between the states in the leads and in the island.

III. RESULTS

Figures 1�b�–1�d� show the conductance of the AB inter-
ferometer as a function of magnetic field for spin-degenerate
interacting �Hartree� and noninteracting �Thomas–Fermi�
electrons for different numbers of fully propagating channels
fc in the QPC openings, fc=2,1 ,0. In these figures the volt-
ages on the gates defining the QPCs are set such that the
constrictions accommodate fc fully transmitted �lowest� Lan-
dau levels while the �fc+1�-th Landau level is only partially
transmitted.

Let us first concentrate on the cases fc=1 and fc=2 when
the conductance shows the Aharonov-Bohm oscillations with
the same periodicity of �B=0.025 T. This periodicity is in
excellent agreement with the conventional AB formula in Eq.
�1� where the actual dot area, S�410�410 nm2, is slightly
smaller than the geometric dot area, Sact=500�520 nm2.
The Aharonov-Bohm oscillations can be related to evolution
of the corresponding dot spectrum when single-electron
states cross the Fermi level each time the flux, through the
dot, increases by the flux quantum. For the case of noninter-
acting electrons, this is illustrated in Fig. 2�b�, which shows
an evolution of the resonant levels as a function of magnetic
field in the vicinity of the Fermi energy. �To obtain the evo-

lution of the resonant levels, we analyze the DOS in the dot
at each given B and plot the positions of the peaks in the
DOS as B varies, as illustrated in Fig. 2�b�; see also illustra-
tion of the DOS and the local density of states �LDOS�
shown in Fig. 3.� Figure 2�b� shows that the dot conductance
exhibits a maximum each time a resonant state sweeps past
EF. The resonant levels giving rise to the AB oscillations are
rather broad �with broadening �kT� because they are situ-
ated close to the dot boundaries and their coupling to the
states in the leads is rather strong.

Figure 2�c� shows an evolution of the resonant levels for
the case of interacting electrons. As for the case of noninter-
acting electrons, the AB oscillations can be traced to rela-
tively broad resonant levels that sweep past the Fermi level
each time the flux, through the dot, increases by the flux
quantum. However, the resonant-level structure of the inter-
acting electrons exhibits qualitatively new features. In addi-
tion to the broad levels mediating the AB oscillations, the
DOS shows many narrow resonances concentrating near EF.
These resonances correspond to the states residing inside the
dot that are very weakly coupled to the leads �hence, small
broadening�. These states clearly show pinning to the Fermi
level �see Refs. 17 and 20 for a detailed discussion of the
pinning effect in open quantum dots�. However, the pinning
of the inner states to the Fermi energy does not imply that a
compressible island forms in the middle of the interferom-
eter. Indeed, Fig. 3 shows the LDOS integrated in the trans-
verse �y direction�. In the magnetic-field interval under con-

FIG. 2. �Color online� �a� The magnetoconductance of the AB
interferometer for fc=1 for interacting and noninteracting spinless
electrons. �The arrows in �a� indicate the magnetic fields corre-
sponding to the calculated LDOS shown in Fig. 3.� Evolution of the
resonant energy levels in the vicinity of EF for �b� noninteracting
and �c� interacting electrons. The insets show DOS in the dot for the
specified value of the field B=2.1 T: note that the evolution of the
energy levels was obtained from the peak positions of the DOS at
each given value of B.
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sideration �corresponding to fc=1�, there are three prop-
agating states in the leads with the highest one being always
pinned to EF �see also Fig. 4�c� depicting the magnetosub-
band structure in the leads�. The dot itself shows the
Darwin–Fock type energy spectrum with a clear signature of
the Landau-level �LL� condensation when the resonant levels
concentrate around LLs of the corresponding two-
dimensional electron gas. Clearly, the upper bunch of levels
�concentrating around the second LL� is not pinned to the EF.
The pinning of the highest LL to the EF �as well as the
accompanying formation of the compressible strip inside the
dot� occurs at much higher fields far above the interval fc
=1. Thus, the pinning of several resonant levels to EF for the
case fc=1 shown in Figs. 2�c� and 3 represents an onset of
formation of the compressible island in the middle of the
interferometer. It can be mentioned that a related question,
whether the compressible strips form in an antidot-based AB
interferometer, has been a subject of recent debate.26

