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A parametrization of the Abell–Tersoff potential for In, Ga, As, InAs, and GaAs is presented by using both
experimental data and results from density-functional calculations as input. This parametrization is optimized
for the description of structural and elastic properties of bulk In, Ga, As, InAs, and GaAs, as well as for the
structure and energy of several reconstructed low-index GaAs and InAs surfaces. We demonstrate the trans-
ferability to GaAs and InAs high-index surfaces and compare the results to those obtained with previously
published parametrizations. Furthermore, we demonstrate the applicability to epitaxial InAs/GaAs films by
comparing the Poisson ratio and elastic energy for biaxial strain, as obtained numerically with our potential and
analytically from continuum-elasticity theory. Limitations for the description of point defects and surface
diffusion are pointed out. This parametrization enables us to perform atomically detailed studies of InAs/GaAs
heterostructures. The formation energy of InAs quantum dots on GaAs�001� obtained from our atomistic
approach is in good agreement with previous results from a hybrid approach.
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I. INTRODUCTION

Contemporary semiconductor technology utilizes struc-
tures in which the mobility of the electronic carriers is re-
stricted in one, two, or all three dimensions of space �quan-
tum wells, wires, and dots, respectively�. The typical length
scale of the confining dimension�s� can be as small as only a
few atomic layers. For computational material science, this
poses the challenge of atomistic modeling since the position
of each atom may matter for the properties of these struc-
tures. At the same time, the strain fields associated with
lattice-mismatched heterostructures can be rather long
ranged such that many atoms need to be included in the
simulations. Hence, a simulation technique that is accurate
yet computationally not too expensive is sought for. In par-
ticular, such a technique should yield accurate atomic posi-
tions and strain fields since these are required as input for
electronic structure calculations �using, e.g., effective mass,
k · p theory, or tight-binding approaches� to calculate the elec-
tronic properties of the heterostructures. If the dimensions of
the heterostructures are sufficiently large, continuum-
elasticity theory �CET� can be used to calculate strain fields,
which are then used as input to continuum approaches to
electronic structure, such as k · p theory. If an atomistic treat-
ment is required, various types of valence force fields have
been in use to determine relaxed atomic positions in strained
heterostructures �see, e.g., Refs. 1–3�. It has been shown that
contact with macroscopic elasticity theory can be made by a
suitably defined strain tensor derived from the atomic
coordinates.4

For self-assembled quantum dots or wires, computational
modeling could help to elucidate the stability of different
possible structures and to simulate elementary atomic pro-
cesses during their growth. It is challenging to devise a suit-
able computationally inexpensive simulation technique for
addressing these questions: free surfaces and other situations
of low atomic coordination obviously play an important role
in the fabrication of the nanostructures. However, commonly

used valence force fields are parametrized only for bulk
properties and cannot reliably describe the bonding at sur-
faces. Therefore, improved force fields are needed that in-
clude reliable microscopic information about surfaces.

In this work, we develop and test an analytical many-body
potential that is particularly suited for the simulation of InAs
and GaAs nanostructures. We are interested in the early
stages of three-dimensional InAs islands grown on GaAs in
the Stranski–Krastanov growth mode. After overgrowth with
a suitable capping layer, these islands can be used as quan-
tum dots. Several aspects of this system require atomistic
modeling: for example, the critical thickness of the wetting
layer for InAs/GaAs is less than two monolayers, which calls
for an atomistic description of the wetting layer. Among the
different types of potentials in use, we decided for the many-
body potential of the Abell–Tersoff type,5,6 as it is well suited
for semiconductors with covalent bonding. We demand a
highly accurate description of the lattice constants and elastic
moduli of both GaAs and InAs, as well as a good description
of the surface reconstructions and surface energies that occur
under typical growth conditions for InAs/GaAs quantum
dots.

Abell–Tersoff-type potentials depend on bond lengths and
bond angles and hence access information about the atomic
structure of a given material via the arrangements of pairs
and triples of atoms. The dependence on these input data is
usually parametrized for the ground state atomic structure of
a chemical element or binary compound. It is not a priori
clear that a particular parametrization gives reliable results
when applied to new and different structures. For instance, in
ternary compounds, additional triples of atoms not present in
binary compounds occur. Moreover, significant deviations of
the bond lengths and bond angles from those in bulk struc-
tures appear near point defects or at surfaces. It is not clear if
a particular parametrization can reliably describe such situa-
tions that significantly deviate from the structures used for its
derivation. Therefore, parametrizations employed in the lit-
erature to treat a specific simulation task should not be trans-
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ferred to a new modeling task without performing careful
tests. Moreover, there are inherent limits to the performance
of these potentials: since the functional form of Tersoff–
Abell potentials offers only a limited set of parameters and
thus limited freedom to fit them to input structures, it may
be impossible to simultaneously reproduce two different
physical quantities with the same parametrization of the po-
tential. In such a situation, users must make a decision which
physical properties are essential for their envisaged simula-
tions and must choose or design a suitable parametrization of
the potential matching their needs. Previously, a number of
researchers published parametrizations7–14 of this potential
for elemental In, Ga, As, and the compound materials GaAs
and InAs optimized for equilibrium bulk properties. Our de-
tailed tests of these parameter sets with respect to the de-
scription of bulk elasticity and surface properties suggest that
improvements are necessary �and possible� to accomplish
quantitative investigations of the energetics of InAs/GaAs
nanostructures. In this work, we present such an improved
parametrization of the Abell–Tersoff potential for In, Ga, As,
GaAs, and InAs. It simultaneously captures both bulk and
surface properties with high overall accuracy. With this pa-
rametrization, it is now possible to perform reliable atomistic
relaxations of InAs/GaAs nanostructures for quantitative
studies of the total energies with dependable contributions
from strained bulk and surface reconstructions.

Recently, Murdick et al.15 presented a GaAs parametriza-
tion of an improved bond-order functional that additionally
employs a penalty function to account for the electron count-
ing rule for reconstructed surfaces. This very promising ap-
proach yields a good qualitative description of surface ener-
gies and defect energies and is able to describe intermediate
bonding situations that might occur during, e.g., dynamic
simulations of changes in the surface reconstruction. How-
ever, this capability is not necessarily needed in our simula-
tions that are based on comparing the formation energy of
nanostructures with given geometry. Furthermore, the poten-
tial of Murdick et al.15 does not yet match the accuracy de-
mands needed for our purposes: the relative deviation of the
lattice constant �0.3%� and of the elastic constant c44 �16%�
of zinc blende GaAs may be too large for quantitative studies
of lattice-mismatched nanostructures. To give a quantitative
example, the elastic energy per volume �Eel

�2��2 in Eq. �11��
of GaAs that is biaxially strained in the �111� plane to the
lattice constant of InAs is underestimated by about 13% us-
ing the results of Ref. 15. Our new parametrization �of the
Abell–Tersoff functional� leads to a corresponding error of
only 0.3%. Moreover, Ref. 15 provides a parametrization of
GaAs only, whereas we require �and provide� potentials for
both GaAs and InAs.

In Sec. II, we give the physical motivation and analytical
form of the many-body potential as used in this work. Then,
we describe the development of the parametrization in detail,
provide the interaction parameters, and compare our param-
etrization to previous ones in terms of the properties of bulk
phases and low-index surfaces. Section IV demonstrates the
transferability of our potential to high-index GaAs and InAs
surfaces and to Poisson ratios and elastic energies for various
cases where biaxial strain is applied in a selected crystalline
plane. We point out some of the limitations in describing

defects and the diffusion of adatoms on surfaces. The re-
mainder of this paper is then devoted to calculating the size-
dependent formation energy of a representative QD and com-
paring the results to a previously employed hybrid approach
that combined continuum-elasticity theory and DFT calcula-
tions �Refs. 16 and 17�.

