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We study spin relaxation and decoherence in nanotube quantum dots caused by electron-lattice and spin-
orbit interaction and predict striking effects induced by magnetic fields B. For particular values of B, destruc-
tive interference occurs resulting in ultralong spin relaxation times T1 exceeding tens of seconds. For small
phonon frequencies �, we find a 1 /�� spin-phonon noise spectrum—a dissipation channel for spins in quan-
tum dots—which can reduce T1 by many orders of magnitude. We show that nanotubes exhibit zero-field level
splitting caused by spin-orbit interaction. This enables an all-electrical and phase-coherent control of spin.
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I. INTRODUCTION

Although semiconductor spintronics is a field with al-
ready a substantial history as well as with commercial
applications,1 spintronics with carbon-based materials is a
young research area with excellent perspectives. Only very
recently, a pronounced gate-controlled magnetoresistance re-
sponse in carbon nanotubes connected to ferromagnetic leads
has been reported.2 Furthermore, spin injection and detection
in single-wall carbon nanotubes has been demonstrated using
a four-terminal geometry.3 The interest to implement spin-
tronic devices with carbon materials such as carbon
nanotubes4 or graphene5 is mainly driven by the desire to
improve material properties, for instance, for the spin relax-
ation behavior in these materials �as compared to more stan-
dard semiconductors such as GaAs�. This is so because car-
bon is a comparably light atom; thus, spin-orbit interaction is
typically weak.6 Additionally, it consists predominantly of
12C, which has zero nuclear spin; thus, spin decoherence and
relaxation caused by the hyperfine interaction of the electron
spin with the surrounding nuclear spins are weak. The ad-
vantageous material properties of carbon also trigger a large
interest to create spin qubits7 in such materials.

Here, we provide quantitative calculations of spin relax-
ation and spin decoherence times and show that they are
dominated by a combination of spin-orbit and electron-
phonon interaction. It turns out that such spin-orbit induced
effects get strongly enhanced in small-radius nanotubes due
to the curvature of the lattice and result in energy splittings
that even exceed those occurring in GaAs nanostructures.

The interplay of such enhanced spin-orbit interaction with
the one-dimensional nature of nanotubes results in a complex
behavior with an extremely wide range of relaxation rates
which can be varied over many orders of magnitude by an
external magnetic field applied along the tube axis. We show
that interference effects can result in ultralong spin relax-
ation times exceeding tens of seconds. By contrast, we un-
cover that for nanotube quantum dots, a spin-phonon dissi-
pation channel exists with a sub-Ohmic spectral function
��1 /��, see below�, which results in decreasing spin relax-
ation times for decreasing spin level splitting �. Compared
to standard quantum dots �such as GaAs or InAs semicon-
ductors�, this is a most surprising behavior since usually the

spin decay times increase for decreasing �.8–10

Most remarkably, at zero magnetic field, the spin-orbit
interaction induces a zero-field splitting in the energy spec-
trum. We show that this opens the door for an all-electrical
control of spin in nanotube quantum dots, again based on the
strong spin-orbit interaction. This feature is most interesting
for spintronics applications where one aims at a spin manipu-
lation without making use of magnetic fields. Since quantum
dots in semiconducting carbon nanotubes have been realized
by several groups,11–18 we believe that our predictions are
well within experimental reach.

The paper is organized as follows. In Sec. II, we introduce
a theoretical model for a nanotube quantum dot and solve the
spectral problem of the Hamiltonian of such a system. In
Sec. III, we study spin-orbit coupling in nanotubes, consider
different contributions to the spin-orbit coupling, and inves-
tigate zero-field-level splitting induced by spin-orbit cou-
pling. In Sec. IV, electron-phonon coupling in nanotubes is
considered. Analytical expressions for the coupling of an
electron to three deformational acoustic phonon modes are
obtained. In Sec. V, spin relaxation of an electron in a nano-
tube quantum dot is investigated and discussed.

II. THEORETICAL MODEL

We consider a single-wall nanotube �NT� defined by the
chiral vector Ch=n1a1+n2a2, where a1=a0�1,0� and a2
=a0�1 /2,�3 /2� are the primitive lattice vectors �a0
=0.246 nm� and n1 ,n2�ℤ.4 The indices �n1 ,n2� determine
the radius of a NT R= �Ch� /2�=a0

�n1
2+n2

2+n1n2 /2� and the
chiral angle �direction angle of Ch� �=arctan��3n2 / �2n1
+n2�� �see Fig. 1�. Neglecting curvature effects �which lead
to an inessential shift of the valley minima in k space4� and
spin-orbit interaction �SOI�, we describe the system at the
K= �2� /a0��1 /3,1 /�3� and the K�= �2� /a0��−1 /3,1 /�3�
points of the Brillouin zone �see inset in Fig. 1� by the
Hamiltonian of graphene,19

H̃0 = �v��3kx�1 + ky�2�

= �v� 0 ��3	 − ik�e−i�3�

��3	 + ik�ei�3� 0
� , �1�

where v is the Fermi velocity in a NT �v=8.1
107 cm /s�,20
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� j are Pauli matrices operating on sublattice space, �3=1
��3=−1� for the K �K�� point, k is the electron wave-vector
component along �, and 	 is along Ch �see Fig. 1�. It is
convenient to perform a unitary transformation to remove the
dependence on the chirality angle � from the Hamiltonian,
i.e.,

U = �ei�3� 0

0 1
� , �2�

H0 = UH̃0U−1 = �v��3	�1 + k�2� . �3�

Eigenvalues and eigenfunctions �in the rotated reference
frame �� ,��� of the Hamiltonian �3� at zero magnetic field
are given by

E	,k = 
 �v�	2 + k2, �4�

�	,k
�����,�� =

eiK���·r

�4�
ei�	R�+k���z	m,k

���

1
� , �5�

z	,k = 

�	 − ik�
�	2 + k2

, z	,k� = �
�	 + ik�
�	2 + k2

, �6�

where r= �R� cos �−� sin � ,R� sin �+� cos ��.
Periodic boundary conditions along the NT circumference

���r+Ch�=��r�� quantize the wave vector associated with
the Ch direction ��k+K���� ·Ch=2�m , m�ℤ�: 	→ �m
−�3� /3� /R, where m�ℤ and �=0,
1 are determined by
n1−n2=3N+� �N�ℤ�.4 A NT with �=0 �e.g., �n ,n� arm-
chair NT� has zero band gap and is called a metallic NT.
Such a NT is not suitable to confine particles due to the Klein
paradox in gapless structures.21 Therefore, semiconducting
NTs ��=
1� are more favorable for quantum dot realiza-

tions, and we focus on this case in the following. An addi-
tional feature of semiconducting NTs with �=
1 is that
they allow us to avoid the problem of energy degeneracy at
the K and K� points by applying an Aharonov–Bohm flux
�AB=B�R2 through the NT cross section.4 Lifting the de-
generacy is crucial for spin qubit realizations with controlled
interqubit exchange.22 The Aharonov–Bohm flux leads to a
shift of the quantum number m→m+�AB /�0 ��0=hc / �e� is
the flux quantum� and to a Zeeman splitting E	m,k→E	m,k,S�
=E	m,k+S���Z, where �Z= �e�gB /2m0c, S�=
1 /2 is the
spin projection on the NT axis. Therefore, the energy spec-
trum and wave function of an electron in a NT are given by

E	m,k,S�
= E	m,k + S���Z, �7�

�	m,k,S�
��� ��,�� = �	m,k

��� ��,���S�	 , �8�

where 	m= �m+�AB /�0−�3� /3� /R, and �S�	 is the spin part
of the wave function.

