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I apply a two-step density-matrix renormalization group method to the anisotropic two-dimensional Hubbard
model. As a prelude to this study, I compare the numerical results to the exact one for the tight-binding model.
I find a ground-state energy which agrees with the exact value up to four digits for systems as large as 24
�25. I then apply the method to the interacting case. I find that for strong Hubbard interaction, the ground state
is dominated by magnetic correlations. These correlations are robust even in the presence of strong frustration.
Interchain pair tunneling is negligible in the singlet and triplet channels and is not enhanced by frustration. For
weak Hubbard couplings, due to interchain interaction, interchain nonlocal singlet pair tunneling is enhanced
and magnetic correlations are strongly reduced. This suggests a possible superconductive ground state. The
pairing mechanism is reminiscent of the Kohn-Luttinger mechanism.
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I. INTRODUCTION

The intriguing discovery of superconductivity �SC� lying
next to antiferromagnetism �AFM� in the phase diagram of
the charge-transfer Bechgaard salts �see Fig. 1� remains one
of the most intriguing issues of condensed-matter physics.1–3

The proximity of AFM and SC turned out to be a generic
feature not only of the Bechgaard salt series �TMTSF�2X, but
also of the Fabre salts �TMTTF�2X and layered two-
dimensional �2D� organic and cuprate superconductors. In
the quasi-one-dimensional �1D� organic materials, AFM oc-
cupies a large region of the experimental phase diagram �see
Fig. 1� and is believed to be central to the emergence of SC.
It is believed that the understanding of AFM is a prerequisite
to that of SC.

The nature of pairing in these compounds is still unclear.
Recent experiments have yielded conflicting results. A NMR
Knight-shift experiment by Lee et al.4 found that the sym-
metry of the Cooper pairs is triplet in �TMTSF�2�PF�6. No
shift was found in the magnetic susceptibility at the transi-
tion for measurement made under a magnetic field of about
1.4 T. A subsequent Knight-shift experiment performed at
lower fields reveals a decrease in the spin susceptibility.5

This result is consistent with singlet pairing. Shinagawa
et al.5 suggested a possible singlet-triplet pairing crossover
as a function of the magnetic field as a resolution of these
conflicting results.

In the face of these experimental uncertainties, a theoret-
ical input onto the behavior of simple models of these com-
pounds is of crucial importance. A theoretical analysis of
AFM in the quasi-1D organic materials was proposed by
Bourbonnais and Caron.6 This description was essentially
based on a perturbative renormalization group �RG� applied
on the g-ology model. They found that the AFM phase has
two regions. On the left side of the AFM phase, the 1D
chains are Mott insulators; the charge gap �� induced by
coulomb interactions is such that ��� t�, where t� is the
transverse hopping parameter. Hence, the single-particle
transverse hopping is irrelevant. In this region, the electrons

are necessarily confined in the chains. t� can nevertheless
generate an interchain exchange J� by virtual interchain
hopping. Using the RG method,7 it can be shown that this
process leads to a transverse effective Hamiltonian H�

=�dx�iJ�S�x�iS�x�i+1, with J�� t�
2 /��. In this region, the

electrons are necessarily confined in the chains due to the
irrelevance of t�. As pressure increases, the electrons pro-
gressively delocalize in the transverse direction. In the right
region of the AFM phase, the magnetism is itinerant and
arises from the nesting of the Fermi surface �r,l�k�=−�l,r�k
+Q�, where the indices �r , l� stand for the right and the left
parts of the Fermi surface, respectively, and Q= �2kF ,�� is
the nesting momentum. The nesting leads to the divergence
of the susceptibility ��Q ,�=0�	

1
L2 �k

f��r�k��−f��l�k+Q��
�r�k�−�l�k+Q� . Further

increasing pressure destroys the magnetic order and leads to
superconductivity as illustrated on the right part of the phase
diagram of Fig. 1.

While magnetism is now quite well understood in the
quasi-1D materials, the same cannot be said for supercon-
ductivity. The relation between magnetism and superconduc-
tivity remains unclear. In this paper, starting from a single
chain, I analyze the effects of small transverse hoppings and
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FIG. 1. Sketch of generic experimental phase diagram of the
quasi-1D organic conductors: Luttinger liquid �LL�, Fermi liquid
�FL�, Mott insulator �MI�, charge ordering �CO�, spin-Peierls �SP�,
antiferromagnet �AFM�, and superconductor �SC�.
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interactions using the two-step density-matrix renormaliza-
tion group �TSDMRG� method.8,9 I find, in agreement with
the work of Bourbonnais and Caron,6,7 that magnetism is
dominant in the strong and intermediate coupling regimes.
There is a small region of parameters in the weak-coupling
regime where magnetism is suppressed in favor of singlet
superconductivity. The mechanism of pair hopping is remi-
niscent of the Kohn-Luttinger �KL� effect.10

II. MODEL

The essential features of the phase diagram of the organic
conductors may be captured by the anisotropic Hubbard
model �AHM� at quarter filling,