II. ANALYTIC MANY-BODY POTENTIAL

The Abell–Tersoff potential was first introduced to model
silicon.18 It was improved several times5,19,20 and later on
extended to the compounds SiC and SiGe �Ref. 6� and many
other systems. A similar functional form was introduced by
Brenner21 for the description of hydrocarbons. In the Abell–
Tersoff potential, the total cohesive energy Ecoh of a configu-
ration of atoms is given by a sum over all atoms i and their
neighbors j,

Ecoh = �
i

�
j�i

f ij
c �rij��Vij

R�rij� − Bij�rij�Vij
A�rij�� , �1�

with the pairwise interatomic distance rij = �ri−r j�. This ex-
pression is motivated by the suggestion of Abell22 to describe
the previously observed universal binding-energy curves for
solid cohesion and chemisorption as a sum of next-neighbor
pair interactions, which are functions of the local
environment.23 The pairwise attractive and repulsive interac-
tions are given by a Morse potential,

Vij
R�rij� =

Dij

Sij − 1
exp�− �ij

	2Sij�rij − Rij
0 �� , �2�

Vij
A�rij� =

SijDij

Sij − 1
exp�− �ij

	2/Sij�rij − Rij
0 �� . �3�

The bond-order term Bij of the bond between atoms i and j
depends on the neighborhood of both atoms: it weakens the
attractive pair potential according to its other bonding part-
ners. It is related to the energy difference of the bonding and
the antibonding orbitals.24 The functional forms in the
literature6,9,11,12 slightly differ but can be brought to a com-
mon form by introducing the additional parameters n and m
in the bond-order terms,

Bij�rij� = �1 + ��ij�ij�rij��nij�−1/�2nij�, �4�

�ij�rij� = �
k�ij

f ik
c �rik� · gik��ijk�e���ik�rij − rik��mik�. �5�

The angular dependence of the bond order can be motivated
from the second moment of the density of states, as obtained,
e.g., from a tight-binding calculation,24,25 and its particular
form in the Abell–Tersoff potential corresponds to a �
bond.26 The angular function gik��ijk� describes anisotropic
interactions, characteristic for semiconductors with diamond
or zinc blende structure, and is given by

gik��ijk� = �ik
1 +
cik

2

dik
2 −

cik
2

dik
2 + �hik − cos �ijk�2� , �6�

where �ijk denotes the angle between rij and rik. The cutoff
function f ij

c �rij� limits the interaction range to atoms within a
certain distance,

HAMMERSCHMIDT, KRATZER, AND SCHEFFLER PHYSICAL REVIEW B 77, 235303 �2008�

235303-2



f ij
c �rij� =�

1, rij − Rij
c 	 − Dij

c

1

2

1 − sin


rij − Rij
c

2Dij
c �� , �rij − Rij

c � � Dij
c

0, rij − Rij
c � Dij

c .
�

�7�

The forces on individual atoms can be determined from the
analytical derivative. The parameters presented in this paper
were obtained with the cutoff radii given in Table I.

III. DETERMINATION OF THE PARAMETERS

The elemental materials As, Ga, and In and the compound
materials GaAs and InAs are of great technological impor-
tance and comprehensive experimental and theoretical re-
sults are available �see, e.g., Refs. 11 and 27–41�. In order to
determine the new set of parameters for the description of
InAs/GaAs surfaces and nanostructures, we use a large set of
reference data that also comprises results from density-
functional theory �DFT� calculations. These calculations
complement the experimental results in our set of reference
data with quantities that are only attainable with theoretical
approaches �such as the cohesive energy of metastable crys-
tal structures�. However, care is required when combining
experimental and theoretical data: for calculating quantities
�e.g., surface energies� that involve energy differences, the
same source �theory� must be used for all terms entering the
difference in order to make use of cancellation of systematic
errors. Moreover, it is advisable to use empirical scaling fac-
tors for theoretical results to retain consistency when data for
different structures stem from different sources �see below�.
A detailed comparison of the results obtained with our pa-
rametrization with those of previous ones will be given in the
following. Note that in a few cases, the previous parametri-
zations are based on different values of the material proper-
ties, e.g., Migliorato et al.12 used a different value of .

A. Density functional theory calculations

In order to set up the broad list of reference data needed
for the parameter optimization, we performed total-energy
calculations in the framework of DFT. We use a plane-wave
DFT code42,43 together with norm-conserving ab initio
pseudopotentials44 and Monkhorst–Pack k-point meshes.45

Electron exchange and correlation is described in the local-
density approximation �LDA�. For each physical property,
we successfully performed convergence tests with respect to
energy cutoff and number of k points. The cohesive energies
Ecoh, lattice constants a0, and bulk moduli B were determined
by fitting the equation of state to the Murnaghan equation of
state. The surface calculations employed slabs and passiva-
tions with pseudohydrogen atoms,46 as outlined in, e.g., Ref.
27. The surface energy � per area A is given by the total
energy of the slab Etot �after subtraction of its fixed lower
part�, the number of cations NIII and anions NV, and the
chemical potentials �V and �IIIV,27

�A = Etot − �IIIVNIII − �V�NV − NIII� , �8�

where the indices V and III denote As and Ga or In, respec-
tively. In the following, we report the value of the surface
energy � for �As=−Etot �As � bulk phase�, i.e., for a surface
in equilibrium with bulk As, and for �GaAs=−Etot �GaAs zinc
blende bulk phase� and �InAs=−Etot �InAs zinc blende bulk
phase�. The values for these total energies per atom of bulk
structures are calculated with the same method as used for
Etot in Eq. �8�, i.e., by DFT-LDA calculations for the refer-
ence values of surface energies and by the Abell–Tersoff
potentials if surface energies obtained with these potentials
are quoted.

To avoid known problems of the LDA, e.g., the overesti-
mation of cohesive energies, the reference data for the ther-
modynamic ground states of Ga, In, As, GaAs, and InAs
were taken from experiment. The reference data for meta-
stable bulk structures and for surfaces are not experimentally
accessible and was taken from LDA calculations instead.
Such a combination of theoretical and experimental data re-
quires calibrating the structural trends of the DFT calcula-
tions with the available experimental measurements. To this
end, we determined the ratios of experimental and LDA val-
ues for the lattice constant a0 and for the cohesive energy
Ecoh of the ground states. The LDA results without experi-
mental counterparts were then scaled by these ratios in order
to retain a consistent set of theoretical and experimental ref-
erence data. Instead of such a multiplication with the ratio of
experimental and LDA values, the LDA data can be alterna-
tively calibrated by a constant shift to the experimental
value. While we find that some calibration procedure is re-
quired, the two alternatives gave comparable results, given
that the input data can be matched by the parameter fitting
only within a predetermined accuracy.

B. Parameter optimization

Our goal is to adapt the Abell–Tersoff potential to InAs/
GaAs nanostructures. In practice, this means that the param-
eters Rij, Dij, �ij, Sij, �ij, �ij, �ij, cij, dij, hij, nij, mij, Rij

c , and
Dij

c introduced in Sec. II should be readjusted. For this pur-

TABLE I. Parameter sets for the different interactions.