Now we consider a quantum dot �QD� which is made of a
NT by the deposition of top gates on the NT �Refs. 16–18�
�see Fig. 2�a��. The spacing between the gates L defines the
length of a QD. We describe the confinement by the rectan-
gular potential �see Fig. 2�b��,

V��� = 
Vg, � � 0 or � � L ,

0, 0 � �� L .
� �9�

Recent experimental realizations of a NT QD23–25 provide
clear evidence favoring the rectangular confinement in a QD,
since Fabry–Pérot interference observed in such experiments
is a testimony for a NT QD with a well-defined length. Note
that we consider the experimentally more accessible case,
when the length of a NT QD L is much larger than its radius
R �L�100 nm�. For such QDs, the steplike potential drop
happens on a length scale much larger than the lattice con-

a1

a2

C h

Rϕ

ζ y

x
θ

direct lattice

first Brillouin zone
KK ‘

Γ

(5,1)

FIG. 1. �Color online� Two-dimensional hexagonal lattice. Here
a1 and a2 are the primitive lattice vectors, Ch=n1a1+n2a2 is the
chiral vector �in this figure, we show the chiral vector with n1=5
and n2=1�, � is the chiral angle, � is along the NT axis, and R� is
the azimuthal direction of a NT. In gray inset, the first Brillouin
zone is depicted, where �= �0,0� is the center of the zone; K and
K� are nonequivalent points in the Brillouin zone.

FIG. 2. �Color online� Nanotube quantum dot. �a� Nanotube
with two top gates. �b� Longitudinal confinement potential. �c�
Scheme of the band structure.
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stant. Therefore, it does not introduce intervalley scattering.
Straightforward calculations show that the bottom of the

mth subband of the NT spectrum under the top gates
�v�	m�+Vg divides the spectrum between the gates for this
subband into two parts. Above the energy �v�	m�+Vg
�dashed blue line in Fig. 2�c��, the spectrum is continuous
E	m,k ��k�� ��Vg� /�v��1+2�v�	m� /Vg� and below there is a
discrete spectrum E	m,kn

,

E	m,k,S�
= 
E	m,kn,S� �k = kn � kc� ,

E	m,k,S� ��k� � kc,k � ℝ� ,
� �10�

where kc= ��Vg� /�v��1+2�v�	m� /Vg and allowed values of
the quantized wave vector kn along the NT axis are found
from the transcendental equation,

tan knL =
��v�2k̃nkn

E	m,kn
�E	m,kn

− Vg� − ��v�2	m
2 . �11�

Here, k̃n=�	m
2 − �E	m,kn

−Vg�2 / ��v�2. The wave function of
an electron in a NT QD can be written as follows:

�	m,k,S�
��� ��,�� =

eiK���·r

�2�
ei�m−�3�/3+�AB/�0���m,k����S�	 ,

�12�

where

�m,k��� = 
�m,k
L ��� , � � 0,

�m,k
D ��� , 0 � �� L ,

�m,k
R ��� , � � L .

� �13�

Here, for a discrete spectrum �k=kn�kc�,

�m,kn

L ��� = Aek̃n��z
	m,−ik̃n

���

1
� , �14�

�m,kn

D ��� = �Ceikn��z	m,kn

���

1
� + De−ikn��z	m,−kn

���

1
�� , �15�

�m,kn

R ��� = Bek̃n�L−���z
	m,ik̃n

���

1
� , �16�

where

C = A
z	m,−kn

��� − z
	m,−ik̃n

���

z	m,−kn

��� − z	m,kn

��� , D = A
z
	m,−ik̃n

���
− z	m,kn

���

z	m,−kn

��� − z	m,kn

��� , �17�

B = A
eiknL
z	m,−kn

��� − z
	m,−ik̃n

���

z	m,−kn

��� − z	m,kn

��� + e−iknL
z
	m,−ik̃n

���
− z	m,kn

���

z	m,−kn

��� − z	m,kn

��� � ,

�18�

and A can be found from the normalization condition,

1 = ���2 = �A�2��z
	m,−ik̃n

��� �2 + 1�
1

2k̃n

+ �B�2��z
	m,ik̃n

��� �2 + 1�
1

2k̃n

+ 4L�C�2 + Re�C�D��z	m,−kn

��� �2 + 1�
1

ikn
�1 − e−2iknL�� .

�19�

For the K point, we obtain

C = A
1

2
+ i Im C, D = A

1

2
− i Im C , �20�

Im C =
A	m

2kn
�− 1 +

E	m,kn

E	m,kn
− Vg

	m − k̃n

	m
�

= −
AE	m,kn

2kn
� 	m

E	m,kn

−
	m − k̃n

E	m,kn
− Vg

� , �21�

B = A cos�knL�
	m

	m + k̃n

�1 +
k̃n

2

E	m,kn
�E	m,kn

− Vg� − ��v	m�2� .

�22�

For a continuous spectrum ��k��kc�, we make the following
ansatz:

�m,k
L ��� = eik̃��z	m,k̃

1
� + Re−ik̃��z	m,−k̃

1
� , �23�

�m,k
D ��� = Ace

ik��z	m,k

1
� + Bce

−ik��z	m,−k

1
� , �24�

�m,k
R ��� = Teik̃��−L��z	m,k̃

1
� , �25�

where

�k� � ��Vg�/�v��1 + 2�v�	m�/Vg,

k̃ = 
 ���E	m,k − Vg�/�v�2 − �	m�2,

and find that

Ac = e−ikL
�z	m,−k − z	m,k̃��z	m,k̃ − z	m,−k̃��	m

2 + k̃2�	m
2 + k2

4�k̃k cos�kL� − i sin�kL���	m
2 + k̃2�	m

2 + k2 − 	m
2 ��

,

�26�

Bc =
z	m,k̃ − z	m,−k̃

z	m,−k − z	m,−k̃
− Ac

z	m,k − z	m,−k̃

z	m,−k − z	m,−k̃
, �27�

R = Ac + Bc − 1, T = Ace
ikL + Bce

−ikL. �28�

III. SPIN-ORBIT INTERACTION IN NANOTUBES

Next, we take SOI effects into account. In graphene, there
are two main mechanisms of SOI: Intrinsic SOI, HSO

int
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=�int�3�3sz,
26 and extrinsic SOI �Bychkov–Rashba type�,

HSO
ext = ��E+�curv���3�1sy −�2sx�, which is due to the asym-

metric confinement potential normal to the graphene sheet
��E� 26 and curvature induced effective electric field of
rippled graphene ��curv� 27 �where sj is the Pauli spin matrix�.
In a NT, i.e., a graphene sheet rolled up into a cylinder, the
spin components perpendicular to the NT axis become de-
pendent on the polar angle �,28

sx = i�− S+ei� + S−e−i�� , �29�

sy = 2S�, �30�

sz = S+ei� + S−e−i�, �31�

where, in the eigenbasis of S�, 2S��↑ 	= �↑ 	, 2S��↓ 	=−�↓ 	,
S+�↑ 	=S−�↓ 	=0, S+�↓ 	= �↑ 	, and S−�↑ 	= �↓ 	. Therefore, for a
NT, the intrinsic SOI Hamiltonian is given by

HSO
int = �int�3�3�S+ei� + S−e−i�� , �32�

the extrinsic SOI term due to �E is given by

HSO
E = �E�2�3�1S� − i�2�− S+ei� + S−e−i��� , �33�

and the extrinsic SOI term due to curvature of a NT is given
by28

HSO
curv = i�curv

� �2�− S+ei� + S−e−i�� + �curv
�

�3�12S�, �34�

where �curv
� =−��Vpp

� −Vpp
� �a0 /8�3R��� and �curv

� =��3Vpp
�

+5Vpp
� �a0 /8�3R��� ��=12 meV,29 ���=7.3 eV, Vpp

�

=6.38 eV, and Vpp
� =−2.66 eV �Ref. 30��. Note that at mod-

erate electric fields �E�0.1 V /nm�, the last SOI term
is dominant ��int�1 �eV,27 �E��int, and �curv

�

�−�0.26 meV /R�nm��� and, therefore, the other types of
SOI can be safely neglected.