H = − t��
i,l,


�ci,l,

† ci+1,l,
 + H.c.� + U�

i,l
ni,l,↑ni,l,↓

+ V�
i,l

ni,lni+1,l − ��
i,l,


ni,l,
 − t��
i,l,


�ci,l,

† ci,l+1,
 + H.c.� ,

�1�

or a more general Hubbard-like model including longer
range Coulomb interactions. The indices i and l label the
sites and the chains, respectively. For these highly aniso-
tropic materials, t�� t�. Over the years, the AHM has re-
mained a formidable challenge to condensed-matter theo-
rists. Some important insights into this model or its low
energy version, the g-ology model, have been obtained
through the work of Giamarchi3 and Bourbonnais and
Caron.6 They used a perturbative renormalization group ap-
proach to analyze the crossover from 1D to 2D at low tem-
peratures. More recently, Biermann et al.11 applied the chain
dynamical mean-field approach to study the crossover from
Luttinger liquid to Fermi liquid in this model. Despite this
important progress, crucial information such as the ground-
state phase diagram, or most notably, whether the AHM dis-
plays superconductivity, still haven’t gained consensus. So
far it has remained beyond the reach of numerical methods
such as the exact diagonalization �ED� or the quantum
Monte-Carlo �QMC� methods. ED cannot exceed lattices of
about 4�5. It is likely to remain so for many years unless
there is a breakthrough in quantum computations. The QMC
method is plagued by the minus sign problem and will not be
helpful at low temperatures. The small value of t� implies
that, in order to see the 2D behavior, it will be necessary to
reach lower temperatures than those usually studied for the
isotropic 2D Hubbard model. Hence, even in the absence of
the minus sign problem, in order to work in this low-
temperature regime, the QMC algorithm requires special sta-
bilization schemes which lead to prohibitive cpu time.12

III. TWO-STEP DMRG

I have shown in Ref. 8 that this class of anisotropic mod-
els may be studied using a TSDMRG method. The TSD-
MRG method is a perturbative approach in which the stan-
dard 1D DMRG is applied twice. In the first step, the usual
1D DMRG method13 is applied to find a set of low lying
eigenvalues �n and eigenfunctions 	n
 of a single chain. In

the second step, the 2D Hamiltonian is then projected onto
the basis constructed from the tensor product of the 	n
s.
This projection yields an effective one-dimensional Hamil-
tonian for the 2D lattice

H̃ � �
�n�

E��n�	���n�
����n�	 − t��
i,l,


�c̃i,l,

† c̃i,l+1,
 + H.c.� ,

�2�

where E��n� is the sum of eigenvalues of the different chains,
E��n�=�l�nl

; 	���n�
 are the corresponding eigenstates, 	���n�

= 	n1


	n2

 . . . 	nL


; c̃i,l,

† , c̃i,l,
, and ñi,l,
 are the renormalized

matrix elements in the single chain basis. They are given by

�c̃i,l,

† �nl,ml = �− 1�ni�nl

	ci,l,

† 	ml


 , �3�

�c̃i,l,
�nl,ml = �− 1�ni�nl
	ci,l,
	ml


 , �4�

�ñi,l,
�nl,ml = �nl
	ni,l,
	ml


 , �5�

where ni represents the total number of fermions from sites 1
to i−1. For each chain, operators for all the sites are stored in
a single matrix

c̃l,

† = �c̃1,l,


† , . . . , c̃L,l,

† � , �6�

c̃l,
 = �c̃1,l,
, . . . , c̃L,l,
� , �7�

ñl,
 = �ñ1,l,
, . . . , ñL,l,
� . �8�

Since the in-chain degrees of freedom have been integrated
out, the interchain couplings are between the block matrix
operators in Eqs. �6� and �7� which depend only on the chain
index l. In this matrix notation, the effective Hamiltonian is
one-dimensional and it is also studied by the DMRG method.
The only difference compared to a normal 1D situation is
that the local operators are now ms2�ms2 matrices, where
ms2 is the number of states kept during the second step.

The two-step method has previously been applied to an-
isotropic two-dimensional Heisenberg models.8 In Ref. 9, it
was applied to the t−J model, but due to the absence of an
exact result in certain limits, it was tested against ED results
on small ladders only. A systematic analysis of its perfor-
mance on a fermionic model on 2D lattices of various sizes
has not been done. In this paper, as a prelude to the study of
the AHM, I will apply the TSDMRG to the anisotropic tight-
binding model on a 2D lattice, i.e., model �1� with U=V=0.
I perform a comparison with the exact result of the tight-
binding model. I was able to obtain agreement for the
ground-state energies on the order of 10−4 for lattices of
up to 24�25. I then discuss how these calculations may be
extended to the interacting case, before presenting the U
�0 results.

Additional insight in the behavior of H may be gained by
using the Wilson RG instead of DMRG in the second step.
The advantage of the Wilson RG lies in the fact that the low
energy spectrum can be obtained. However, the Wilson

method directly applied to H̃ is not accurate, because all the
terms in the transverse direction are of the same order. I use

the same trick used by Wilson for the Kondo problem.14 H̃ is
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defined as the limit of H̃� when �→1. H̃� is given by

H̃� = �
l

Hl,l+1

��l−1�/2 , �9�

where

Hl,l+1 = H0,l + H0,l+1 − t��



�c̃l,

† c̃l+1,
 + H.c.� .