Ga-Ga As-As In-In Ga-As In-As

Rij �Å� 2.2625 1.9018 2.6639 2.3824 2.5492

Dij �eV� 1.4159 7.9717 1.5052 1.9561 1.8900

�ij �1 /Å� 0.9079 1.2165 1.1847 1.5396 1.4549

Sij 1.0646 2.3439 1.2440 1.1543 1.8578

�ij 1.4401 4.8650 4.0976 0.2992 2.2113

�ij �1 /Å� 0.7469 2.5408 1.2117 −1.3824 1.1816

�ij 0.0050 0.3609 0.0109 0.0424 0.0190

cij 1.4897 0.1749 1.0853 1.7796 3.9707

dij 0.8376 0.2140 0.9465 0.6450 0.9486

hij −0.3373 −0.1261 −0.4652 −0.4060 −0.5102

nij 1.0 1.0 1.0 1.0 1.0

mij 1.0 1.0 1.0 1.0 1.0

Rij
c �Å� 2.95 3.1 3.5 3.1 3.7

Dij
c �Å� 0.15 0.1 0.1 0.2 0.1
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pose, we first selected a set of reference data representative
for the bonding in the nanostructures and adjusted the param-
eters so as to minimize the error on this reference data set.
Specifically, this data set consisted of selected bulk and sur-
face properties �see Sec. III C�. The error was calculated as
the sum of weighted quadratic differences of the quantities,
as obtained from the potential �with a certain set of param-
eters� and the reference values. The error was minimized by
applying the Levenberg–Marquardt algorithm47 that
smoothly varies from a steepest-descent minimization to an
inverse-Hessian minimization as it approaches the minimum
deviation value. Despite having many adjustable parameters,
the flexibility of the Abell–Tersoff potential in describing
different bonding situations is limited. This has several im-
plications for parameter optimization: matching a reference
property with its expression in terms of the potential consti-
tutes a nonlinear equation in the potential parameters. Opti-
mizing a set of potential parameters for a set of reference
properties is thus equivalent to approximately solving a sys-
tem of nonlinear equations. There is no general criterion if
such a system is soluble �see, e.g., Ref. 47�. In other words,
from a mathematical point of view, it is not a priori known
which subset of reference properties can be fitted with a re-
quested accuracy. Hence, it is not necessarily the best choice
to optimize all parameters for all reference data at the same
time. There can be subsets of reference data that are conflict-
ing in the sense that they cannot be simultaneously fitted
with the requested accuracy. We overcame this obstacle by
performing systematic optimization attempts that combine
different subsets of parameters and different subsets of ref-
erence data. After identifying conflicting subsets of reference
data and reducing the weight of one conflicting data, we
repeated the search campaign to successively optimize the
potential parameters. During this procedure, overfitting was
avoided by checking against a test data set �properties of
high-index surfaces, see Sec. IV A� not included in the opti-
mization: parameter sets showing improvement only for the
reference data, but not for test data, were discarded. Since
the parameter fitting is a nonlinear minimization procedure,
one might be worried about getting stuck in local minima. To
cope with this risk, we sample the parameter space, using
nearly 1000 different initial parameters sets to start the mini-
mum search. These parameter sets were derived according to
the procedure of Albe et al.,11 from previous
parametrizations7–12 or from successive fits of different sub-
sets of parameters and reference data.

C. Numerical details

In this section, we describe how to calculate the physical
quantities in our reference data from the Abell–Tersoff po-
tential. The lattice constants a0 and cohesive energies Ecoh
were obtained by minimization of the cohesive energy Ecoh
with respect to the lattice constant. The crystal lattices of
�-Ga and �-As are determined by five �cf. Table II� and
three �cf. Table IV� structural parameters, respectively. These
structural degrees of freedom were individually determined
by minimizing Ecoh while keeping the others fixed at their
reference values. The bulk moduli B and elastic constants c11

and c12 were determined from numerical second derivatives
of Ecoh: for B with respect to the volume and for c11 and c12
with respect to a variable in particular strain tensors.48 The
elastic constant c44 and the Kleinman parameter  were cal-
culated according to Nielsen et al.28

The investigation of surfaces with a particular parametri-
zation of the Abell–Tersoff potential requires to dovetail the
lattice constant of the surface slabs with the value of the bulk
lattice. For this purpose, we scale the DFT-LDA surface slabs
to the value of the bulk lattice constant that we determined
for a particular parametrization in the way described above.
During the optimization of the parameters, this scaling was
performed after every optimization step. We relaxed the at-
oms in the slab by a conjugate-gradient algorithm47 until the
maximum force in the system was below 1 meV /Å. The
surface energies for each parameter set were calculated by
using Eq. �8�, inserting the cohesive energies as obtained
with the same parameter set.

Furthermore, we defined two measures for the structural
difference between the surfaces relaxed within DFT and with

TABLE II. Equilibrium properties of Ga bulk phases as obtained
from experiments and scaled DFT-LDA calculations, the potential
developed in this work, and previous ones.

diamond-Ga LDAa T1 T5 This work

a0 �Å� 5.680 5.779 5.537 5.532

Ecoh �eV� 2.458 2.551 2.485 2.375

B �GPa� 46.5 44.072 27.960 18.894

sc-Ga LDAa

a0 �Å� 2.626 2.609 2.599 2.610

Ecoh �eV� 2.699 2.924 2.695 2.680

B �GPa� 61.3 74.607 43.056 30.130

�-Ga �A11� Expt.b

a0 �Å� 4.5192 4.3235 4.3819 4.4605

b0 �Å� 7.6586 8.0612 7.6756 7.6749

c0 �Å� 4.5258 4.4381 4.5195 4.5607

u 0.1539 0.16399 0.15943 0.15926

v 0.0798 0.087780 0.087669 0.087780

Ecoh �eV� 2.810c 2.8431 2.8063 2.8243

Ga-II �bccTd� LDAa

a0 �Å� 5.901 6.3963 5.9088 5.9567

Ecoh �eV� 2.784 2.5808 2.7582 2.8307

B �GPa� 66.8 �589d� 50.882 36.607

fcc-Ga LDAa

a0 �Å� 4.09 4.1557 4.0636 4.0750

Ecoh �eV� 2.756 2.5611 2.7113 2.7793

B �GPa� 65.2 82.051 �1129d� �1374d�
aReference 11.
bReference 29.
cReference 30.
dValue flawed due to influence of cutoff function.
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the Abell–Tersoff potential: first, with the Abell–Tersoff po-
tential, we calculate the maximum atomic force in the input
geometry �relaxed with DFT�. This value, F0, would vanish
if the geometry relaxed with DFT and with the Abell–Tersoff
potential were identical. Note that a large absolute value of
F0 can also arise if, e.g., the bond length of a surface dimer
is within the cutoff interval. Second, we calculate the aver-
age difference of all bond lengths ��r� in the surface unit
cells after relaxation with either DFT �Rij

DFT� or the potential
�Rij

P�,

��r�: = �
i=1

N−1

�
j=i+1

N
2 · �Rij

DFT − Rij
P�

N�N − 1�
. �9�

Note that the quantities F0 and ��r� describe an extremal
property and an average property, respectively, and therefore
need not follow a simple proportionality. This is also ob-
served in our calculations, indicating that the two measures
are not redundant.

D. Parameters

The parameters for each pair of species as obtained from
our optimization are given in Table I. In compliance with
most previously published parametrizations, the parameters
nij and mij were kept constant. The large value of DAsAs leads
to an undesirable overestimation of the binding energy of the
As dimer but was unavoidable to obtain proper surface en-
ergies: some of the considered surface reconstructions are
terminated by As dimers, and these are only stable for large
DAsAs.

Since In-Ga bonding is most likely not important for the
InAs/GaAs nanostructures, such structures were not included
in the reference data set. However, this set of parameters is
sufficient to study ordering or segregation effects with a
quasiequilibrium Monte Carlo simulation �see, e.g., Ref. 49�
that is based on diffusion by cation exchange. For high-
temperature molecular dynamics simulations of systems with
both In and Ga atoms, the parameters for the possibly needed
In-Ga interaction can be determined from an averaging
scheme6 that was shown to reproduce the cohesive energy
and lattice constant of InxGa1−x As alloys.12

In the following, we compare the parametrization of the
Abell–Tersoff potential for In, Ga, As, GaAs, and InAs de-
veloped in this work with previously published ones, which
we chronologically name as T1,7 T2,9 T3,8 T4,10 T5,11 T6,12

T7,13 and T8.14 For each of these parametrizations, we use
the identical bond-order functions �Eqs. �4� and �5�� as the
authors by choosing nij and mij accordingly. For compound
systems, we apply the same combinations of interaction pa-
rameter sets as in the original works. The parameter values
for the interactions of In-In �T2�, Ga-Ga �T1, T5�, As-As
�T1, T5�, Ga-As �T1, T3, T5, T7, T8�, and In-As �T2, T4, T6,
T7, T8� are given in the corresponding publications.

E. Bulk structures

For each pairwise interaction, the cutoff radius truncates
the range of the potential. The values were chosen similarly
to previous parametrizations and limit the interaction to the

nearest neighbors in InxGa1−x As zinc blende structures.
Thus, for this choice of cutoff radii, the description of a zinc
blende lattice with this potential is completely determined by
the parameters of the Ga-As and In-As interactions. Never-
theless, the parameters for In-In, Ga-Ga, and As-As interac-
tions are needed because Etot of the stable elemental crystal
structures �i.e., �-Ga �A11�, �-As �A7�, and In�bct�� enters in
the formula for the surface energy �see Eq. �8��. A compari-
son of the results for the lattice parameters, cohesive ener-
gies, and bulk moduli of stable and metastable Ga, In, As,
GaAs, and InAs bulk structures of experimental works,
�scaled� DFT-LDA calculations, and calculations with our
new parametrization and previous ones is given in Tables
II–VI. For the internal structural degrees of freedom of Ga
and As, we adopt the notation of Albe et al.11 Some of the
bulk moduli in Tables II–VI are given in brackets to indicate
a technical artifact: equilibrium neighbor distances that are
within the cutoff interval �Rij

c −Dij
c ,Rij

c +Dij
c � can lead to an

unphysical influence of the curvature of the cutoff function
�Eq. �7�� on the curvature at the minimum of the equation of
state. This can cause incorrect results for quantities that are
given by second derivatives of the total cohesive energy,
such as the bulk modulus.