Despite of the differences in the structure of the DOS for
interacting and noninteracting electrons, their conductance is
practically the same �the small shift of the conductance
curves relative to each other is due to a small difference
between the Hartree and TF densities. To understand the rea-
son for this, we inspect the wave functions in the interferom-
eter �see Fig. 4�. We focus on the case of fc=1 when the first
state in the leads Nlead=1 passes almost adiabatically through
the QPC, the third state Nlead=3 is reflected, and the AB
oscillations are mostly due to the second state Nleads=2,
which is partially transmitted through the QPC �see Fig. 5
illustrating the transmission coefficients for fc=1 and fc=2�.

In the field interval under consideration, a compressible strip
in the leads forms only for the highest state Nleads=3 �a cor-
responding band structure for the lead is shown in Fig. 4�.
Two lowest states, Nleads=1 ,2, are not compressible and,
thus, their respective spatial location and structure are very
similar for interacting and noninteracting electrons. As a re-
sult, the coupling of these states to the states in the dot is
almost the same for interacting and noninteracting electrons,
and, therefore, the corresponding conductances are practi-
cally the same. It should also be mentioned that, in accor-
dance to the discussion above, the wave-function pattern
does not show any evidence of the formation of the com-
pressible island in the center of the interferometer. In con-

FIG. 3. �Color online� The LDOS in the interferometer for the
case fc=1 �i.e., spinless interacting electrons and Hartree approxi-
mation�. �a� and �b� correspond to the consecutive maximum and
minimum of the AB oscillations indicated by arrows in Fig. 2�a�.
The upper panels show resonant levels in the vicinity of EF in an
enlarged scale illustrating the resonant tunneling mediated by the
broad resonant levels of the quantum dot, as well as showing the
effect of pinning of narrow resonances to EF.

FIG. 4. �Color online� ��a� and �b�� The local filling factor
�x ,y� calculated for spinless interacting electrons �Hartree ap-
proximation� for fc=1. �c� The total confining potential �thick line�
and the corresponding subband structure of an infinitive quantum
wire. ��d�–�f�� The wave function modulus at B=1.955 T, corre-
sponding, respectively, to the first, second, and third propagating
states in the leads. The third subband being pinned at the Fermi
energy EF=0 forms a compressible strip in the center of the wire.
The insets in �d�–�f� show strongly ten times the magnified intensity
of the wave functions in the middle section of the interferometer.
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trast, the compressible strip corresponding to Nleads=3 is
clearly seen in the leads.

For higher magnetic fields when a number of transmitted
channels in the QPC is reduced below one, fc=0, the elec-
tron interaction becomes strongly pronounced, leading to the
smearing out of the AB oscillations and to the emergence of
a new oscillation pattern �Fig. 1�d��. For higher magnetic
field the compressible strip forms in the center of the dot. As
a result, the electrons are scattered directly in and out of this
region instead of following well defined closed paths along
the dot perimeter �see the inset of Fig. 1�d��. This leads to the
suppression of the AB oscillations and the emergence of a
new pattern, which the periodicity �B�0.22 T is consistent
with the area of a compressible strip inside the dot �135
�135 nm2�. It should be mentioned that the noninteracting
approach �where no compressible strips are present� always
shows a perfect AB periodicity.

We also calculated the spin-resolved conductance G�

=G��B� within the DFT approach with the exchange-corre-
lation effects included in the local spin-density approxima-
tion. The spin-resolved Landau levels in the QPC constric-
tion depopulate one by one, leading to the AB oscillations
with the same periodicity as the one calculated without the
exchange-correlation term. The corresponding wave-function
distributions for spin–resolved electrons for fc= fc

↑+ fc
↓=3�fc

↑

=2, fc
↓=1� are shown in Fig. 6. They also show the same

features as those for spinless interacting electrons in the Har-
tree approximation, namely, an adiabatic character of trans-
port for the lowest fc states, a little intermode scattering, as
well as the absence of the compressible island in the center
of the interferometer.