It is to be noted that this is not the usual Wilson’s mo-
mentum space discretization. The justification of this scheme
rests on the fact that the essential physics remains unchanged
by the introduction of �. When ��1, the terms correspond-
ing to l�1 act as a perturbation on the term with l=1. For �

not too large, I expect H̃� to essentially have the same be-

havior as H̃. But if ��1, t� /� will be too small with re-
spect to the finite-size energy separation and the chains will
be disconnected. It is to be remarked that this approach may
also be useful if it is embedded as a cluster solver in a chain-
dynamical mean-field approach.11

IV. WARM UP: THE TIGHT-BINDING MODEL

The tight-binding Hamiltonian is diagonal in the momen-
tum space; the single-particle energies are

�k = − 2t� cos kx − 2t� cos ky − � , �10�

where k= �kx ,ky�, kx=nx� / �Lx+1� and ky =ny� / �Ly +1� for
open boundary conditions �OBC�; Lx, Ly are, respectively,
the linear dimensions of the lattice in the parallel and trans-
verse directions. The ground-state energy of an N electron
system is obtained by filling the lowest states up to the Fermi
level E�0��N�=�k�kF

�k. However, in real space, this problem
is not trivial and it constitutes, for any real-space method
such as the TSDMRG, a test having the same level of diffi-
culty as the case with U�0. This is because the term involv-
ing U is diagonal in real space and the challenge of diago-
nalizing the AHM arises from the hopping term.

I will study the tight-binding model at quarter filling
N /LxLy =1 /2, the nominal density of the organic conductors
known as the Bechgaard salts. Systems of up to Lx�Ly =L
� �L+1�=24�25 will be studied. During the first step, I

keep enough states �ms1 is a few hundred� so that the trun-
cation error �1 is less than 10−6. I target the lowest state in
each charge-spin sectors Nx�2, Nx�1, Nx and
Sz�1, Sz�2, Nx is the number of electrons within the
chain. It is fixed such that Nx /Lx=1 /2. There are a total of 22
charge-spin states targeted at each iteration.

For the tight-binding model, the chains remain discon-
nected if t���0�Nx+1�−�0�Nx� or t���0�Nx�−�0�Nx−1�,
where Nx is the number of electrons on single chain. In order
to observe transverse motion, it is necessary that at least t�

��0�Nx+1�−�0�Nx� and t���0�Nx�−�0�Nx−1�. These two
conditions are satisfied only if � is appropriately chosen. The
values listed in Table I corresponds to �= ��0�Nx+1�
−�0�Nx−1�� /2. This threshold varies with L. I give in Table I
the values of t� chosen for different lattice sizes. In prin-
ciple, for the TSDMRG to be accurate, it is necessary that
��=�nc

−�0, where �nc
is the cutoff, be such that �� / t��1.

But in practice, I find that I can achieve accuracy up to the
fourth digit even if �� / t��5 using the finite system method.
Five sweeps were necessary to reach convergence. Note that
this conclusion is somewhat different from my earlier esti-
mate of �� / t��10 for spin systems.9 This is because in Ref.
9, I used the infinite system method during the second step.

The ultimate success of the TSDMRG depends on the
density of the low-lying states in the 1D model. For fixed
ms2 and L, it is, for instance, easier to reach larger �� /J� in
the anisotropic spin one-half Heisenberg model, studied in
Ref. 8, than �� / t� for the tight-binding model as shown in
Fig. 2. For L=16, ms2=96, and J�= t�=0.15, I find that
�� /J��10, while �� / t��5. Hence, the TSDMRG method
will be more accurate for a spin model than for the tight-
binding model. Using the infinite system method during the
second step on the anisotropic Heisenberg model with J�

=0.1, I can now reach an agreement of about 10−6 with the
stochastic QMC method.

Two possible sources of error can reduce accuracy in the
TSDMRG with respect to the conventional DMRG. They are
the truncation of the superblock from 4�ms1 states to only
ms2 states and the use of three blocks instead of four during
the second step. In Table II, I analyze the impact of the
reduction of the number of states to ms2 for three-leg ladders.
The choice of three-leg ladders is motivated by the fact that

0 20 40 60 80 100
n
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2

ε n-ε
0

FIG. 2. Low-lying states of the 1D tight-binding model �full
line� and of the 1D Heisenberg spin chain �dotted line� for L=16
and ms2=96.

TABLE I. Transverse hopping and chemical potential used in
the simulations for different lattice sizes

8�9 16�17 24�25

t� 0.28 0.15 0.1

� −1.2660 −1.3411 −1.3657

�� / t� 6.42 5.40 5.78

TABLE II. Ground-state energies of three-leg ladders.

ms2 8�3 16�3 24�3

64 −0.241524 −0.211929 0.204040

Exact −0.241524 −0.211931 0.204049
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at this point, the TSDMRG is equivalent to the exact diago-
nalization of three reduced superblocks. It can be seen that as
far as t���0�Nx+1�−�0�Nx� and t���0�Nx�−�0�Nx−1�, the
TSDMRG at this point is as accurate as the 1D DMRG. Note
that the accuracy remains nearly the same irrespective of L
as far as the ratio �� / t� remains nearly constant. Since ��
decreases when L increases, t� must be decreased in order to
keep the same level of accuracy for fixed ms2. In principle,
following this prescription, much larger systems may be
studied. �� / t� does not have to be very large, in this case it
is about 5, to obtain very good agreement with the exact
result.