Table II shows that the parametrization developed in this
work reproduces the lattice parameters and cohesive energies

TABLE III. Equilibrium properties of In bulk phases as obtained
from experiments and scaled DFT-LDA calculations, the potential
developed in this work, and previous ones.

diamond-In LDA T2 This work

a0 �Å� 6.564 8.0962 6.5575

Ecoh �eV� 2.20 0.24934 2.1684

B �GPa� 28.49 �186a� 24.785

sc-In LDA

a0 �Å� 3.078 3.5291 3.0041

Ecoh �eV� 2.44 0.22094 2.3913

B �GPa� 36.75 �503a� 39.774

bcc-In LDA

a0 �Å� 3.741 4.0884 3.6099

Ecoh �eV� 2.44 0.20877 2.5375

B �GPa� 44.54 �909a� 52.686

bct-In Expt.b

a0 �Å� 3.2520 3.5783 3.2824

c0 �Å� 4.9470 5.4417 4.9392

Ecoh �eV� 2.52c 1.2751 2.5209

fcc-In LDA

a0 �Å� 4.737 5.0247 4.7316

Ecoh �eV� 2.56 0.19760 2.5258

B �GPa� 47.39 �1520a� 53.347

aValue flawed due to influence of cutoff function.
bReference 29.
cReference 30.
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of all Ga structures with a few percent error. This implies
that the Pauling relation between bond length and bond en-
ergy, as discussed in detail for T5 by Albe et al.,11 is fulfilled.
In our optimization, the bulk moduli of the metastable struc-
tures turned out to form a conflicting subset with the GaAs
surfaces. Therefore, we tolerated a larger error on these bulk
moduli in favor of the ability to model the surfaces of nano-
structures.

In Table III, we compile the investigated properties of In
bulk structures. We find that they are reproduced with the
same accuracy as the Ga bulk structures. The bulk moduli
not explicitly included in the optimization procedure are de-
scribed with a significantly higher accuracy, as compared to
those of the Ga bulk structures. Note that the different qual-
ity in the description of In and Ga is due to the consideration
of the InAs and GaAs surface properties in the optimization
procedure.

The properties of As bulk structures �Table IV� are repro-
duced with slightly larger deviations, as compared to Ga and
In. Here, one has to keep in mind that the As-As parameters
were not only optimized with respect to As bulk structures
but also to the properties of GaAs and InAs surfaces, where

As surface dimers are a common structural element. Conse-
quently, the As-As interaction is crucial for capturing the
surface energies of these reconstructed surfaces. The dimer-
ization of As leads to bond angles at the second-layer group-
III atoms substantially different from those in the zinc blende
structure. The angular terms of the III-As interactions thus
penalize As-dimer formation and, therefore, a strong As-As
interaction is required to overcompensate this penalty. De-
spite the resulting overestimation of the binding energy of
the As dimer, the remaining As-As parameters still allow us
to reproduce many bulk properties of arsenic.

The investigated structural and elastic properties of GaAs
and InAs are compiled in Tables V and VI. Particularly, the
properties of the zinc blende structures of these compound
materials are reproduced with high accuracy by this poten-
tial. While most potentials give reasonable values for the
lattice constant, cohesive energy, and bulk modulus, the
present parametrization accurately reproduces all elastic con-
stants, in particular, the shear modulus c44. The deviation of
about 0.5 eV for the cohesive energy of the NaCl structure of
GaAs was unavoidable in order to create a potential that
simultaneously describes the reconstructed low-index GaAs
surfaces.

These interactions are sufficient to describe heterogeneous
systems of GaAs, InAs, and bulk interfaces formed by them,
as well as InxGa1−x As alloys. Their applicability to subtle
ordering effects in alloys still needs to be tested and is be-
yond the scope of this work. The description of point defects
such as vacancies and interstitials is discussed in Sec. IV C.

F. Low-index compound surfaces

The surfaces of III-V semiconductors exhibit a noticeable
number of different reconstructions. Most of them are actu-
ated by the dimerization of surface As atoms. We include
only a few typical reconstructions of low-index surfaces into
the reference data set, namely, the ��2�4�, �2�2�4�, ��2
�4�, and �2�2�4� reconstructions of the �001� surface �cf.
Fig. 1�, as well as the �unreconstructed� �110� surface of
GaAs and InAs �for the nomenclature, consult Ref. 36�. For
the growth of III-As nanostructures, moderately As-rich
growth conditions are most important. As there is no indica-
tion that a coexistence of As-rich and cation-rich surface re-
constructions has a strong impact on the growth process, we
do not consider cation-rich surfaces, e.g., the ��4�2�
reconstruction.37 The results obtained with our parametriza-
tion are compared to previous ones in Tables VII and VIII.
The details of the considered properties and their calculation
were given in Sec. III C.

This comparison clearly shows that the potential devel-
oped in this work achieves much higher overall accuracy in
the description of the �110� and reconstructions of the �001�
surfaces of both GaAs and InAs. All surface energies agree
with the DFT-LDA reference values within about
10 meV /Å2. Furthermore, the quantities F0 and ��r� indi-
cate that the agreement between the surface geometries as
relaxed with DFT and with the analytic many-body potential
is significantly improved, as compared to previous param-
etrizations.

TABLE IV. Equilibrium properties of As bulk phases as ob-
tained from experiments and scaled DFT-LDA calculations, the po-
tential developed in this work, and previous ones.

diamond-As LDAa T1 T5 This work

a0 �Å� 5.913 6.0815 5.8086 5.9792

Ecoh �eV� 2.487 2.2367 2.5100 2.6088

B �GPa� 52.6 40.476 47.520 34.482

�-As �A7� Expt.b

a0 �Å� 4.1320 4.0301 3.9056 4.0584

� �deg� 54.12 59.965 54.534 56.424

u 0.22707 0.25000 0.23218 0.22618

Ecoh �eV� 2.96c 2.7344 2.9650 2.9087

sc-As LDAa

a0 �Å� 2.64 2.6377 2.6111 2.7271

Ecoh �eV� 2.89 3.3204 2.8874 2.7201

B �GPa� 96.8 92.355 81.071 52.550

bcc-As LDAa

a0 �Å� 3.26 3.5845 3.2016 3.3215

Ecoh �eV� 2.562 2.4368 2.4617 2.4470

B �GPa� 96.8 �945d� 84.555 58.221

fcc-As LDAa

a0 �Å� 4.217 4.3339 4.1264 4.2481

Ecoh �eV� 2.442 2.4005 2.4707 2.4789

B �GPa� 93.0 81.274 87.790 �439d�
aReference 11.
bReference 29.
cReference 30.
dValue flawed due to influence of cutoff function.
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IV. RELIABILITY TESTS

The so-called Stranski–Krastanov growth mode of semi-
conductor quantum dots �QDs� is driven by the balance be-
tween energy gain due to strain relief and energy cost due to
the formation of side facets and edges.17 In this section, we
will demonstrate that the above parametrization based on
bulk properties and reconstructed low-index surfaces enables
us to perform quantitative investigations of the formation
energy and atomistic structure of lattice-mismatched InAs/
GaAs nanostructures such as QDs. In particular, it describes
several high-index facets that are known to form side facets
of QDs but also biaxially strained InAs films on GaAs with
reasonable reliability. The limited applicability to bond
breaking and making requires some caution when the poten-
tial is to be used for studies of defects and surface diffusion,
as shown in Secs. IV C and IV D.

A. High-index compound surfaces

Recent high-resolution scanning-tunneling microscopy
�STM� experiments revealed the atomic structure of InAs
QDs on GaAs�001� substrates53,54 and on GaAs high-index
substrates.55,56 Performing reliable studies of such systems
with our potential calls for assessing the transferability from
the low-index surfaces to which the potential was fitted to
those GaAs and InAs high-index surfaces that are of particu-
lar importance as substrate and QD facets. We applied our
potential to several high-index surfaces �cf. Fig. 2� with the
same relaxation criteria as for the low-index surfaces and

calculated the same quantities. A comparison of the results
for GaAs and InAs high-index surfaces, as obtained from
DFT-LDA calculations and from calculations with our pa-
rametrization and previous ones, is put together in Tables IX
and X, respectively.