The last term ��curv
� S� �where �curv

� �0.17 meV /R�nm��
in Eq. �34� leads to a shift 	m→�m


=	m
�curv
� /�v �Ref. 28�

�where 
 corresponds here to �↑ 	 and �↓ 	 states� and, there-
fore, to a spin splitting,

E�m
+ ,kn,+1/2 − E�m

− ,kn,−1/2 � ��Z − 2 sgn�m − �3�/3��curv
�

�35�

�for ��m

��kn�. Thus, SOI ��curv

� acts as an effective mag-
netic field resulting in a level splitting �2�curv

� � at zero mag-
netic field, as has been experimentally confirmed now.31

Note that this zero-field splitting does not violate Kramers
theorem since time reversed states correspond to different
nonequivalent K points and are degenerate at zero B fields
�see Fig. 3�. The existence of the zero-field splitting opens up
an intriguing possibility for spin resonance experiments with-
out any magnetic fields: the first term in Eq. �34� allows
electric-dipole transitions between spin-up and spin-down
states, the second term �as an effective magnetic field� splits
these states, and thus oscillating electric fields perpendicular
to a NT lead to electric-dipole spin resonance with resonance
frequency �=2�curv

� /��33
1010 s−1 and Rabi frequency
�R�1.6
105 s−1 at E=10 V /cm and Vg=2.3 meV �see
Appendix A�.

We know that intervalley mixing leads to splitting of the
levels corresponding to different K points, which has been

observed in Ref. 32. Such mixing does not split Kramers
doublets �in the case of time reversal symmetric intervalley
scattering� but modifies the magnitude of the splitting
�2�curv

� →2��curv
�2 +�K−K�

2 , where �K−K� is the intervalley
mixing strength� between spin-up and spin-down states of a
certain K point and leads to anticrossings at nonzero B fields
of the levels with the same spin orientation but belonging to
different K valleys �see Fig. 3 and Appendix B�.

In the case of negative voltage applied to the top gates
�Vg�0�, hole states become localized instead of electrons. It
can be shown that the energy spectrum of the lowest levels
of holes has the same structure as for electrons �illustrated in
Fig. 3� but shifted down by the energy gap Eg

�2�v�	0
2+k0

2�228 meV. From Fig. 3, we see that electron
energy levels cross at ��Z=2�3��curv

� �indicated by arrows in
Fig. 3�, whereas there are no crossings of the two highest
levels of holes at nonzero magnetic fields. Therefore, SOI
�due to zero-field splitting of energy levels� breaks the
electron-hole symmetry. For the estimation of the SOI con-
stants, we use band parameters of bulk graphite. Note that for
small radius NT, due to curvature effects, strong hybridiza-
tion of bands can modify the band parameters of a NT and,
thus, the SOI constants or the g factor. If the SOI constant
had the opposite sign due to hybridization, then the energy
spectrum for electrons would look like the one for holes and
vice versa.31 Hence, in the case of negative �curv

� , there are
crossings of levels for holes and not for electrons �at B�0�.
Such electron-hole asymmetry in the spectrum can provide

112

113

114

115

116

-3 -2 -1 0 1 2 3

E
n
e
r
g
y
(
m
e
V
)

B (T)

K K'
113.6

114

114.4

-0.5 0 0.5

FIG. 3. �Color online� Lowest energy levels of electrons in a NT
QD at low magnetic fields �R�1.6 nm, L=100 nm, g=2, and Vg

=�v /40R�8.5 meV�. The solid curves correspond to the case of
zero intervalley mixing. At zero magnetic fields there is splitting of
the levels due to the second term in Eq. �34�. The magnitude of the
splitting is 2�curv

� =0.22 meV. The arrows indicate crossings of �↑ 	
and �↓ 	 states of a certain K point. At these level crossings, a
singularity appears in 1 /T1 �see below in Fig. 6�. The dashed
curves correspond to the case of weak intervalley mixing
��K−K�=0.05 meV�. It modifies the zero-field splitting

2��curv
� �→2��curv

�2 +�K−K�
2 and opens up avoided crossings �with

the value 2��K−K��� of the levels with the same spin orientation but
different valley index. This is illustrated in the inset which is a
blow-up of the center region of the spectrum.
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us with information about the sign and the magnitude of the
SOI constant and about the g factor.

Now, we turn to the quantitative discussion of the spin
relaxation time in nanotube quantum dots. We take the first
term in Eq. �34� into account in the framework of perturba-
tion theory, which leads to the solution of the Dirac �eigen-
value� equation for the lowest levels �H0
��Z /2
+HSO

curv��0,0,
1/2=�0,0,
1/2�0,0,
1/2 in first order in HSO
curv,

�0,0,
1/2 � E�0

,k0,
1/2, �36�

�0,0,
1/2��,�� � ��0

,k0,
1/2��,�� + �

n�0
�kn

���
�1
� ,kn,�1/2��,��

+
L

2�
�

kc


�

dk�k
���

�1
� ,k,�1/2��,�� , �37�

�k

 = 
 i�curv

�
���


1

 ,k�����2���0

�,k0
���	

E�

1

 ,k,
1/2 − E�0

�,k0,�1/2
. �38�

Note that the function ���
m�

 ,kn�

����†�2��m
�,kn

��� is either

symmetric or antisymmetric with respect to inversion at �
=L /2. Hence, there is a selection rule for SOI between quan-
tized levels, namely,

���
m�

 ,kn�

�����2���m
�,kn

���	

� 1 − sgn�m� − 1/3�sgn�m − 1/3��− 1�n�+n. �39�

Thus, �kn�

+ =0 ��kn�

− =0� for odd �even� n�.

IV. ELECTRON-PHONON COUPLING IN NANOTUBES

For definiteness, we consider only such �n1 ,n2� NTs that
n1−n2=3N+1 ��=1�. Then the two states ��0,0,
1/2� with the
lowest energy �at �AB /�0��curv

� R /�v� of a NT QD belong
to the K point with �3=1 �see Fig. 3�. Phonon induced tran-
sitions �which become allowed due to SOI� between these
states give the dominant contribution to spin relaxation of a
single particle in a NT QD. Despite quite complicated pho-
non dispersion relations in NTs,33 it is possible to find ana-
lytical expressions for the electron-phonon coupling in NTs
in the case of low-energy phonons.

The splitting between the �0,0,
1/2 states is less than 1
meV at B�10 T. Phonons with much higher energies are
not favorable for transitions between these levels. The energy
of the radial breathing mode is ��RBM�8.5 meV �Ref. 34�
for NTs with R�1.5 nm, which excludes that mode �and all
higher modes� from our analysis. Thus, only three acoustic
phonon modes are important for spin-flip transitions between
the lowest two levels: the twisting mode �TM�, the stretching
mode �SM�, and the bending mode �BM�.4 To describe these
modes we use a continuum model,4 in which the equation of
motion for the displacement u�r , t�= �u� ,u� ,ur� is given by

ü�r,t� = �u�r,t� , �40�

where the force-constant tensor

� =�
cl

2

R2���
2 + ct

2���
2 cl

2 − ct
2

R
���

2 cl
2

R
�r

cl
2 − ct

2

R
���

2 cl
2���

2 +
ct

2

R2���
2 cl

2 − 2ct
2

R
�r

−
cl

2

R
�r −

cl
2 − 2ct

2

R
�� −

cl
2

R2

�
�41�

is invariant under the group symmetry operations of a NT.4,35

Here, cl and ct are the longitudinal and transverse phonon
velocities, respectively �cl=20.9 km /s and ct=12.3 km /s
�Ref. 36��. Substituting the solution of Eq. �40� in the form
u�r , t�=A exp�i�m�+q�−�t�� �where q and � are the pho-
non wave vector and frequency, respectively, and  is the
phonon mode� and keeping only leading terms in qR �qR
!1�, we get for TM phonons �m=0�,

�T = ctq, AT = AT�1,0,0� , �42�

for SM phonons �m=0�,

�S = cSq, AS = AS�0,1,− iqR"� , �43�

and for BM phonons �m=1�,

�B = cSRq2/�2, �44�

AB =
AB

�2
�i +

i"�qR�2

2
,− iqR,1 −

"�qR�2

2
� , �45�

where cS=2�ct /cl��cl
2−ct

2, "= �cl
2−2ct

2� /cl
2, and

Aj =�� /2M� j �where M is the NT mass�. We see that TM
and SM show linear dispersion, whereas BM exhibits qua-
dratic dispersion. Note that these results are only valid for
long-wavelength phonons �qR!1 and ���RBM�.