The second source of error is related to the fact that the
effective single site during the second step is now a chain
having ms2 states. I am thus forced to use three blocks in-
stead of four to reduce the computational burden. In Table
III, it can be seen that this results in a reduction in accuracy
of about 2 orders of magnitude with respect to those of three-
leg ladders. These results are nevertheless very good given
the relatively modest computer power involved. All calcula-
tions were done on a workstation.

The DMRG is less accurate when three blocks are used
instead of four. This can be understood by applying the fol-
lowing view on the formation of the reduced density matrix.
The construction of the reduced density matrix may be re-
garded as a linear mapping u� :F�→E, where E is the sys-
tem, F is the environment and, F� is the dual space of F.
Using the decomposition of the superblock wave function
��0�=�ii

L
� i

R, with i
L�E and �i

R�F, for any ��F�,

u���� = �
i=1

��	i
R
i

L. �11�

Let 	k
 ,k=1, . . .dim E and 	l
 , l=1, . . .dim F be the basis of
E and F, respectively. Then, 	l
 has a dual basis �l�	 such that
�l� 	 l
=�l,l�. The matrix elements of u� in this basis are just
the coordinates of the superblock wave function ��0�k,l

. The
rank r of this mapping, which is also the rank of the reduced
density matrix is always smaller or equal to the smallest
dimension of E or F, r�Min�dim E ,dim F�. Hence, if ms2
states are kept in the two external blocks, the number of
nonzero eigenvalues of � cannot be larger than ms2. Conse-
quently, some states which have nonzero eigenvalues in the
normal four block configuration will be missing. A possible
solution to this problem is to target additional low-lying
states above ��0��N�. The weight of these states in � must be
small so that their role is simply to add the missing states not
to be described accurately themselves. A larger weight on
these additional states would lead to the reduction of the

accuracy for a fixed ms2. In Table IV, I show the improved
energies when, besides the ground state, I target the lowest
states of the spin sectors Sz=−1 and Sz= +1 with N electrons.
The weights were, respectively, 0.995, 0.0025, and 0.0025
for the three states. This lowers E�0��N� in all cases, but the
gain does not appear to be spectacular. However, I do not
know whether this is due to my choice of perturbation of � or
whether even the algorithm with four blocks would not yield
better E�0��N�. If the lowest sectors with N+1 and N−1 elec-
trons which have Sz= �0.5 are projected instead, I find that
the results are similar to those with Sz= �1 sectors. There
may be many ways to add the missing states. A more sys-
tematic approach to this problem has recently been
suggested.15 It is based on using a local perturbation to build
a correction to the density matrix from the site at the edge of
the system. Here, such a perturbation would be ��=�cl

†�cl,
where � is a constant ��10−3−10−2 and cl

† ,cl are the cre-
ation and annihilation operators of the chain at the edge of
the system. This type of perturbation resulted in an accuracy
gain of more than an order of magnitude in the case of a spin
chain.15 The three block method was found to be on par with
the four block method. It will be interesting to see in a future
study how this type of local perturbation performs within the
TSDMRG.

To conclude this section, as a first step to the investigation
of interacting electron models, I have shown that the TSD-
MRG can successfully be applied to the tight-binding model.
The agreement with the exact result is very good and can be
improved since the computational power involved in this
study was modest. The extension to the AHM with U�0 is
straightforward. There is no additional change in the algo-
rithm since the term involving U is local and thus treated
during the 1D part of the TSDMRG. The role of U is to
reduce �� as shown in Fig. 3. For fixed L and ms2, ��
decreases linearly with increasing U. For L=16 and ms2
=128, I anticipate that for U�3, the interacting system re-
sults will be on the same level or better than those of the
noninteracting case with ms2=100 for the same value of L.
This is confirmed by a numerical test on a 16�3 system for
U=4, V=0.85, �=0, and t�=0.2, keeping ms2=160. For
these parameters ��=0.78, we are at the limit of accuracy of
the TSDMRG. The TSDMRG ground-state energy −0.6207
is nevertheless in good agreement with that of the conven-
tional multichain approach −0.6228 with m=500.

V. GROUND-STATE PROPERTIES OF COUPLED
HUBBARD CHAINS

I now proceed to the study of U�0. One of the main
motivations for such a study is the possibility to gain insight

TABLE III. Ground-state energies for different lattice sizes; a
single state was targeted in the second step.

ms2 8�9 16�17 24�25

64 −0.24761 −0.21401 0.20504

100 −0.24819 −0.21414 0.20509

120 −0.24832 −0.21419

Exact −0.24857 −0.21432 0.20519

TABLE IV. Ground-state energies for different lattice sizes;
three states were targeted in the second step: the ground state itself
and the lowest states of Sz=0 and Sz=1 sectors.

ms2 8�9 16�17

64 −0.24803 −0.21401

100 −0.24828 −0.21417

Exact −0.24857 −0.21432
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into the mechanism of superconductivity in quasi-1D sys-
tems. The mechanism of superconductivity in the quasi-1D
organic materials Bechgaard and Fabre salts, is still an open
issue.16 Since these materials are 1D above a crossover tem-
perature Tx� t� /�, it is broadly accepted that the starting
point for the understanding of their low T behavior should be
pure 1D physics. The occurrence of the low T ordered phases
is driven by the interchain hopping t�. Two main hypotheses
have been suggested concerning superconductivity. The first
hypothesis �see a recent review in Ref. 16� relies on a more
conventional physics: t� drives the system to a 2D electron
gas which is an anisotropic Fermi liquid which becomes su-
perconductive through a conventional BCS mechanism.
However, it has been argued17 that given the smallness of t�,
the resulting electron-phonon coupling would not be enough
to account for the observed Tc. The second hypothesis, which
has gained strength over the years given the absence of a
clear phonon signature, is that the pairing mechanism origi-
nates from an exchange of spin fluctuation.17