The conductance of the AB interferometer as a function of
voltage applied to the gate defining the dot, Vg, is shown in
Fig. 7 for spinless electrons for fc=1, and 2, as well as for
the spin-resolved case fc=3�fc

↑=2, fc
↓=1�. The DOS of inter-

acting electrons, as in the case when magnetic field was var-
ied, shows pinning of the weakly coupled narrow resonant
states �situated inside the dot� to the Fermi level. Also, as in
the case when B was varied, the conductance of noninteract-
ing and interacting electrons �both spin degenerate and spin
resolved� is practically the same. Every time a broad reso-
nant level crosses EF, the conductance exhibits a maximum

�see Figs. 7�b� and 7�c��. The ratio of the periods of the
oscillations for both fc=1 and fc=2 is fully consistent with
the conventional AB formula in Eq. �2�, �Vg

1 /�Vg
2=B2 /B1

�note that the dot area varies approximately linearly with the
variation of the gate voltage of the side gate, �S=��Vg
�Ref. 17�; indexes 1 and 2 correspond to fc=1 and 2�. Finally
we notice that even though each AB resonance is mediated
by a single level, the number of electrons in the dot between
two consecutive peaks decreases by more than one �see Fig.
7�a��. These electrons are those that depopulate the states
inside the dot �narrow resonances in the DOS, Fig. 2�c�� and,
thus, are not manifest in the conductance.

IV. DISCUSSION

The results of the conductance calculations based on the
Hartree and spin-DFT approaches presented in the previous
section for fc�1 are in excellent agreement with the conven-
tional AB formula in Eq. �1� predicting the same periodicity
regardless of the number of the fully transmitted channels fc.
This is in obvious disagreement with the experiments2,3 that
show a deviation from the conventional AB periodicity by a
factor of 1 / fc �Eq. �3��. Besides, the AB calculated periodic-
ity as a function of the gate voltage Vg is consistent with the
conventional AB formula in Eq. �2�, which also contradicts
the experimental findings showing the same periodicity for
all fc independent of the magnetic field. In our discussion of
the validity of the present approach, we argued that, as far as
the conductance is concerned, the present method is justified

FIG. 5. Transmission coefficients Ti=� jTji from i-th mode in
the left lead to all available j-th modes in the right leads for inter-
acting spinless electrons �Hartree approximation� for �a� fc=2 and
�b� fc=1. �Note that corresponding total transmission is shown in
Figs. 1�b� and 1�c�.�

FIG. 6. �Color online� The wave function modulus at B
=2.025 T, which was calculated within the spin-DFT approxima-
tion fc= fc

↑+ fc
↓=3�fc

↑=2, fc
↓=1�. Left and right columns correspond

to the spin-up and spin-down electrons. For given magnetic fields,
there are five propagating states in the leads �as illustrated in the
band diagram shown in �f��, three spin-up states, and two spin-down
states. Panels �a�–�e� show the wave functions corresponding to
these states.
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for the case of the strong coupling when the conductance of
the device exceeds the conductance unit, G�G0, such that
the electron number inside the structure is not expected to be
quantized. However, our calculations for fc�1 do not re-
cover the experimental conductance even though the total
conductance of the system exceeds G0. What is the reason
for this discrepancy?