The electron-phonon coupling is expressed by the opera-
tor

Vel-ph = �V1 V2

V2
� V1

� + H.c., �46�

where for the K point,

V1 = g1�u�� + u���, V2 = g2e3i��u�� − u�� + 2iu��� ,

�47�

u�� =
1

R

�u�
��

+
ur

R
, u�� =

�u�
��

, 2u�� =
�u�
��

+
1

R

�u�
��

,

�48�

g1�30 eV is the deformation potential constant �which ap-
pears in diagonal elements of Vel-ph�, and the off-diagonal
coupling constant g2�1.5 eV �which is caused by change in
the bond-length between neighboring carbon atoms�.36 Using
Eqs. �42�–�46�, we get for the TM

V1
T = 0, V2

T = − g2ATqe3i�ei�q�−�Tt�, �49�

for the SM,
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V1
S = 2ig1ASq

ct
2

cl
2ei�q�−�St�, V2

S = ig2ASq
cS

2

ct
2e3i�ei�q�−�St�,

�50�

and for the BM,

V1
B = �2g1ABq2R

ct
2

cl
2ei��+q�−�Bt�,

V2
B = g2ABq2R

cS
2

�2ct
2e3i�ei��+q�−�Bt�. �51�

Note that the electron-phonon coupling in nanotubes is
very strong �for example, compare g1�30 eV with a defor-
mational acoustic coupling constant in GaAs #0�6.5 eV�.
Furthermore, the electron wave function is highly localized
in the dot region �it decays exponentially outside the dot�.
Thus, the phonons in the contacts or substrate can be safely
ignored for our purposes. Moreover, we neglect the effect of
the substrate on the phonon modes. This is justified due to
the relatively weak coupling between the substrate and the
NT, very high stiffness and rigidity of a NT, and, last but not
least, very small atomic displacement amplitudes in an
acoustic phonon wave �which is a few percents of Angstroms
only�.

V. SPIN RELAXATION IN NANOTUBES

We are now able to analyze spin-flip transitions between
the lowest energy levels induced by long-wavelength
phonons. Using Eq. �37�, the matrix element of such a tran-
sition is given by

M� � ��0,0,−1/2�Vel-ph��0,0,1/2	

= �
k

��k
−���0

−,k0,−1/2�Vel-ph���−1
− ,k,−1/2	

+ ��k
+�����1

+,k,1/2�Vel-ph���0
+,k0,1/2	� . �52�

Here the sum stands for summation over the discrete kn
and integration over the continuous �k�
� ��Vg� /�v��1+2�v�	m� /Vg.

From Eq. �12�, ��	m1
,kn,
1/2�eim2�eiq���	m3

,kn�,
1/2	
= ��m1,kn

�eiq���m3,kn�
	$m1,m2+m3

. Therefore, only phonon

modes with m2=1 give nonzero contribution to spin-flip
transitions �this is an additional reason why we do not need
to consider higher phonon modes with m2�1�. Thus, only
BM phonons are responsible for the spin relaxation, whereas
TM and SM phonons �with m2=0� cannot flip the spin.

In the framework of Bloch–Redfield theory,37 the spin re-
laxation time induced by BM phonons is given by

1

T1
=

2�

�
L�

−�

�

dq�2N� + 1��M��2$���0 − �
cSR
�2q2�

=
2�

�
L�

−�

�

dq�2N� + 1��M��2
1

23/4��cSR�0

�$�q − q0�

+ $�q + q0�� =
25/4�L

�2�cSR�0

�2N�0
+ 1��M�0

�2, �53�

where �0= ���0
+,k0,+1/2−��0

−,k0,−1/2� /����Z−2�3�curv
� /��, q0

=��2�0 /cSR, and N�= �exp��� /kBT�−1�−1 is the Bose dis-
tribution function. Note that pure dephasing 1 /T�=0 for BM
phonons and 1 /T�=O��SO

4 � for SM and TM phonons; there-
fore, 1 /T2=1 /2T1+1 /T�=1 /2T1 in first-order perturbation
theory.

We used the Markov and the secular approximations in
the derivation of Eq. �53�. We can estimate the correlation
time in the phonon bath to be �c�1 ps. Therefore, the Mar-
kov approximation �T1��c� and the secular approximation
��0T1�1� are valid except for the energy regime close to the
level crossing at �0=0. Moreover, our estimations of the
electron-phonon coupling are valid for phonons with the
wavelength shorter than the full length of the NT lNT. There-
fore, in the case of a small splitting between spin-up and
spin-down states �long-wavelength phonons�, the results are
trustworthy for sufficiently long NTs �lNTq0�1�, for ex-
ample, if the spin splitting is 1 �eV, then the NT length
should be greater than 700 nm.

We now study spin relaxation induced by low-frequency
phonons ��0���Z−2�3�curv

� �→0�. As shown above, such
spin relaxation occurs near the level crossing indicated by
arrows in Fig. 3. One can show that �M�0

�2��0 and N�0
�T /�0 �at kBT���0� for �0→0. Moreover, the density of
states for one-dimensional phonon modes with quadratic dis-
persion, i.e., the bending modes responsible for spin relax-
ation, has a van Hove singularity at zero frequency. It goes
like 1 /��0, where �0 is the phonon frequency of the bending
mode. This translates into the existence of a singularity in the
noise spectral function J��0��1 /��0, which describes par-
ticle spin relaxation due to coupling to NT lattice vibrations
via SOI and electron-phonon interaction. Therefore,

1/T1 � 1/��0 �54�

at low �0. To the best of our knowledge, this is the first
system that exhibits a 1 /��0 spin-phonon noise spectrum at
low frequencies. Such a result �fast relaxation times at small
splitting between spin-up and spin-down levels� is counter-
intuitive in the light of the commonly expected long T1 time
for NTs �due to the expected weak SOI� and compared to the
usual behavior of the spin relaxation time �1 /T1��Z

4 at low
magnetic fields� for conventional GaAs QDs.9

To better understand Eq. �54�, we consider the spectral
density of the electron-phonon correlation function,

Jmk��� = �
−�

�

dt�m�Vel-ph�0��k	�k�Vel-ph�t��m	ei�t,

where the overbar denotes the ensemble average. We first
analyze this expression for GaAs QDs and later on for NT
QDs.

For the phonon-induced relaxation rate between levels
split by the Zeeman term, we find 1 /T1�J12��Z���q�l�N�

+1 /2���1�A�eiqr�l	�l�HSO
curv�2	�2$��−�Z�, where A� is the

electron-phonon coupling strength and � is the phonon fre-
quency. Therefore, the correlation function defines the
phonon-induced electron spin relaxation times. Let d be the
single-phonon degree of freedom �related to the dimension-
ality of the underlying lattice structure�. Then, for GaAs
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semiconductor structures with linear in momentum HSO
curv, we

get �q→�dqqd−1�d%q, �1�eiqr�l	�q �in dipole approxima-
tion�, �l�HSO

curv�2	��Z, and N��1 /� �at kBT����. Taking
into account that A��1 /�� for the coupling between an
electron and a piezoelectric phonon, we obtain J12��Z�
��Z

d+1 in the case of linear dispersion of a phonon ���q�.
For deformational acoustic phonons, A����; therefore,
J12��Z���Z

d+3. Therefore, at low frequency, the spectral den-
sity function of the electron-phonon coupling is super-Ohmic
�J�����n, n�1� even for all phonons in all dimensions.