Interest in this issue was recently revived by the NMR
Knight-shift experimental finding that the symmetry of the
Cooper pairs is triplet4 in �TMTSF�2�PF�6. No shift was
found in the magnetic susceptibility at the transition for mea-
surement made under a magnetic field of about 1.4 T. A
triplet pairing scenario was subsequently supported by the
persistence of superconductivity under fields far exceeding
the Pauli breaking-pair limit.18 However, there is no simple
explanation of this scenario. Triplet pairing would be unfa-
vorable in a BCS-like scenario for which a singlet s wave is
most likely. Triplet pairing is also less likely in the spin-
fluctuation mechanism for which a singlet d wave is pre-
dicted by analytical RG �Ref. 16� or by perturbative
approaches.19 It has been argued that these difficulties in
both mechanisms can be circumvented. In the BCS case, the
association of AFM fluctuations with an open Fermi surface
to the electron-phonon mechanism may lead to a triplet
pairing.20 In the spin-fluctuation case, the addition of inter-
chain Coulomb interactions may favor a triplet f wave in lieu
of the singlet d wave.16,19,21 The more exotic Fulde-Ferrel-
Larkin-Ovchinnikov phase can also be invoked to account
for the large paramagnetic limit. However, the Knight-shift
result which was thought to bring a conclusion to this long-
standing issue has only revived the old controversy. The con-
clusion of this experiment itself has been recently chal-

lenged. In Ref. 22, it was pointed out that the observation of
triplet superconductivity claimed in Ref. 4 could be a spuri-
ous effect due to the lack of thermalization of the samples. A
recent Knight-shift experiment performed at lower fields re-
veals a decrease in the spin susceptibility. This is consistent
with singlet pairing.5

The 1D interacting electron gas is now fairly well
understood.6 There is no phase with long-range order. There
are essentially four regions in the phase diagram, character-
ized by the dominant correlations, i.e., spin-density wave
�SDW�, charge-density wave �CDW�, singlet superconduc-
tivity �SS�, and triplet superconductivity �TS�. The essential
question is whether the interchain hopping will simply freeze
the dominant 1D fluctuation into long-range order �LRO� or
create new 2D physics. The estimated values of U and V for
the Bechgaard salts suggest that they are in the SDW region
in their 1D regime. This suggests that superconductivity in
these materials is a 2D phenomenon. Interchain pair tunnel-
ing was suggested soon after the discovery of superconduc-
tivity in an organic compound.1 Emery13 argued that a
mechanism similar to the Kohn-Luttinger mechanism might
be responsible for superconductivity in the organic materials.
When t� is turned on, pairing can arise from exchange of
short-range SDW fluctuations. The reason is that the oscil-
lating SDW susceptibility at Q= �2kF ,k�� would have an at-
tractive region if k��0. In particular if k�=� as I found,
then the interaction would be attractive between particles in
neighboring chains. In this study, I will restrain myself to the
study of interchain pair tunneling. I was unable to compute
correlation functions of pairs in which each electron belongs
to a different chain. The reason is that in the DMRG method,
for the correlation functions to be accurate, at least two dif-
ferent blocks should be involved. This means that for pair
correlation for which each electron of the pair is on a differ-
ent chain, at least four blocks are needed. However, the in-
troduction of four blocks in the second step of the TSDMRG
leads to a prohibitive CPU time.

With the hope of frustrating an SDW ordering which is
usually expected, I will add an extra terms to model �1�.
These are the diagonal interchain hopping

Hd = − td�
i,l,


��ci,l,

† ci+1,l+1,
 + H.c.� + �ci+1,l,


† ci,l−1,
 + H.c.� ,

�12�

and the next-nearest-neighbor interchain hopping
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FIG. 4. Transverse Green’s function G�y� for td=0 �circles�, td

=0.1 �squares�.
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FIG. 3. Width �� for the low-lying states of the 1D Hubbard
chain as function of U for L=16 and ms2=128.
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H�� = − t�� �
i,l,


�ci,l,

† ci,l+2,
 + H.c.� .