The error of the surface energy of all investigated high-
index facets of about 10 meV /Å2 is very similar to the error
for the low-index surfaces that were included in the optimi-
zation procedure. Note that every other parametrization gives
deviations of more than a factor of 2 for at least one of the
investigated low-index and high-index surfaces. Addition-
ally, the maximum initial force on the DFT-relaxed high-
index facets F0 and the average bond-length deviation ��r�
after relaxation with our potential are in the same range as
for the low-index surfaces. This is a clear indication that our
parametrization for low-index surfaces is transferable to the
investigated high-index surfaces without loss of accuracy.
The reason is that these high-index surfaces are reconstructed
truncations of the zinc blende bulk dominated by As-dimer
motifs, which also appear as the most prominent feature of
the reconstructed low-index surfaces that were included in
the fitting procedure.

Furthermore, we find that our parametrization reproduces
the ��4�2� reconstruction of the GaAs�001� and InAs�001�
surface within 5 and 20 meV /Å2, respectively. However, the
surface energies of reconstructions with an As bilayer �e.g.,
GaAs�001�c�4�4� �Ref. 27� and In2/3Ga1/3As�001��2�2
�3� �Ref. 57�� are overestimated by a factor of approxi-
mately 4. From the viewpoint of parameter optimization,
these structures form a subset that is in conflict with the

TABLE V. Equilibrium properties of GaAs bulk phases as obtained from experiments and scaled DFT-
LDA calculations, the potential developed in this work, and previous ones.

GaAs �ZnS� Expt.a T1 T3 T5 T7 T8 This work

a0 �Å� 5.653 5.6553 5.6438 5.6527 5.6535 5.6309 5.6527

Ecoh �eV� 6.71 6.5015 6.5014 6.7087 6.4999 6.7202 6.7159

B �GPa� 74.8 79.941 74.942 73.485 75.333 74.214 75.195

c11 �GPa� 118.1 79.94 118.64 123.89 118.80 124.01 117.74

c12 �GPa� 53.2 79.94 53.09 48.28 50.99 52.45 53.39

c44 �GPa� 59.2 −0.01 68.99 39.19 63.72 44.95b 58.62

 0.77c 1.0002 0.5348 0.5480 0.4774 0.5824b 0.6700

GaAs �NaCl� LDAd

a0 �Å� 5.278 5.3489 5.6902 5.3202 5.1562 5.2754 5.3938

Ecoh �eV� 6.168 5.1524 3.1348 6.1729 4.5591 5.7661 5.6236

B �GPa� 95.79 89.309 47.786 95.790 77.247 90.625 87.985

GaAs �CsCl� LDAd

a0 �Å� 3.276 3.5992 3.5993 3.2680 3.0817 3.1879 3.2372

Ecoh �eV� 5.73 3.7133 2.6523 5.5645 5.1944 5.7849 5.8438

B �GPa� 105.4 �17376e� �7473e� 105.43 118.85 342.87 114.26

aReference 31.
bValues reported in original work overestimated �Ref. 50�.
cReferences 32 and 33.
dReference 11.
eValue flawed due to influence of cutoff function.
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TABLE VI. Equilibrium properties of InAs bulk phases as obtained from experiments and scaled DFT-
LDA calculations, the potential developed in this work, and previous ones.

InAs �ZnS� Expt.a T2 T4 T6 T7 T8 This work

a0 �Å� 6.0583 5.9084 6.0597 6.0587 6.0582 6.060 6.0499

Ecoh �eV� 6.20 7.1308 7.1310 6.2004 6.2002 6.198 6.2042

B �GPa� 58.0 68.14 58.049 57.771 61.385 59.472 57.961

c11 �GPa� 83.29 68.14 83.61 82.92 92.35 83.31 83.36

c12 �GPa� 45.26 68.14 45.27 45.20 45.90 47.55 45.26

c44 �GPa� 39.59 0.013 39.58 41.64 44.65 22.52b 39.52

 0.68c 0.9998 0.6502 0.6408 0.5926 0.6927b 0.6488

InAs �NaCl� LDA

a0 �Å� 5.680 5.6539 5.7661 6.1427 6.2563 5.2829 5.6435

Ecoh �eV� 5.56 5.4212 5.4566 3.0108 2.7104 8.9283 5.2801

B �GPa� 68.16 72.178 62.241 36.891 34.647 131.030 70.506

InAs �CsCl� LDA

a0 �Å� 3.521 3.5998 3.5992 3.7787 3.9120 3.2595 3.5837

Ecoh �eV� 4.94 4.3422 5.0665 2.4191 1.9162 8.8164 5.2270

B �GPa� 64.51 �27778d� �8727d� 36.138 29.380 163.01 �879d�
aReference 34.
bValues reported in original work overestimated �Ref. 50�.
cValue obtained with phenomenological theory in Ref. 35.
dValue flawed due to influence of cutoff function.

TABLE VII. Surface energies � �meV /Å2� at �As=−Etot �As � bulk phase�, relaxation differences �F0�
�eV /Å� and ��r� �Å� of low-index GaAs surfaces as obtained from DFT-LDA calculations, the potential
developed in this work, and previous ones.

�001� ��2�4� LDAa T1 T3 T5 T7 T8 This work

� 65.0 71.90 89.00 80.04 79.79 41.85 49.81

�F0� �0.001 6.49 8.43 4.80 8.00 0.85 2.91

��r� 0.000 0.147 0.168 0.133 0.097 0.125 0.111

�001� ��2�4� LDAb

� 58.0 110.3 89.75 114.8 114.55 81.25 63.52

�F0� �0.001 4.083 5.25 4.85 1.14 0.87 1.03

��r� 0.000 0.126 0.170 0.109 0.092 0.105 0.117

�001� �2�2�4� LDAa

� 56.0 111.0 100.6 115.4 115.52 81.72 63.67

�F0� �0.001 6.17 7.93 4.59 1.58 0.80 0.927

��r� 0.000 0.139 0.160 0.108 0.094 0.107 0.116

�110� �cleavage� LDAa

� 52.0 13.89 10.71 57.69 57.18 21.96 62.48

�F0� �0.001 4.92 7.42 0.551 1.11 0.548 0.526

��r� 0.000 0.054 0.098 0.102 0.101 0.100 0.101

aReference 27.
bReference 51.
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subset formed by the As bulk properties and the other surface
reconstructions. Consequently, we did not include these two
surface reconstructions as reference data in our optimization
of the potential parameters. We note that none of the other
investigated parametrizations gives acceptable results for
both the ��4�2� reconstructions and the ones with an As
bilayer.

B. Lattice-mismatched heterostructures

Biaxially strained bulk material is a good test case to
check if this potential is able to capture the atomistic relax-
ation and elastic energy of epitaxial thin films, like the wet-

ting layer that appears in Stranski–Krastanov growth of QDs.
For the technologically relevant case of heteroepitaxial
growth of InAs on GaAs substrates, the large lattice mis-
match leads to significant elastic deformations in the InAs
wetting layer.

TABLE VIII. Surface energies � �meV /Å2� at �As=−Etot �As � bulk phase�, relaxation differences �F0�
�eV /Å� and ��r� �Å� of low-index InAs surfaces as obtained from DFT-LDA calculations, the potential
developed in this work, and previous ones.

�001� �2�2�4� LDAa T2 T4 T6 T7 T8 This work

� 47.0 70.13 62.72 44.14 80.96 34.86 35.76

�F0� �0.001 9.39 6.32 10.4 4.39 3.14 2.85

��r� 0.000 0.181 0.185 0.223 0.199 0.156 0.155

�001� �2�2�4� LDAa

� 45.0 102.7 102.0 78.99 116.77 49.09 53.28

�F0� �0.001 6.43 1.04 1.57 1.55 3.33 0.756

��r� 0.000 0.160 0.121 0.171 0.133 0.155 0.109

�110� �cleavage� LDAb

� 41.0 10.30 16.24 −0.001 44.77 55.69 47.22

�F0� �0.001 1.79 2.46 0.695 0.503 0.275 0.392

��r� 0.000 0.031 0.103 0.103 0.105 0.113 0.104

aReference 52.
bReference 27.