This is fundamentally different for the NT QDs discussed
here: Since HSO

curv in a NT couples spin to the azimuthal de-
gree of freedom �see Eq. �34�� and the azimuthal component
of the phonon wave vector is quantized �see Eq. �51��, we get
�1�A�eiqr�l	�l�HSO

curv�2	�1+O�q�. Thus, for deformation-
acoustic phonons �A����� with quadratic dispersion ��q
→�d� /���, we obtain J12��0��1 /��0 and recover Eq.
�54�. The noise spectral function J12��� describes particle
spin dissipation due to coupling to NT lattice vibrations �via
SOI and electron-phonon interaction�.

As shown in Fig. 6, the magnetic-field dependence of the
spin relaxation rate of a NT QD is exceptional in comparison
to that of a conventional semiconducting QD. First, there is a
singularity of the electron spin relaxation rate at �0→0 �or at
�Z→2�3�curv

� � in contrast to the usual super-Ohmic behavior
of 1 /T1 in GaAs or InAs QDs �compare Fig. 6 with Fig. 1 in
Ref. 9�. Remarkably, the position of this symmetric singular-
ity gives us a direct measurement of the SOI constant �curv

�

and valley index �3 of an electron in a NT. The singularity is
at positive magnetic fields for the K point ��3=1� and at
negative magnetic fields for the K� point ��3=−1�. In Fig. 6,
where �3=1 and 2�curv

� �0.22 meV, the singularity is at B
�1.9 T. If the SOI constants and g factors are the same for
both electrons and holes, then the electron and hole spin
relaxation curves map onto each other by a shift along the
magnetic-field axis by �B=2�curv

� /g�B �compare the blue
and the red curves in Fig. 6�.

We have also studied the chirality dependence of the spin
relaxation rate as a function of the magnetic field. Different
chirality nanotubes show qualitatively similar spin relaxation
properties. In Fig. 4, the spin relaxation time for NT QDs
with different chirality but approximately the same NT ra-
dius is shown. From this figure we conclude that T1 depends
on the chirality of a NT, although it has the same qualitative
behavior as a function of a magnetic field.

VI. INTERFERENCE EFFECTS IN SPIN RELAXATION

We note here that the spin relaxation rate for flat GaAs
QDs in in-plane magnetic fields is a monotonic function of B
�up to about 14 T�,9 whereas, as shown in Fig. 6, it oscillates
with B for NT QDs. The oscillations are caused by interfer-
ence effects of two types: �i� interference of a phonon wave
in a NT electron cavity bounded by the confining potential
V��� due to top gates �see Fig. 2� and �ii� interference be-
tween various contributions to the spin-flip transitions. For
clarity, we will now study these two types of interference
phenomena separately.

A. Interference of phonon waves

To illustrate the first effect, we only consider one contri-
bution to spin-flip transitions, namely, that due to the first
term in Eq. �52�,

FIG. 4. �Color online� Chirality dependence of the electron spin
relaxation for NT QDs. The spin relaxation rate as a function of a
field for a �40,0� zigzag NT �solid curve, �=0�, �−24,47� NT �dot-
ted curve, ��� /2�, and �13,32� NT �dashed curve, ��� /4�. R
�1.6 nm, L=100 nm, g=2, Vg=�v /40R�8.5 meV, and T
=0.1 K.
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FIG. 5. �Color online� Spin relaxation of a �40,0� zigzag NT.
The dependence of the electron and hole spin relaxation rates 1 /T1

on a parallel magnetic field B �lower horizontal axis for electrons
and upper one for holes� due to SO coupling of the two lowest
states ���0


,k0,
1/2� to higher states of the discrete spectrum
���

�1
� ,kn,
1/2� is shown by the dashed curve and that due to SO

coupling to states of the continuous spectrum ����1�,k,�1/2� by the
dotted curve. The total spin relaxation rate �solid curves� exhibits
destructive interference at each odd crossing of the curves related to
the abovementioned contributions �R�1.6 nm, L=100 nm,g=2,
T=0.1 K, and Vg=
�v /40R�
8.5 meV, where the upper
�lower� sign is for electrons �holes��. The electron �blue solid curve�
and the hole �red solid curve� spin relaxation time map onto each
other by a shift along the magnetic-field axis by �B=2�curv

� /g�B.

SPIN-ORBIT INTERACTION AND ANOMALOUS SPIN… PHYSICAL REVIEW B 77, 235301 �2008�

235301-7



M�0
� = �k0

− ���0
−,k0,−1/2�Vel-ph���−1

− ,k0,−1/2	 . �55�

Note that �k0

+ =0 due to selection rules �see Eq. �39��. The
corresponding spin relaxation rate 1 /T1� due to this term only
is shown in Fig. 7.

From Fig. 7, we see that 1 /T1� exhibits oscillations as a
function of the ratio between the NT QD length L and the
phonon wavelength �ph: qL=2��L /�ph�. We attribute such
oscillations to interferences of the phonon wave in a NT
electron cavity bounded by the confining potential V��� due
to the top gates �see Eq. �9� and Fig. 2�. Such an interference
effect is reminiscent of a Fabry–Pérot-type interference of a
phonon wave where the electron levels in the dot play the
role of a cavity. The coupling between the phonon wave and
the cavity is described by the electron-phonon interaction
Vel-ph.

At the minima in Fig. 7, the coupling between the electron
cavity and the phonon waves becomes small. For an ideal
cavity �with no loss�, the matrix element of the spin-flip tran-
sition goes to zero at the minima. For instance, in the case of
a rectangular hard wall potential, the squared modulus of the
phonon-induced spin-flip transition is given by

���2

L
sin

�x

L
�eiqx��2

L
sin

�x

L
��2

= � 8�2 sin�qL/2�
qL�4�2 − �qL�2�

�2

,

�56�

which is zero at qL=4� ,6� ,8� , . . .. Therefore, electron-
phonon coupling is switched-off at these interference
minima. In the case of a NT QD with a rectangular confining
potential with finite barriers, however, due to the penetration
of the electron wave function into classically forbidden re-
gion, the electron-phonon coupling is small but nonzero at

the minima of the matrix element of the phonon-induced
transition and the minima are shifted from those for an ideal
cavity. As can be seen from Fig. 7, this shift and the minimal
values of the electron-phonon coupling are more pronounced
with increasing the barriers height Vg.

Interference effects in a NT QD occur only for confine-
ment with well-defined length �for all bound states� and are
absent for soft potentials such as parabolic confinement.
Note, however, that the rectangular potential seems to be a
good approximation for the confinement in a gated NT QD
since Fabry–Pérot interferences �for electrons� have been ob-
served in such a system.23
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FIG. 6. �Color online� Spin relaxation of a �40,0� zigzag NT. The dependence of the electron and hole spin relaxation rates 1 /T1 on a
parallel magnetic field B �lower horizontal axis for electrons and upper one for holes� due to SOI of the two lowest states ���0


,k0,
1/2� to
higher states of the discrete spectrum ���

�1
� ,kn,�1/2� is shown by the dashed curve and that due to SOI to states of the continuous spectrum

���
�1
� ,k,�1/2� by the dotted curve. The total spin relaxation rate �solid curves� exhibits destructive interference at each odd crossing of the

curves related to the abovementioned contributions �R�1.6 nm, L=100 nm, g=2, T=0.1 K, �a� Vg=
�v /150R�
2.3 meV, and �b�
Vg=
�v /3R�
113 meV, where the upper �lower� sign is for electrons �holes��. The electron �blue solid curve� and the hole �red solid
curve� spin relaxation time coincide by a shift along the magnetic-field axis by �B=2�curv

� /g�B. In �a� �small Vg�, the continuous spectrum
substantially influences 1 /T1. In contrast, in �b� �large Vg with many bound states in the dot�, the discrete spectrum mainly determines the
magnetic-field dependence of 1 /T1.