I will also add the interchain Coulomb interaction

HV = V��
i,l

ni,l . ni,l+1 �13�

I set t�=0.2, ms1=256, ms2=128, and L� �L+1�=16
�17. A second set of calculations with t�=0.15, the same
values of ms1 and ms2, and L� �L+1�=24�25 lead to the
same conclusions. Therefore, they will not be shown here. In
order to analyze the physics induced by the transverse cou-
plings, I compute the following interchain correlations: the
transverse single-particle Green’s function, shown in Fig. 4,

G�y� = �cL/2,L/2+ycL/2,L/2+1
† 
 , �14�

the transverse spin-spin correlation function, shown in Fig. 5,

C�y� =
1

3
�SL/2,L/2+ySL/2,L/2+1
 , �15�

the transverse local pairs singlet superconductive correlation,
shown in Fig. 6,

SS�y� = ��L/2,L/2+y�L/2,L/2+1
† 
 , �16�

where

�i,l = ci,l↑ci,l↓, �17�

the transverse triplet superconductive correlation, shown in
Fig. 7,

ST�y� = 2��L/2,L/2+y�L/2,L/2+1
† 
 , �18�

where

�i,l =
1
�2

�ci,l↑ci+1,l↓ + ci,l↓ci+1,l↑� , �19�

and the transverse nonlocal singlet pair superconductive cor-
relation function, shown in Fig. 8,

SD�y� = 2��L/2,L/2+y�L/2,L/2+1
† 
 , �20�

where

�i,l =
1
�2

�ci,l↑ci+1,l↓ − ci,l↓ci+1,l↑� . �21�

A. Strong-coupling regime

Let us first consider, the regime U�4. I choose for in-
stance U=4, V=0.85, �=0, and td= t�� =V�=0; besides
single-particle hopping, t� also generates two-particle hop-
ping both in the particle-hole and particle-particle channels.
These two-particle correlation functions are roughly given
by the average values t�

2 �ci,l

† ci,l−
ci,l+j−


† ci,l+j

 and
t�
2 �ci,l


† ci,l−

† ci,l+j
ci,l+j−

 for an on-site pair created at �i , l�

and then destroyed at �i , l+ j�. It is expected that the domi-
nant two-particle correlations are SDW with k�=�. This is
seen in Figs. 5–8. The transverse pairing correlations are all
found to be small with respect to C�y�. Among the pairing
correlations, SS�y� decays faster then ST�y� and SD�y�.
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FIG. 5. Transverse spin-spin correlation C�y� for td=0 �circles�,
td=0.1 �squares�.
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FIG. 6. Transverse local singlet correlation SS�y� for td=0
�circles�, td=0.1 �squares�.
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FIG. 7. Transverse triplet superconductive correlation ST�y� for
td=0 �circles�, td=0.1 �squares�.
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FIG. 8. Transverse singlet nonlocal superconductive correlation
SD�y� for td=0 �circles�, td=0.1 �squares�.
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These results are consistent with the view that the role of t�

is to freeze the dominant 1D correlations into LRO.
When td�0, it is expected that for a strong enough td, the

magnetic order will vanish because of the frustration induced
by td. A simple argument is that td induces an AFM exchange
between next-nearest neighbors on chains l and l+1 which
compete with the AFM exchange between nearest neighbors.
The hope is that there could be a region of the phase diagram
where superconductivity could ultimately win either by pair
tunneling between the chains or by the Emery’s mechanism.
However, in Figs. 5–8 it can be seen that, while td slightly
reduces C�y�, the dominant correlations are still SDW even
for a strong td / t�=0.5. SS�y�, ST�y�, and SD�y� are barely
affected by td. The fact that td does not strongly affect the
SDW order can be understood in the light of recent study of
coupled t−J chains.9 It was shown that the frustration
strongly suppresses magnetic LRO only close to half filling.
For large dopings, two neighboring spins in a chain do not
always point to opposite directions as the consequence and td
does not necessarily frustrate the magnetic order. This is il-
lustrated in a simple sketch in Fig. 9. td could even enhance
it as seen in the study of t−J chains. In Fig. 4, it can be seen
that td enhances G�y�. This enhancement, together with the
decrease of C�y�, suggests a possible widening of an even-
tual Fermi-liquid region at finite T above the ordered phase.
When t��0, I also found �not shown� that magnetic corre-
lations are not effectively suppressed even when t�� = t� /2.
For this value, it would be expected that the ratio of the
effective exchange term generated by t�� to that generated by
t� is about one quarter. In the frustrated J1−J2 spin chain, a
spin gap opens around this ratio. This simple picture does not
seem to work here.

B. Weak-coupling regime

I now turn in to the regime where U�4. I set U=2, V
=0, �=−0.9271, t�=0.2, td=0, and V�=0.4, where V� is the
interchain Coulomb interaction between nearest neighbors. It
can be seen in Fig. 10 that C�y� is now strongly reduced with
respect to its strong-coupling values. It is already within our
range numerical error for the next-nearest neighbor in the
transverse direction. This is an indication that the ground
state is probably not an SDW. It is to be noted that this
occurs even in the absence of td or t�� . This seems to be at
variance with the RG analysis which requires t�� to destroy

the magnetic order.21 A possible explanation of this is that at
half filling, the perfect nesting occurs at the wave vector Q
= �� ,�� for the spectrum of Eq. �10�. Away from half filling,
the nesting is no longer perfect, which leads to the reduction
of magnetic correlations. The first correction to the nesting is
an effective frustration term which is roughly t�

2 cos 2k�.
This expression is identical to a term that could be generated
by an explicit frustration t�� = t�

2 . The discrepancy between
the TSDMRG and the RG results could be that this nesting
deviation is underevaluated in the RG analysis. This mecha-
nism cannot be invoked in the strong-coupling regime where
band effects are small.