FIG. 1. �Color online� Reconstructions of the �001� surface of
GaAs and InAs. Arsenic and cation atoms are shown in red �dark
gray� and white, respectively. �To guide the eyes, we show a 2
�2 repetition of the surface unit cells viewed along the crystallo-

graphic direction �001̄�.�

FIG. 2. �Color online� Reconstructed high-index surfaces of
GaAs and InAs investigated in this work. Arsenic and cation atoms
are shown in red �dark gray� and white, respectively. �To guide the
eyes, we show a 2�2 repetition of the surface unit cells viewed

along the crystallographic direction �001̄�.�
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The term biaxial strain refers to a situation where a crystal
is mechanically loaded in two directions, while it is free to
relax in the third direction, which we identify by its Miller
indices �hkl�. The biaxial strain �, isotropic in each �hkl�
crystal plane, causes an elastic relaxation � along �hkl� re-
lated to � by the biaxial Poisson ratio �=−� /� that mini-

mizes the associated elastic energy Eel. In the linear-response
regime, the values of � and Eel of biaxially strained cubic
crystal structures can be determined either analytically58

from CET or numerically from atomistic simulations using
strained simulation cells. Here, we employ both approaches

TABLE IX. Surface energies � �meV /Å2� at �As=−Etot �As � bulk phase�, relaxation differences �F0�
�eV /Å� and ��r� �Å� of high-index GaAs surfaces as obtained from DFT-LDA calculations, the potential
developed in this work, and previous ones.

�113� �2�1�-� a LDAa T1 T3 T5 T7 T8 This work

� 56.0 83.89 73.86 102.2 94.06 61.59 51.97

�F0� �0.001 2.04 1.74 4.43 0.746 0.69 0.698

��r� 0.000 0.145 0.129 0.132 0.075 0.084 0.085

�137� LDAb

� 57.4 72.29 60.75 85.63 87.26 51.46 51.74

�F0� �0.001 8.32 11.2 4.59 1.42 0.75 0.802

��r� 0.000 0.163 0.117 0.080 0.079 0.083 0.087

�2 5 11� LDAc

� 53.0 76.48 67.39 103.1 95.05 61.25 63.10

�F0� �0.001 10.1 13.9 4.58 1.66 0.745 0.865

��r� 0.000 0.158 0.116 0.103 0.084 0.091 0.092

�3 7 15� LDAc

� 55.0 74.33 64.23 99.49 91.72 58.39 60.99

�F0� �0.001 7.04 10.8 3.97 1.09 0.75 0.823

��r� 0.000 0.152 0.114 0.108 0.097 0.107 0.106

aReference 38.
bReference 51.
cReference 39.

TABLE X. Surface energies � �meV /Å2�� at �As=−Etot�As � bulk phase�, relaxation differences �F0�
�eV /Å� and ��r� �Å� of high-index InAs surfaces as obtained from DFT-LDA calculations, the potential
developed in this work, and previous ones.

�113� �2�1�-� a LDAb T2 T4 T6 T7 T8 This work

� 45.2 77.41 80.20 53.79 92.99 17.75 41.56

�F0� �0.001 7.83 4.67 8.13 3.65 3.11 2.00

��r� 0.000 0.188 0.110 0.179 0.127 0.196 0.092

�137�

� 39.5 65.96 69.26 42.09 84.85 20.67 40.43

�F0� �0.001 4.68 5.11 8.20 3.54 3.20 1.95

��r� 0.000 0.134 0.070 0.133 0.099 0.152 0.087

�3 7 15�

� 41.5 67.67 70.21 45.99 88.24 16.30 49.16

�F0� �0.001 6.76 4.99 8.67 3.77 3.04 2.05

��r� 0.000 0.148 0.109 0.139 0.108 0.166 0.096

aReference 38.
bReference 51.
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to test the applicability of the potential developed in this
work.

The analytic results were obtained by using the experi-
mental elastic constants in the expressions derived from
CET.58 For the numeric results, we employed our potential in
atomistic simulations of periodic supercells with two unit
vectors of the strain plane and a set of strain values
�i� �−0.07,0.07�. The minimization of the total energy
Eel��� for a certain biaxial strain �i in the considered plane
�hkl� with respect to the elastic response �i perpendicular to
this plane yields the biaxial Poisson ratio �i=−�i /�i. In each
minimization, we relaxed the atoms until the relative change
in total energy was less than 10−3. The elastic energy is ob-
tained from the difference of the total energies of strained
and unstrained supercells. The results of all investigated po-
tential parametrizations show anharmonic strain dependen-
cies and are well described by

���� = ��0� + ��1� · � , �10�

Eel��� = Eel
�2� · �2V + Eel

�3� · �3V . �11�

We can consistently assess the applicability of the potential
developed in this work to the biaxial Poisson ratio and the
elastic energy by comparing the harmonic terms ��0� and Eel

�2�

of the numerical results �Eqs. �10� and �11�� with the analyti-
cally obtained � and Eel.

For this comparison summarized in Tables XI and XII, we
have exemplarily chosen biaxial strain in the �001� and �110�
planes that correspond to extremal values of Poisson ratio
and elastic energy,58 and in the �137� and �3 7 15� planes as
examples of two high-index planes.

Note that the formation of InAs quantum dots was re-
ported only for GaAs substrate orientations that correspond
to minimal or moderate elastic-energy densities of biaxially
strained InAs, such as �001� and �113�,56 �114�,59 and �2 5
11�,55 but not for �110�60 and �111�61 substrates that would
correspond to maxima in the elastic-energy density. In fact,
STM experiments and ab initio calculations of heteroepitaxy
of InAs on GaAs�110� �Ref. 62� suggested that the formation

of dislocations is the dominant mechanism of strain relief.
However, this competing mechanism of strain relief can be
avoided by reducing the elastic-energy density, e.g., with a
smaller value of the lattice mismatch �� in Eq. �11��. Such a
reduction with an additional InGaAs layer has recently
proven to allow for QD growth even on GaAs�110�
substrates.63

The potential developed in this work reproduces the har-
monic part of the biaxial Poisson ratio very well for all in-
vestigated strain planes in GaAs and InAs. The previously
published parametrizations T3, T4, T6, and T7 give compa-
rable results for the biaxial Poisson ratio and the elastic en-
ergy. Parametrizations T1 and T2 overestimate the biaxial
Poisson ratio by a factor of 2 and show practically no depen-
dence of the elastic energy on the applied biaxial strain. The
weak dependence of ��0� and Eel

�2� on the orientation of biaxial
strain in the case of T8 is due to the overestimated value of
c44 in the original work.50 Previously published DFT
calculations58 showed that for InAs, the value of the anhar-
monic term Eel

�3� in Eq. �11� is of the order of −1 eV /Å3 for
all Miller indices �hkl�. This anharmonicity of the elastic-
energy density is qualitatively reproduced by the InAs pa-
rametrizations T4, T6, and T7 and the one determined in this
work.

C. Point defects

As a first example that reveals some of the limits of the
Abell–Tersoff potential, we discuss neutral point defects in
zinc blende GaAs with low formation energies �see, e.g.,
Ref. 64�. These are vacancies �VAs and VGa� and antisites
with an As atom located at the lattice site of a Ga atom
�AsGa� or vice versa �GaAs�. Their formation energies as ob-
tained from DFT calculations and with previous parametri-
zations of the Abell–Tersoff potential were given by Zollo et
al.64 Our calculations using the parametrization developed in
this work and relaxations of simulation cells with 512 atoms
are summarized in Table XIII. In the following, we report the
point defect formation energies for �As=−Etot �As � bulk
phase�, i.e., for defects in equilibrium with bulk As.

TABLE XI. Poisson ratio for biaxial strain ��0� determined ana-
lytically from CET �Ref. 58� with the experimental elastic constants
and numerically �Eq. �10�� with the parametrization determined in
this work and with previous ones.

��0� �GaAs� CET T1 T3 T5 T7 T8 This work

�0 0 1� 0.905 2.002 0.907 0.799 0.812 0.914 0.919

�1 1 0� 0.555 2.007 0.469 0.380 0.498 0.848 0.591

�1 3 7� 0.687 2.004 0.689 0.531 0.616 0.834 0.710

�3 7 15� 0.654 2.006 0.647 0.493 0.586 0.831 0.677

��0� �InAs� CET T2 T4 T6 T7 T8 This work

�0 0 1� 1.087 2.011 1.093 1.092 0.994 1.185 1.095

�1 1 0� 0.673 1.994 0.686 0.643 0.624 1.073 0.696

�1 3 7� 0.828 2.029 0.838 0.808 0.762 1.112 0.844

�3 7 15� 0.789 2.038 0.799 0.766 0.726 1.100 0.804

TABLE XII. Elastic-energy density for biaxial strain Eel
�2�

�eV /Å3� determined analytically from CET �Ref. 58� with experi-
mental elastic constants and numerically �Eq. �11�� with the param-
etrization determined in this work and with previous ones.