FIG. 7. �Color online� Interference phenomena in the spin relax-
ation rate due to the first contribution to the spin-flip transition
��M�0

� �. Here, q is the phonon wave vector and L is the length of
the NT QD �R�1.6 nm and T=0.1 K�.
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B. Coherence of different contributions to spin-flip process

In this section, we study interference effects due to vari-
ous contributions to the spin-flip transitions described by Eq.
�52�. Let us consider the case of weak confinement with
small Vg=2.3 meV. In this case, Eq. �52� can be rewritten as
follows:

M�B
= Md

+ + Md
− + Mc

+ + Mc
−,

Md
+ = ��k

+�����1
+,k0,1/2�Vel-ph���0

+,k0,1/2	

Md
− = �k

−���0
−,k0,−1/2�Vel-ph���−1

− ,k1,−1/2	 ,

Mc
+ =

1

�
�

kc
+

�

dk��k
+�����1

+,k,1/2�Vel-ph���0
+,k0,1/2	 ,

Mc
− =

1

�
�

kc
−

�

dk�k
−���0

−,k0,−1/2�Vel-ph���−1
− ,k,−1/2	 �57�

�kc

= ��Vg� /�v��1+2�v��
1


 � /Vg�. Here Md
+ and Md

+ are con-
tributions to the spin-flip transitions due to SOI of the two
lowest levels ��0,0,
1/2� and higher discrete levels ��1,0,+1/2
and �−1,1,−1/2�. Note that the coupling to other higher levels is
forbidden by the selection rule Eq. �39�. The contribution of
these two terms to the spin relaxation rate is shown in Fig. 8.
It can be seen that these two terms interfere �constructively�,
which leads to a change in the amplitude and period of the
oscillations. Such constructive interference �see Fig. 8� be-
tween Md

+ and Md
− just increases the spin relaxation rate and,

therefore, is not the dominant one. However, next we con-
sider a different interference effect which reduces 1 /T1 by
several orders of magnitude.

1. Destructive interference

The remaining and most intriguing interference effect is
the one between Md

+ and Mc
+ �or between Md

− and Mc
−�. These

terms are generated by SO coupling the two lowest states to
the excited discrete and the continuous spectrum, respec-
tively. From Figs. 5 and 6�a�, we see that these contributions
at some magnetic field interfere destructively leading to a
strong increase of the spin relaxation time up to 4 orders of
magnitude. Strikingly, such destructive interference is robust
against a change of parameters, although being most evident
when the terms Md


 and Mc

 have comparable contributions

to the spin-flip transitions �compare Figs. 6�a� and 6�b��.
Let us give a physical explanation for this phenomenon.

First of all we note that the diagonal elements of the
electron-phonon coupling ��g1� �see Eq. �51� for details�
give the main contribution to the spin-flip transitions with
respect to the nondiagonal ones ��g2� since g1�g2. As a
result, the destructive interference occurs due to diagonal
elements of Vel-ph and the elements �g2 just modulate the
strength of the effect, i.e., the depth of the dips in the spin
relaxation curve. Therefore, in this section, we consider di-
agonal electron-phonon coupling ��g1� only.

The terms of the spin-flip matrix element due to coupling
to the first exited subband with m=1 �see Eq. �57�� can be
written as follows:

Md
+ = ��k

+�����1
+,k0,1/2�Vel-ph���0

+,k0,1/2	

� �
−�

�

d�eiq0���1
+,k0

† �����0
+,k0

��� , �58�

Mc
+ =

1

�
�

kc
+

�

dk��k
+�����1

+,k,1/2�Vel-ph���0
+,k0,1/2	

� �
−�

�

d�eiq0��
kc

+

�

dk��k
+����1

+,k
† �����0

+,k0
��� . �59�

Note that �
	0

+,k0

† ����	0
+,k0

��� is a symmetric function of �

with respect to the center of the NT QD ��=L /2�. In the dot
area �0���L�, it might be approximated by a function

�cos�k̃0�L /2−��� with exponential tails in the classically for-
bidden areas ���0 and ��L�. In addition to the selection
rule Eq. �39�, it is easy to find that ��	

m�

 ,kn�

��� ��	m

,kn

���	

=1+sgn�m�−1 /3�sgn�m−1 /3��−1�n�+n because �
	

m�

 ,kn�

† ���

�	m

,kn

��� is either odd or even with respect to
inversion at �=L /2. Therefore, Md

+=0 at q0=0 since
�
�1

+,k0

† �����0
+,k0

��� is an asymmetric function with respect to

�=L /2 at which it has a node. Thus, �
�1

+,k0

† �����0
+,k0

��� is

found to be well approximated by a function sin�k��L /2
−��� defined at 0���L. Now we consider Eq. �59�. After
integration over k, we could assume that the dependence of
��1

+,k on � is integrated out; therefore, Mc
+ is a symmetric

function of � with respect to �=L /2, which we approximate
by −i cos�k��L /2−��� defined at 0���L. Using these as-
sumptions, we get the following estimations:

Md
+ � �

0

L

d�eiq0� sin�k��L/2 − ��� = f1�q0L� + if2�q0L� ,

�60�

FIG. 8. �Color online� Spin relaxation rate due to Md
+ �dashed

curve� and Md
− contribution �dotted curve� to spin-flip transition

�see Eq. �57��. The sum of these two contributions is plotted by
solid curve �R�1.6 nm, g=2, T=0.1 K, and Vg=�v /150R
�2.3 meV�.
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Mc
+ � �

0

L

d�eiq0�i cos�k��L/2 − ��� = f3�q0L� + if4�q0L� ,

�61�

f1�q0L� = �
0

L

d� cos q0� sin�k��L/2 − ���

= 2
− k� cos k�L

2 sin
q0L

2 + q0 sin k�L
2 cos

q0L

2

�k��2 − q0
2 sin

q0L

2
,

�62�

f2�q0L� = �
0

L

d� sin q0� sin�k��L/2 − ���

= 2
k� cos k�L

2 sin
q0L

2 − q0 sin k�L
2 cos

q0L

2

�k��2 − q0
2 cos

q0L

2
,

�63�

f3�q0L� = �
0

L

d� sin q0� cos�k��L/2 − ���

= 2
k� sin k�L

2 cos
q0L

2 − q0 cos k�L
2 sin

q0L

2

�k��2 − q0
2 sin

q0L

2
,

�64�

f4�q0L� = − �
0

L

d� cos q0� cos�k��L/2 − ���

= 2
− k� sin k�L

2 cos
q0L

2 + q0 cos k�L
2 sin

q0L

2

�k��2 − q0
2 cos

q0L

2
.

�65�

We have plotted the functions f i�q0L� �see Fig. 9�b�� in
comparison to the real and imaginary parts of Mc,d

+ �Fig.
9�a��. There is a good agreement between the corresponding
functions �plotted with the same line style� except for the

region of q0L�2� for f3�q0L� and f4�q0L�. From Fig. 9, Eqs.
�62� and �63�, one can see that Re�Md

+� and Im�Md
+� have

zeroes at k� tan q0L /2=q0 tan k�L /2 �which are close to
q0L= �2n+1��, where n=1,2 ,3 , . . .�, in addition, Re�Md

+� is
zero at q0L=2�n and Im�Md

+� is zero at q0L= �2n−1��.
From Fig. 9, Eqs. �64� and �65�, we get that Re�Mc

+� and
Im�Mc

+� have zeroes at k� tan k�L /2=q0 tan q0L /2 �which
are close to q0L=2n��, in addition, Re�Mc

+� is zero at q0L
=2�n and Im�Mc

+� is zero at q0L= �2n−1��. Zeroes of the
above functions determine the regions of q0L in which the
sign of those functions is constant, namely,

Re�Md
+�, f1�q0L� � 0 for 2n�� q0L & �2n + 1�� ,

�66�

Re�Mc
+�, f3�q0L� � 0 almost for any q0L , �67�

Im�Md
+�, f2�q0L� � 0 almost for any q0L �� ,

�68�

Im�Mc
+�, f4�q0L� � 0 for 2n�& q0L � �2n + 1�� .