The suppression of magnetism is concomitant to a strong
enhancement of the singlet-pairing correlations as seen in
Fig. 12. Triplet correlations, shown in Fig. 11, remain very
small. However, it is clear from the behavior of C�y� that the
ground state is nonmagnetic. This result strongly suggests
that the ground state is a superconductor in this regime. A
finite-size analysis is, however, necessary to conclude
whether this persists to the thermodynamic limit. I cannot
rule out the possibility of a Fermi-liquid ground state, which
is implied by strong single-particle correlations.

VI. APPLICATION TO THE PHYSICS OF ORGANIC
CONDUCTORS

The pressure variation will be mimicked by varying the
Coulomb parameters U and V, while I keep t�, t�, and V�

constant in most simulations. In the regime of strong U and

FIG. 9. Sketch of the spin texture �arrows� in two consecutive
chains in an SDW. The bold horizontal lines represent the chains.
The full diagonal lines show bonds for which td tends to increase
the SDW order. The diagonal dotted lines show bonds for which td

frustrates the magnetic order.
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FIG. 10. Transverse spin-spin correlation C�y� for U=4
�circles�, U=2 and V�=0.4 �squares�.
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FIG. 11. Transverse triplet superconductive correlation ST�y�
for U=4 �circles�, U=2 and V�=0.4 �squares�.
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V, the isolated chains are Mott insulators, there is a large
charge gap �� while the spin degrees of freedom are gapless.
At V�2 for any value of U, there is an insulator-metal
transition.23 The transverse correlation functions yield infor-
mation on which type of order will dominate. Since the par-
allel correlations have a power-law decay in absence of a
gap, the most dominant transverse correlation in a given
channel will automatically lead to long-range order in that
channel, even if it is not dominant in 1D. Before performing
the analysis of the transverse correlations, it is somewhat
instructive to look at the low energy spectrum provided by
the Wilson method. This will allow us to make a qualitative
comparison with the evolution under pressure with the pre-
diction of the perturbative RG.

The low energy-excitation spectrum of H̃ was obtained
from the Wilson RG for ��1.2 for a lattice size 16�6,
keeping 100 states block. The lowest 1000 excited states are
shown in Fig. 13. They are drastically different as pressure is
varied. In the confined regime for U=6 V=2 Fig. 13�a�, all
the lowest states have the charge �n=0. This is consistent

with the fact that since t����, the low energy behavior of H̃
is roughly identical to that of Heisenberg model, only spin
excitations are allowed. This is typically the regime of Fabre
salts at ambient pressure where a large charge gap is ob-
served in optical conductivity measurements.24 By contrast,
in the SDW regime for U=4 V=0.85, spins excitation are
still the lowest but excitations with �= �1 now appear
above them. Excitations with �= �2 are also observed at
higher energy. In the regime with important superconductive
correlations U=2 V=0, excitations with �= �2 now appear
closer to the ground state. This suggests that an appropriate
choice of the transverse perturbations could favor interchain
two-particle tunneling.

I now analyze the evolution of the transverse correlations
when U and V are varied using the two-step DMRG for the
lattice size Lx�Ly =16�17. I keep ms1=256 states during
the first step and a maximum of ms2=128 states during the
second step. For this value of ms2, �E / t��5 which means
that we are at the limit of the two-step method. Starting from
the left of the AFM phase where U and V are expected to be
strong, because of the presence of a large ��, the carriers are
confined in the chains, even when t���� is turned on. The
carrier confinement was observed by Vescoli et al.25 in opti-
cal reflectivity measurements. When the oscillating electric

field was oriented in the transverse direction, no plasma
mode was observed. This carrier confinement is seen in the
behavior of the transverse Green’s function G�y�
= �cL/2,L/2+ycL/2,L/2+1

† 
. G�y�, shown in Fig. 14�a� for U=6 and
V=2, decays very fast. G�y��0 for y�3. This was expected
given that t� /���0.1. However, as predicted by the RG,6

although irrelevant, t� can nevertheless generate the motion
of transverse spin degrees of freedom and lead to magnetic
order. This is seen the transverse spin-spin correlation
function C�y�= 1

3 �SL/2,L/2+ySL/2,L/2+1
 which is shown in
Fig. 14�b�. I find that despite the irrelevance of t�, G�y� has
its largest amplitude in the strong-coupling limit. As
expected, I find that the transverse singlet �triplet� super-
conductive correlations SS�y�=2��L/2,L/2+y�L/2,L/2+1

† 

�ST�y�=2��L/2,L/2+y�L/2,L/2+1

† 
�, where �i,l=
1
�2

�ci,l↑ci+1,l↓
−ci,l↓ci+1,l↑� ��i,l=

1
�2

�ci,l↑ci+1,l↓+ci,l↓ci+1,l↑�� are negligible in
this limit as seen in Figs. 14�c� and 14�d�.