We argue that the inability of the standard approach to
recover the experimental periodicity is an indirect evidence
that, even though G�G0, the electron charge in the interfer-
ometer is quantized and, thus, the Coulomb blockade effects
become dominant in the conductance. This is because of the
adiabatic character of the transport when the lowest fc states
pass through the interferometer with the transmission coeffi-
cient close to one �see Figs. 4–6�. The highest state passing
through the QPCs, fc+1 �giving rise to the AB oscillations in
the transition regions between the plateaus� becomes, thus,

effectively decoupled from the remaining fc states that pass
through the interferometer practically without reflection.
Therefore, the AB interferometer effectively confines only
electrons belonging to the highest �fc+1� subband passing
through the QPC. Because the conductance of this state is
always smaller than one, the dot is in the weak-coupling
regime even though the total dot conductance is larger than
G0 �due to the lower fc states that pass adiabatically through
the interferometer�. As a result, the electron charge inside the
dot becomes quantized and transport through the interferom-
eter becomes strongly affected by the Coulomb blockade ef-
fect.

Note that manifestation of the Coulomb blockade effects
in the conductance of open dots is not limited to the edge-
state regime only. Liang et al.15 demonstrated that the adia-
batic transport regime can be achieved in an open quantum
dot even at zero field leading to the dot conductance being
dominated by combined charging and ballistic transport
within a wide range 0�G�6e2 /h. The dot of Ref. 15 was
designed such that the intermode scattering was practically
absent. As a result, the lowest fc states propagated through
the dot adiabatically with very little reflection, whereas the
highest states with the transmission T�1 gave rise to the
Coulomb blockade effects in the conductance.

We argued in Sec. II that while the present standard ap-
proach is not expected to describe single-electron tunneling
effects �leading to the Coulomb blockade peaks in the con-
ductance�, one can expect that it correctly reproduces a glo-
bal electrostatics of the interferometer and microscopic struc-
ture of the quantum-mechanical edge states regardless
whether the conductance is dominated by a single-electron
charging or not. In its turn, such information can be a basis
for phenomenological models aiming at the description of
the effects of single-electron charging in the AB interferom-
eter.

Such model calculations have been recently reported by
Rosenow and Halperin who studied the effect of the single-
electron charging on the periodicity of the AB
interferometer.4 In the absence of detailed microscopic pic-
ture of the edge-state structure in the interferometer, the au-
thors considered several possible scenarios of coupling be-
tween the edge states in the leads and states in the island.
The important feature of their model was the presence of the
compressible region in the center of the island. Our macro-
scopic calculations, however, do not support the assumption
of the formation of the compressible strip inside the interfer-
ometer. Our calculations for fc�1 demonstrate only the on-
set of the formation of the compressible region where just a
few resonant levels of the dot become pinned to the Fermi
energy. The formation of the compressible region inside the
interferometer occurs at larger fields corresponding to fc=0
�where, however, the conductance is dominated by the
single-electron effects anyway because G�G0�. Note that
Dharma-wardana et al.’s model13 of single-electron charging
in the open AB interferometer does not seem to rely on the
presence of the compressible island inside the dot.

A microscopic picture emerging from our calculation can
be summarized as follows:

�i� The lowest fc states pass through the QPC almost adia-
batically, contributing very little to the conductance oscilla-
tions �see Figs. 4�d� and 6�a�–6�c��.

FIG. 7. �Color online� �a� The conductance of the AB interfer-
ometer for fc=1 for interacting and noninteracting spinless elec-
trons as a function of the gate voltage Vg. Evolution of the resonant
energy levels in the vicinity of EF for �b� noninteracting and �c�
interacting electrons. The insets in �b� and �c� show DOS in the dot
for the specified value of the field Vg=0.445 V; note that the evo-
lution of the energy levels was obtained from the peak positions of
the DOS at each given value of Vg. Conductance of interaction and
noninteracting spinless electrons for �d� fc=1 and �f� fc=2. �e�
Spin-DFT conductance of the AB interferometer for fc= fc

↑+ fc
↓

=3�fc
↑=2, fc

↓=1�. The magnetic field is ��a�–�d�� B=2 T, �e� B
=1.96 T, and �f� B=1.25 T.
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�ii� The state fc+1 passes through the interferometer with
the transmission probability 0�T�1, giving rise to the tran-
sition region between the conductance plateaus that is modu-
lated by the AB oscillations. Inside the interferometer this
state retains its edge-state character �see Figs. 4�e� and 6�d��.
The AB oscillations are related to excitation of the resonant
states of the dot that are situated close to the dot boundary
and, thus, are strongly coupled to the leads. These states are
manifested in the density of states as relatively broad peaks
with broadening �kT �see Figs. 2, 3, and 7�.