�69�

From these equations we find that for 2n�&q0L& �2n
+1�� the functions Re�Md

+� and Re�Mc
+�, as well as, Im�Md

+�
and Im�Mc

+� have opposite signs. In other words, due to odd
or even symmetry of vector states with respect to the center
of a NT QD ��=L /2�, the terms of spin-flip transitions Md

+

and Mc
+ combine in antiphase at 2n�&q0L& �2n+1��, re-

sulting in destructive interference of those contributions to
the spin relaxation rate. Note that Md,c

− terms have similar
behavior and the same statements hold true for those. Here
q0=��2���Z−2�3�curv

� � /�cSR is the phonon wave vector of
the resonant spin-flip transition. The magnetic-field depen-
dence of q0 is shown in Fig. 10 �red curve�. The regions of
q0L and B, where the destructive interference is expected, are
shown by nonshaded areas. From Figs. 4, 5, and 6�a�, we see
that the destructive interference dips in the spin relaxation
rate are in the defined regions shown in Fig. 10.

FIG. 9. �Color online� �a� Dependence of the real and imaginary parts of matrix elements Md
+ and Mc

+ �see Eq. �57� for details� on the ratio
of the NT length and phonon wavelength q0L �R�1.6 nm, l=100 nm, and g=2�. �b� Approximation of the previous dependence by f i�q0L�
�i=1, . . . ,4� �k�L=k�L=0.7� �see Eqs. �60�–�65��.
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The effect is stronger for smaller Vg, when the number of
discrete levels is lower �see Fig. 6�a��. In this case, the spin
relaxation is predominantly due to coupling to the continu-
ous spectrum. With increasing the voltage Vg applied to top
gates, the number of discrete levels and the spacing between
the ground state and the lower bound of the continuous spec-
trum increases. �For instance, in the case of Vg=2.3 meV,
there are only two discrete levels, while for Vg=113 meV,
there are about 15 quantized levels in each subband.� This
decreases �increases� the contribution of the continuous �dis-
crete� spectrum to the spin relaxation rate and increases the
total spin relaxation rate �compare Fig. 5, where Vg
�8.5 meV, with Fig. 6�a�, where Vg�2.3 meV for the
same type of NT QD�. Such rich and unexpected behavior of
the spin relaxation in NT QDs is remarkable and opens up
broad perspectives for spintronics in carbon nanostructures.

VII. CONCLUSIONS

In conclusion, contrary to the common belief that spin-
orbit interaction is weak and insignificant in carbon materi-
als, we have shown that the situation is actually much richer
and that spin-orbit interaction can be very important in nano-
tubes. We have studied spin relaxation and decoherence
caused by electron-lattice and spin-orbit interaction and pre-
dict striking nonmonotonic effects induced by magnetic
fields B. For particular values of B, destructive interference
occurs resulting in ultralong spin relaxation times T1 exceed-
ing tens of seconds. For small phonon frequencies �, we find
a 1 /�� spin-phonon noise spectrum—a dissipation channel
for spins in quantum dots—which can reduce T1 by many
orders of magnitude. We show that nanotubes exhibit zero-
field level splitting caused by spin-orbit interaction. This en-
ables an all-electrical and phase-coherent control of spin—
the hallmark of spintronics.
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APPENDIX A: SPIN SPLITTING AND ELECTRIC-DIPOLE
SPIN RESONANCE AT ZERO MAGNETIC FIELDS

From Eq. �36�, one can find that there is a zero-field split-
ting between spin-up and spin-down states,

���0,0,1/2 − �0,0,−1/2��B=0

= �v��− �3�/3R + �curv
� /�v�2 + k0

2

− �v��− �3�/3R − �curv
� /�v�2 + k0

2

� − 2�3��curv
� , �A1�

where �=0,
1, and where we have taken into account that
k0!1 /R and neglected intervalley mixing. Due to the first
term in Eq. �34�, there is spin mixing and, therefore, cou-
pling between corresponding states �see also Eq. �37��,
which allows electric-dipole transitions between them. Con-
sider an oscillating electric field �see Fig. 11�: E�t�
=Ee� sin �t, e� is the unit vector perpendicular to the NT
axis. An interaction between the electric field and an electron
in a NT, which leads to electric-dipole transitions, is given by
the following operator:

HE =
�e�E
m0�

cos �tP� =
− i�e��E

m0R�
cos �t sin �

�

��
, �A2�

where m0 is the bare electron mass and P�=−i� sin ��� /R is
the electron momentum along e�. Here we assume that the
influence of the lattice potential can be neglected for the
estimation of the electric-dipole transitions. Therefore, using
Eq. �37�, the matrix element of the electric-dipole transitions
can be expressed as

��0,0,+1/2�HE��0,0,−1/2	

=
− i�e��E

2m0R�
cos �t


�
k
���k

−�����−1
− ,k,−1/2�ie−i� �

��
���0

−,k0,−1/2	

+ �k
+���0

+,k0,+1/2�ie−i� �

��
���+1

+ ,k,1/2	�
= ��R cos �t , �A3�

�R =
i�e�E

2m0R�
�

k

���k
−�����−1

− ,k,−1/2���0
−,k0,−1/2	

+ �k
+���0

+,k0,+1/2���+1
+ ,k,1/2	� . �A4�

Here the sum includes summation over the discrete kn and
integration over the continuous �k�
� ��Vg� /�v��1+2�v�	m� /Vg. Numerical evaluation leads to
the following estimates for the resonance frequency �
=2�curv

� /��33
1010 s−1 ��curv
� �0.11 meV� and Rabi

frequency �R�1.6
105 s−1 at E=10 V /cm and Vg
=2.3 meV.

FIG. 10. �Color online� The dependence of q0L on magnetic
field B �R�1.6 nm, g=2, and �curv

� =0.1085 meV�. The nonshaded
areas stand for regions of magnetic field where destructive interfer-
ence occurs.
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APPENDIX B: VALLEY-ORBIT AND SPIN-ORBIT
INTERACTIONS

In this appendix, we consider a particle in a NT described
by the Hamiltonian �3� with the longitudinal confinement �9�
in a parallel magnetic field. The discrete spectrum of a such
system is given by

Em,n,S�
= 
 �v�	m

2 + kn
2 + S���Z, �B1�

where 	m= �m−�3� /3+�AB� /R and �AB=�AB /�0. Each
level is fourfold degenerate �at B=0� due to valley and spin
degeneracy. Now, we take SOI into account. For definiteness,
we consider only the second term in Eq. �34� which leads to
zero-field splitting,

HSO
curv = �curv

�
�3�12S�. �B2�

Moreover, within a minimal model we take intervalley mix-
ing due to nonmagnetic impurities or structure defects into
account. In this case, the intervalley mixing can be described
by the following term:

HK−K� = �K−K��1, �B3�

where �1 is the Pauli matrix operating on valley-index space.
The eigenvalues of the operator H0+V���+HSO

curv+HK−K� �for
m=0 subband� are given by

E0,n,S�

= 
 �v��2/9R2 + kn
2 + kK−K�

2 + ��AB/R + 2S�kSO�2 + 2'


���AB/R + 2S�kSO�2�2/9R2 + kK−K�
2 ��2/9R2 + kn

2��1/2

+ S���Z, �B4�

where kK−K�=�K−K� /�v and kSO=�curv
� /�v. The energy

spectrum of the lowest electron energy levels and highest
hole levels described by Eq. �B4� is shown in Fig. 12 �n
=0�. In Eq. �B4�, the plus �minus� sign corresponds to elec-
tron �hole� energy levels. '=1 for the upper branch of the

energy spectrum �blue dashed and red solid curves� and '
=−1 for the lower branch �blue solid and red dashed curves�.
Using �	m��kn, we rewrite Eq. �B4� in the following way:

E0,n,S�
= 
 �v��2/9R2 + kn

2

+ '�v�kK−K�
2 + ��AB/R + 2S�kSO�2 + S���Z

+ O�3�knR�AB� . �B5�

From this equation we find that the zero-field splitting of
levels is given by �v�kSO

2 +kK−K�
2 and anticrossings �with the

magnitude 2��K−K��� occur at �AB=−2S�kSOR=0.
Due to intervalley coupling, electron states of different

nonequivalent K points are mixed,

�K � �K
�0� +

�K−K�

��K−K�
2 + ��v�AB/R + 2S��curv

� �2
�K�

�0� .