Eel
�2� �GaAs� CET T1 T3 T5 T7 T8 This work

�0 0 1� 0.773 0.000 0.760 0.839 0.821 0.747 0.759

�1 1 0� 1.020 0.000 1.086 1.139 1.051 0.767 0.998

�1 3 7� 0.927 0.000 0.989 1.028 0.964 0.793 0.911

�3 7 15� 0.950 0.000 0.971 1.055 0.986 0.798 0.935

Eel
�2� �InAs� CET T2 T4 T6 T7 T8 This work

�0 0 1� 0.495 0.000 0.491 0.490 0.576 0.462 0.484

�1 1 0� 0.720 0.000 0.712 0.735 0.789 0.462 0.710

�1 3 7� 0.636 0.000 0.629 0.645 0.710 0.472 0.625

�3 7 15� 0.657 0.000 0.650 0.668 0.731 0.478 0.647
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The formation energies of both vacancy defects, as ob-
tained with the parametrization developed in this work, are
improved over the previous ones, T1, T3, T5, and T8, and in
reasonable agreement with the results from DFT
calculations.64 The description of antisite defects is very bad,
and for AsGa, we even obtain a negative formation energy.
This is due to the occurrence of bonds among neighboring
As atoms and the large value of DAsAs that was needed to
stabilize surface reconstructions with As dimers.

D. Surface diffusion

As a second example that shows the limits of Abell–
Tersoff potentials, we have chosen to investigate the energet-
ics of bond breaking and making that is observable in
potential-energy surfaces �PESs� of adsorbed atoms on sur-
faces. We exemplarily present the adsorption of a Ga atom
on the �2 �2�4� reconstruction of the GaAs�001� surface, as
obtained with the parametrization developed in this work.
The results are compared to the DFT study by Kley et al.40

and to a previous study by Salmi et al.41 employing the T3
parametrization of the Abell–Tersoff potential. Additionally,
we performed PES calculations with parametrization T5.11

First, we relaxed a supercell containing 3�5 units of recon-
structed �2�4� unit cells without adatom, keeping the lowest
layers in the slab fixed. The resulting total energy is used to
define the zero level of the adatom adsorption energy. Then,
we determined the PES for Ga adsorption by positioning the
Ga adatom on a grid of lateral positions to be held fixed and
relaxing its height in the different lateral positions as well as
the upper layers of the supercell until the absolute maximum
force in the system was below 1 meV /Å. The lateral spac-
ing of the PES grid of �x=�y=a0 /25 results in more than
5000 points. This high resolution of the PES grid was chosen
to avoid interpolation artifacts and to reveal localized arti-
facts that the cutoff function �Eq. �7�� may give rise to. The
calculated differences of the total energies to that of the clean
surface yields the PES of adatom binding energies shown in
Fig. 3 for the parametrization determined in this work. The
topology of the PES obtained with the parametrization deter-
mined in this work and with T5 are in qualitative agreement
with the PES previously calculated using T3 �Ref. 41�: all
PES show the four most stable adsorption sites, A1, A2, A3,
and A4, and the overall corrugation of the PESs of about 2
eV is comparable to the corrugation of 1.75 eV from DFT

calculations.40 Nevertheless, compared to the corresponding
PES calculated with DFT,40 all results with Abell–Tersoff
potentials exhibit additional minima. We note that calcula-
tions of the surface diffusivity have been performed by com-
puting the rate constants for hopping between adjacent
minima within the approximation of transition state theory.40

Due to the additional minima and transition states encoun-
tered in the PES obtained with the Abell–Tersoff potentials, a
direct comparison of hopping rates and energy barriers with
those obtained in DFT is not informative. A meaningful com-
parison would require the calculation of the overall diffusiv-
ity, which is beyond the scope of the present work. The ab-
solute depths of the realistic minima of the adsorption energy
quantitatively depend on the parametrization, as shown in
Table XIV.

The parametrization determined in this work somewhat
underestimates the adsorption energy. The differences of the
smallest and largest deviation relative to the DFT results are
0.71, 0.52, and 0.82 eV for T3, T5, and the parametrization
developed in this work, respectively. The relative depth of
the minima which is important for the adatom diffusion is
not very well described by all these parametrizations.

To complete the picture of adsorption, we investigated the
potential’s ability to describe the effect of local changes on
the hybridization. It was first observed by Kley et al.40 that a
Ga adatom has two stable adsorption geometries with either
sp2- or sp3-like configuration at a surface As dimer of the
GaAs�001��2�2�4� reconstruction. In similar calculations
with the many-body potential developed in this work, a Ga

TABLE XIII. Formation energies �eV� of vacancy and antisite
point defects in zinc blende GaAs as obtained with DFT calcula-
tions �Ref. 64� and the parametrization developed in this work.

VAs VGa AsGa GaAs

DFTa 3.10 3.15 2.48 2.12

T1a 0.5 0.9 1.5 1.0

T3a 0.34 0.74 1.93 4.21

T5b 2.0 2.4 5.6 2.0

This work 2.77 2.85 −1.39 3.65

aReference 64.
bReference 11.

TABLE XIV. Adsorption energies �eV� of a Ga adatom at local
minima A1, A2, A3, and A4 �Fig. 3� on GaAs�100��2�2�4��, as
obtained with DFT, with the parametrization determined in this
work and with previous ones.

Previous calculations New calculations

DFTa T3b T5c This work

A1 −2.5 −2.45 −2.38 −1.71

A2 −2.2 −2.43 −2.30 −1.77

A3 −3.2 −3.35 −2.78 −1.95

A4 −2.6 −3.26 −2.68 −1.94

aReference 40.
bReference 41.
cReference 11.

FIG. 3. �Color online� The adsorption energies �eV� of a Ga
atom on GaAs�001��2�2�4� show similarities with DFT calcula-
tions �Ref. 40� but exhibit several additional minima. The topmost
Ga �black� and As �white� atoms are indicated.
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adatom in different heights above the As dimer and with
different lengths of the latter exhibited only the sp3-like con-
figuration and, thus, the analytic many-body potential does
not capture this local change in the hybridization. The reason
is that there is only one minimum in the angular function. We
expect that introducing an additional minimum in the angular
term of the Abell–Tersoff potential would allow the descrip-
tion of such multiple minima.

V. APPLICATION: QUANTUM DOT FORMATION
ENERGY

Our parametrized Abell–Tersoff potential for the In-
Ga-As system enables us to study the structure and energet-
ics of realistic nanostructures. For a direct comparison of our
atomistic method with previous works16,17 that employed a
hybrid method based on continuum-elasticity theory and
DFT calculations, we determined the size-dependent forma-
tion energy of a freestanding InAs quantum dot �QD� on a
GaAs�001� substrate. An in-depth investigation of the rela-
tive stability of homogeneous films and differently shaped
QDs will be presented elsewhere.

A. Details of the calculation

The following quantitative comparison with the hybrid
approach is based on the simplest possible QD shape with
exclusively �101� side facets. To investigate the variation of
the QD formation energy, the calculations were performed
for a series of QDs with different sizes. A meaningful com-
parison of both approaches requires a simple geometrical
shape of the QD, i.e., the side facets must be full atomic
layers. Adding layers increases each surface plane by a given
orientation-dependent layer thickness. Therefore, in contrast
to continuum approaches, an ideal isomorphic scaling is in
many cases not achievable. In the special case of �101� fac-
ets, however, the QDs of different sizes are perfectly isomor-
phic. The number of In atoms in the QDs ranged from about
700 to about 20 000, corresponding to 10 and 31 atomic
layers, respectively.

For the purpose of comparing both approaches, the QDs
are assumed to sit on a homogeneous, 1.75 monolayer thick
InAs wetting layer �WL� with the �2�2�4� surface recon-
struction �Fig. 4� that corresponds to moderately As-rich
growth conditions. The detailed atomistic structure of the

reconstructed WL and QD surfaces is based on DFT slab
calculations of the corresponding free surfaces. Enforcing an
overall pyramid shape of the QD creates low-coordinated
atoms at the edges. While relaxing the atomic structure, these
edge atoms are allowed to rearrange, but no attempt was
made to enforce a particular atomic composition at the
edges, e.g., by adding or removing low-coordinated edge at-
oms. Periodic boundary conditions in the �001� plane en-
sured that the lateral dimensions of the simulation cells were
constant multiples of the GaAs lattice constant to model an
ideal GaAs bulk underneath the InAs wetting layer. The lat-
eral QD density that results from the area of our simulation
cell corresponds to approximately 1011 QD /cm2, which is in
line with typical experimental observations.