Moving toward the right of the phase diagram by increas-
ing pressure or equivalently decreasing U and V, the carriers
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FIG. 12. Transverse singlet nonlocal superconductive correla-
tion SD�y� for U=4 �circles�, U=2 and V�=0.4 �squares�.
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FIG. 13. Charge �n of lowest 1000 excitations after six RG
iterations, the lattice size is 16�6, for �=1.2: �a� in the localized
AFM U=6, V=2, �b� the SDW U=4, V=0.85, �c� and supercon-
ductor U=2, V=0. t�=0.2 and V�=0.4 in all cases.
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are expected to progressively deconfine. In this regime, the
reflectivity measurements of Ref. 25 reported the observation
of a transverse plasma mode. The carrier deconfinement is
expected for t� /���0.5. For U=4 and V=0.85, the numeri-
cal simulation yields t� /���0.3. In Figs. 14�a�–14�d�, it can
be seen that for U=4 and V=0.85 G�y� now has a nonzero

amplitude; C�y� is still significant, while SS�y� and ST�y� are
still very small. This suggests that the system is in the SDW
phase. The perturbative RG, coming from high temperatures,
shows that there is a 1D to 2D crossover at Tx� t� /�. At Tx
the 1D RG equations cease to be valid. FL arguments are
used to describe the onset of the SDW order. The experimen-
tal observations are however that both the non-FL and FL
characters seem to be present depending on the quantity
measured.6

If U and V are further reduced, C�y� now decays faster
despite the fact that the amplitude of G�y� is larger. C�y� now
vanishes for y�3 as seen in Fig. 14�b� for U=3, U=2 and
V=0 in both cases. This implies the absence of long-range
magnetic order in this regime. At the same time, SS�y�
sharply increases, suggesting the onset of superconductivity
in agreement with the phase diagram. The values of SS�y� at
long distances are however within our margin of error. The
presence of V� is crucial to the suppression of magnetism
and to the enhancement of pairing correlation. In the absence
of V�, if all other parameters are unchanged, the dominant
correlations are AFM. V� induces charge modulation in the
transverse direction. Two nearest-neighbor electrons on a
given chain take advantage of this modulation to jump on the
closest chain. This is reminiscent of the non-BCS scenario
suggested by Kohn and Luttinger.10 In this process, singlet
pairs are favored, as seen by the fact that ST�y� is still neg-
ligible.

Experimental results on the symmetry of the pairs are still
controversial. Knight-shift experiments from different groups
have predicted singlet5 and triplet4 pairings as discussed in
the introduction. This study shows a tendency toward singlet
pairing only in the extended Hubbard model. Singlet pairing,
though interchain, was also predicted by the perturbative
RG. However, in the RG, the pairs could be formed by car-
riers lying on neighboring chains and AFM was suppressed
by hopping to next-nearest-neighbor chain. It was suggested
in the RG study that the pairing could be triplet in presence
of strong enough next-nearest-neighbor hopping and nearest-
neighbor Coulomb interaction both in the transverse direc-
tion. The two-step results do not however settle this issue.
Many small effects including longer range hopping and Cou-
lomb interactions or the electron-phonon interaction were not
included in this simple model. Triplet superconductivity
could emerge from these terms. The two-step method pro-
vides an efficient method to analyze these different perturba-
tions.

VII. CONCLUSION

In this paper, I presented a TSDMRG study of the com-
petition between magnetism and superconductivity in an an-
isotropic Hubbard model. I analyzed the effect of the inter-
chain hoppings, t� , td , t�� , and of the interchain Coulomb
interaction V� in the strong and weak U regimes. In the
strong-coupling regime, the results are consistent with earlier
predictions that the role of t� is to freeze the dominant 1D
SDW correlations into a 2D ordered state. However, this is
only true in the strong U regime. In this regime, I find that
even the introduction of frustration does not disrupt the SDW
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FIG. 14. Transverse interchain correlations as function of dis-
tance y: �a� Green’s function G�y�, �b� spin-spin correlation C�y�,
�c� singlet superconductive SS�y�, �d� triplet superconductive ST�y�
for U=6, V=2 �circles�, U=4, V=0.85 �squares�, U=3, V=0
�diamonds�, U=2, V=0 �triangles�. t�=0.2 and V�=0.4 in all
cases.
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order which remains robust up to large values of the frustra-
tion. In the weak-coupling regime, singlet pair correlations
are dominant. The ground state seems to be a supercon-
ductor. This behavior is in agreement with experiments in the
Bechgaard or Fabre salts: �i� localized magnetism in the
strong-coupling regime, �ii� delocalized SDW magnetism in
the intermediate coupling regime, and �iii� superconductivity
of singlet type in the weak-coupling regime. Pair hopping is
favored by the density fluctuations due to V� as in the KL
mechanism.

I have not discussed the spin-Peierls phase which rests at
the extreme left of the phase diagram. In this regime, the
electron-phonon coupling is dominant over the effective
transverse exchange J�, hence a pure 1D study of a spin
model coupled to phonons such as that of Ref. 26, which
shows a spin gap opening, captures this part of the phase
diagram.

In this work, heuristic considerations inspired by the ex-
perimental phase diagram led me to be concerned only with
the search for a regime of parameters where �i� SDW corre-

lations are dominant in the 1D regime and �ii� superconduc-
tivity is dominant over magnetism when transverse motion
sets in. I did not analyze CDW correlations. These are likely
to be important, given that I applied open boundary condi-
tions which are known to generate Friedel oscillations27 that
decay slowly from the boundaries. The CDW correlations are
also enhanced by V�. Hence, I cannot rule out the possibility
of a CDW ground state instead of a superconductor, or even
a coexistence of the two ground states, in the regime were
pairing is enhanced. However, this work clearly shows that if
there is superconductivity in the extended Hubbard model, it
is generated by interchain Coulomb interactions.
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