�B6�

The mixing is maximal at the anticrossing points �at that
point, the electron state is just a superposition of those cor-
responding to different K points� and suppressed away from
them. Therefore, there is a way to control the intervalley
mixing for a NT by a magnetic field and it makes NTs at-
tractive for a valley-qubit realization �qubits whose quantum
states are defined by the valley index�.22,38,39

At anticrossing points, mixing of K and K� valleys is
strong and intervalley scattering could occur. Note that such
scattering is energetically forbidden for first-order processes
�with one-phonon scattering�. Indeed, scattering from K to
K� point requires a large change in the electron wave vector
��K−K��= �K��, while the energy difference between the scat-
tering states is small �2�K−K��0.5 meV�. Phonons in a NT
at the K point of the phonon dispersion have much higher
energy ��K�600 cm−1 which correspond to 75 meV�,40 and

FIG. 11. �Color online� Scheme of a NT with two electric side
gates. An applied ac voltage between the gates creates an oscillating
electric field perpendicular to the NT axis. Such a setup enables
electrically induced coherent spin manipulation, due to zero-field
spin splitting in semiconducting NTs.
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V
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FIG. 12. �Color online� Magnetic field dependence of energy
levels for electrons �blue curves� and holes �red curves�. The dashed
curves are the excited states in a NT QD �R�1.6 nm, L
=100 nm, g=2, and Vg�
8.5 meV �the upper �lower� sign is for
electrons �holes��, �curv

� =0.11 meV, and �K−K�=0.05 meV�.
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therefore, first-order single-phonon intervalley scattering is
forbidden. However, Raman spectroscopy has shown that
such an intervalley scattering is allowed for photoexcited
electrons. Such transitions are attributed to second-order Ra-
man processes by two phonon emission or emission of one
phonon and elastic scattering on lattice defects �so-called D

and G� bands in the Raman spectra�.40 We assume that simi-
lar processes could occur in our case, due to spontaneous
phonon emission and absorption with ��1−��2=2�K−K�
and q1−q2=K or to emission of a single phonon with q
=K and elastic scattering on lattice defects but are neverthe-
less less probable.

1 D. D. Awschalom and M. E. Flatté, Nat. Phys. 3, 153 �2007�.
2 S. Sahoo, T. Kontos, J. Furer, C. Hoffmann, M. Gräber, A. Cot-

tet, and C. Schönenberger, Nat. Phys. 1, 99 �2005�.
3 N. Tombros, S. J. van der Molen, and B. J. van Wees, Phys. Rev.

B 73, 233403 �2006�.
4 T. Ando, J. Phys. Soc. Jpn. 74, 777 �2005�.
5 A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 �2007�.
6 H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and

A. H. MacDonald, Phys. Rev. B 74, 165310 �2006�.
7 D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 �1998�.
8 A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 61, 12639

�2000�.
9 V. N. Golovach, A. Khaetskii, and D. Loss, Phys. Rev. Lett. 93,

016601 �2004�.
10 D. V. Bulaev and D. Loss, Phys. Rev. B 71, 205324 �2005�.
11 S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J.

Geerligs, and C. Dekker, Nature �London� 386, 474 �1997�.
12 M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, Ch. M. Lieber,

M. Tinkham, and H. Park, Science 275, 1922 �1997�.
13 J. Kong, C. Zhou, E. Yenilmez, and H. Dai, Appl. Phys. Lett. 77,

3977 �2000�.
14 E.D. Minot, Y. Yaish, V. Sazonova, and P. L. McEuen, Nature

�London� 428, 536 �2004�.
15 P. Jarillo-Herrero, S. Sapmaz, C. Dekker, L. P. Kouwenhoven,

and H. S. J. van der Zant, Nature �London� 429, 389 �2004�.
16 N. Mason, M. J. Biercuk, and C. M. Marcus, Science 303, 655

�2004�.
17 S. Sapmaz, C. Meyer, P. Beliczynski, P. Jarillo-Herrero, and L. P.

Kouwenhoven, Nano Lett. 6, 1350 �2006�.
18 M. R. Gräber, W. A. Coish, C. Hoffmann, M. Weiss, J. Furer, S.

Oberholzer, D. Loss, and C. Schönenberger, Phys. Rev. B 74,
075427 �2006�.

19 D. P. DiVincenzo and E. J. Mele, Phys. Rev. B 29, 1685 �1984�.
20 S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij, M. J.

Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven,
and C. Dekker, Nature �London� 412, 617 �2001�.

21 M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys.

2, 620 �2006�.
22 B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Nat. Phys.

3, 192 �2007�.
23 W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham,

and H. Park, Nature �London� 411, 665 �2001�.
24 K. Grove-Rasmussen, H. I. Jorgensen, and P. E. Lindelof,

Physica E �Amsterdam� 40, 92 �2007�.
25 L. G. Herrmann, T. Delattre, P. Morfin, J.-M. Berroir, B. Placais,

D. C. Glattli, and T. Kontos, Phys. Rev. Lett. 99, 156804 �2007�.
26 C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 �2005�.
27 D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys. Rev. B

74, 155426 �2006�.
28 T. Ando, J. Phys. Soc. Jpn. 69, 1757 �2000�.
29 M. Willatzen, M. Cardona, and N. E. Christensen, Phys. Rev. B

50, 18054 �1994�.
30 D. Tomanek and S. G. Louie, Phys. Rev. B 37, 8327 �1988�.
31 F. Kuemmeth, S. Ilani, D. Ralph, and P. L. McEuen, Nature

�London� 452, 448 �2008�.
32 P. Jarillo-Herrero, J. Kong, H. S. J. van der Zant, C. Dekker, L.

P. Kouwenhoven, and S. De Franceschi, Phys. Rev. Lett. 94,
156802 �2005�.

33 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Prop-
erties of Carbon Nanotubes �Imperial College, London, 1999�.

34 J. Maultzsch, H. Telg, S. Reich, and C. Thomsen, Phys. Rev. B
72, 205438 �2005�.

35 S. V. Goupalov, Phys. Rev. B 71, 085420 �2005�.
36 H. Suzuura and T. Ando, Phys. Rev. B 65, 235412 �2002�.
37 K. Blum, Density Matrix Theory and Applications �Plenum, New

York, 1996�.
38 P. Recher, B. Trauzettel, A. Rycerz, Ya. M. Blanter, C. W. J.

Beenakker, and A. F. Morpurgo, Phys. Rev. B 76, 235404
�2007�.

39 A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, Nat. Phys. 3,
172 �2007�.

40 R. Saito, A. Grüneis, Ge. G. Samsonidze, V. W. Brar, G. Dressel-
haus, M. S. Dresselhaus, A. Jorio, L. G. Cançado, C. Fantini, M.
A. Pimenta, and A. G. Souza Filho, New J. Phys. 5, 157 �2003�.

SPIN-ORBIT INTERACTION AND ANOMALOUS SPIN… PHYSICAL REVIEW B 77, 235301 �2008�

235301-13