�iii� The fc+1 state �and, to a lesser extend, all lowest fc
states� also excite very narrow resonant states with broaden-
ing ��kT situated inside the island and, thus, weakly
coupled to the leads �see Figs. 2, 3, and 7�. These states are
pinned to the Fermi energy and the excitation of these states
corresponds to the onset of formation of the compressible
island inside the interferometer. Note, however, that the com-
pressible island inside the interferometer forms at much
larger fields �see inset of Fig. 1�d��. Because both broad and
narrow states correspond to the addition �or subtraction� of
one electron to �or from� the dot, both of them can contribute
to single-electron charging, giving rise to the modification of
the conventional AB periodicity according to Eq. �3�.

�iv� Finally, the fc+2 state is almost completely reflected
by the QPC �see Figs. 4�f� and 6�e��. This state might or
might not form a compressible strip in the leads �depending
on whether it is respectively the last filled LL or not�. How-
ever, because of the weak coupling to the states in the dot,
the compressibility of this state has a little significance for
the transport through the interferometer.

Finally, we stress that our approach corresponds to the
coherent electron transport through the interferometer. It
does not account for incoherent processes such as spin flips
and interlevel scattering that might lead to redistribution of
electrons between the outer �broad� and the inner �narrow�
resonant states in the dot. Such electron transfer between
different LLs is shown to influence an addition spectrum of a
closed �strongly Coulomb blockaded� dot.27 However, in the
case of an open dot considered in this study, it is not clear
whether such processes would significantly affect the con-
ductance of the interferometer because the dwell time of the
electrons in the open dot might be much smaller than the
inelastic-scattering time associated with the interlevel relax-
ation.

V. CONCLUSION

We provide a microscopic picture of the quantum trans-
port in the Aharonov-Bohm interferometer, taking into ac-

count electron interaction within the Hartree and the spin-
DFT approximations. We discuss the structure of the edge
states for different numbers of the Landau levels in the leads,
structure of the states in the dot, coupling between the states
in the dot and the leads, and the formation of compressible/
incompressible strips in the interferometer. We discuss the
applicability of our approach and argue that it provides a
reliable description of a global electrostatics of the interfer-
ometer, and a microscopic structure of the quantum-
mechanical edge states and coupling between them. On the
other hand, the present approach is not expected to reproduce
the conductance in the weak-coupling regime of the Cou-
lomb blockade if the electron number inside the interferom-
eter becomes quantized. We compare our conductance calcu-
lation to the experiment2,3 and argue that the inability of the
present approach to reproduce the unexpected periodicity of
the AB oscillations �Eq. �3�� can be taken as an indirect
evidence that this periodicity is caused by the Coulomb
blockade-type effects.

Our transport calculations thus demonstrate that an accu-
rate description of the conductance of the AB interferometer
would require theories that go beyond the standard
approach24 based on the ground-state DFT in the Landauer
formula that was utilized in the present paper. Such theories
�as, e.g., reported in Refs. 4 and 13� essentially rely on spe-
cific phenomenological models of the states in the leads and
in the central island, and their coupling in the interferometer.
Our work, therefore, provides a basis for such theories, giv-
ing a detailed microscopic description of the propagating
states and the global electrostatics in the system at hand.
Such a microscopic description is summarized in Sec. IV. In
particular, our findings do not directly support the model of
Rosenow and Halperin that relies on the existence of the
compressible island inside the interferometer and its cou-
pling to the leads. Our findings thus indicate that an accurate
explanation of the unexpected periodicity of the AB oscilla-
tions might need exploring alternative theories based on the
microscopic picture of interesting electrons developed in the
present paper.
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