We obviate finite-size effects by successfully performing
convergence tests with respect to the vertical extension of the
GaAs substrate. As a result, we find that the difference be-
tween the total energy of the chosen QD sizes and a homo-
geneous InAs film is converged to less than 1 meV per atom
for substrates of more than approximately 10 nm thickness.
The required vertical and lateral extension of the simulation
cell results in systems of about 1.2�106 atoms. The indi-
vidual structures of the QD series are relaxed with the many-
body potential developed in Sec. II until the absolute value
of the maximum force in the system was below 1 meV /Å.
In these slab calculations, the positions of the atoms in the
lowest four atomic layers were kept fixed and all other atoms
were allowed to move freely.

B. Results

The growth of self-assembled QDs is governed by the
energetic balance of strain relief and the energetic costs of
the formation of QD side facets and edges. Quantifying this
interplay in terms of the QD formation energy is the key to
understanding QD growth. For sufficiently large QDs, the
contributions to the QD formation energy follow a scaling
law16 with respect to the QD volume V,

EQD�V� = �elasticV + �surfaceV
2/3 + �edgeV

1/3. �12�

In our atomistic simulations, we numerically determine the
formation energy EQD�Vi� for each relaxed structure i with
QD of volume Vi. This value is given as the difference be-
tween the total energy Etot

QD of the slab with QD and the
energy Etot

sub of a slab with the wetting layer only. The differ-
ent numbers of In and As atoms in the WL and the QD
structures result in a dependency of the formation energy on
the chemical potentials �cf. Eq. �8��. Similar to the surface
energy, the QD formation energy reads

Ei
QD = �Etot − �InAs�NIn − �As��NAs − �NIn� , �13�

where �Etot=Etot
QD−Etot

sub and �N=NQD−Nsub account for the
difference in total energy and atom numbers, respectively.
The comparison presented in the following is based on the
formation energies for �As=−Etot �As � bulk phase�, i.e., for
a system in equilibrium with bulk As, and for �InAs=−Etot
�InAs zinc blende bulk phase�.

For a direct comparison of our atomistic approach with
the hybrid method of Pehlke et al.,16 we need to make con-

FIG. 4. �Color online� Atomistic simulation cell of an InAs QD
with a �2�2�4� reconstructed wetting layer on a GaAs�001� sub-
strate. The idealized QD shape exhibits exclusively �101� facets.
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tact between the number of atoms in our approach and the
volume in the continuum representation of the QD in the
hybrid approach. In the continuum model, the QD volume is
unambiguously defined by the QD height h and scales with
h3. For a consistent definition of the QD volume in our simu-
lations, however, we need to additionally include atomistic
contributions. In particular, we need to account for those
atoms that complete the missing rows of the reconstructed
WL surface, a contribution that scales with the QD base area,
i.e., as h2/3. Therefore, a reliable leveling rule for our com-
parison of the atomistic and the continuum model is the QD
volume but not the QD height. The QD volume in the atom-
istic simulations is directly related to the number of In and
As atoms that form the QD. These can be determined by
counting the atoms in a QD structure or by evaluating

�NAs =
2

3
n3, �NIn =

2

3
n3 +

1

2
n2 +

1

2
n , �14�

where n is the number of atomic layers that form the QD.
The QD volume is then calculated as

V =
�NIn + �NAs

2
V0. �15�

In our comparison, we have chosen the InAs lattice constant
of the atomistic many-body potential �Table VI� to determine
the volume per f.u. InAs V0=a0

3 /4.
Calculating the formation energy �Eq. �13�� and the vol-

ume �Eq. �15�� of each QD structure in the isomorphic series
�see Fig. 5� then enables us to determine the coefficients of
the scaling law for the formation energy �Eq. �12��. The co-
efficients calculated from our atomistic simulations are in
good agreement with the values previously obtained in the
hybrid approach �see Table XV�. The coefficient �elastic ac-
counts for the average strain energy per unit volume present
in both the QD and the substrate after relaxation compared to

unstrained InAs and GaAs bulk materials. When comparing
the value of �elastic, one has to keep in mind that the
CET+DFT value was obtained by using linear elasticity
theory, while the atomistic approach includes nonlinear elas-
tic effects. The deviations between our potential and the DFT
results for the �unstrained� surface energies for the
�001��2�2�4� WL and the �101� QD side facets �Table
VIII� mostly cancel each other. The deviation in the surface
term is mainly due to the different dependency of the surface
energy on biaxial strain. The edge contribution �edge accounts
for undercoordinated atoms at the QD edges, but also for the
fact that the unit mesh of the reconstruction, both on the side
facets and in the wetting layer, is disturbed by the presence
of edges.

The coefficients of the scaling law can be employed to
quantify the range of validity of neglecting the edge contri-
butions in the hybrid approach. In previous works employing
the hybrid approach without the knowledge of the coefficient
�edge, this lower bound of the QD size could only be esti-
mated. Our atomistically calculated coefficients, however,
suggest that the relative weight of the edge contributions,
i.e., the ratio �edgeV

1/3 /EQD�V�, reaches a confidence limit of,
e.g., 5% for QDs with more than approximately 2000 InAs
f.u. For smaller QDs, the importance of the edge contribu-
tions increases significantly with decreasing QD volume.

VI. CONCLUSION

In this work, we provide a parametrization of the Abell–
Tersoff potential that is particularly optimized for the de-
scription of InAs/GaAs nanostructures. It captures the lattice
constants and cohesive energies of stable and several meta-
stable bulk phases of In, Ga, As, GaAs, and InAs, as well as
the elastic constants of GaAs and InAs with less than a few
percent deviation. The energies of several reconstructed low-
index GaAs and InAs surfaces were simultaneously opti-
mized with a remaining error of about 10 meV /Å. We com-
pared the atomic geometries for surface reconstructions
obtained with DFT and with the many-body potential and
optimized the potential parameters to yield improved geom-
etries and energies compared to previous works. Our poten-
tial is transferable to the description of energies and struc-
tures of several reconstructed high-index GaAs and InAs
surfaces. The harmonic parts of Poisson ratio and elastic en-
ergy of GaAs and InAs under biaxial strain in selected
planes, as numerically calculated with our potential, are in

TABLE XV. The coefficients of the scaling law for the QD
formation energy �Eq. �12��, as obtained from atomistic simulations
with the potential developed in this work, are in good agreement
with the results of a previously employed hybrid approach �Ref. 17,
Fig. 7, filled square symbol�.

�elastic

�meV /Å3�
�surface

�meV /Å2�
�edge

�meV /Å�

CET+DFT a 1.02 42. �Neglected�
This work 0.888 39.4 172.

aReference 17.

FIG. 5. �Color online� The QD formation energy, as obtained
from our atomistic simulations �squares�, follows the scaling law of
�Eq. �12�� �black line� and is in good agreement with the hybrid
approach �red line�. The edge contributions are negligible for suffi-
ciently large QD �dashed line�.
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very good agreement with analytic results obtained from
continuum-elasticity theory. The simultaneous description of
bulk, surface, and elastic properties is a significant improve-
ment to previously published parametrizations. The calcu-
lated defect formation energies and the potential-energy sur-
face of a Ga adatom on a GaAs�001��2�2�4� surface show
the typical limitations of Abell–Tersoff potentials. The calcu-
lated coefficients of the scaling law for the QD formation
energy are in good agreement with a hybrid approach that
employed strain fields from CET and surface energies from
DFT. Moreover, the atomistic approach enables us to esti-
mate the error in the hybrid approach due to the neglect of
edge energies: for the particular atomic structure of the QD
we investigated, the contribution from the formation of edges

is less than 5% for QDs with more than approximately 2000
f.u. InAs. The parametrization developed in this work is suit-
able for quantitative studies of the energetic balance between
strain relief and the formation of side facets and edges in
defect-free InAs/GaAs heterostructures. In particular, it cap-
tures the strain tensors and total energies of overgrown and
freestanding InAs QDs on GaAs substrates with good overall
accuracy.
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