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Magnetostriction and thermal expansion of the spin-ladder compound piperidinium copper bromide
(CsH,N),CuBr, are analyzed in detail. We find perfect agreement between experiments and the theory of a
two-leg spin-ladder Hamiltonian for more than a decade in temperature and in a wide range of magnetic fields.
Relating the magnetostriction along different crystallographic directions to two static spin-spin correlation
functions, which we compute with quantum Monte Carlo, allows us to reconstruct the magnetoelastic cou-
plings of (CsH;,N),CuBr,. We especially focus on the quantum critical behavior near the two critical magnetic
fields H,.; and H,, which is characterized by strong singularities rooted in the low dimensionality of the critical
spin system. Extending our discussion in Lorenz [ef al. Phys. Rev. Lett. 100, 067208 (2008)], we show
explicitly that the thermal expansion near the upper critical field H,, is quantitatively described by a parameter-
free theory of one-dimensional, nonrelativistic fermions. We also point out that there exists a singular quantum
critical correction to the elastic moduli. This correction is proportional to the magnetic susceptibility y, which

diverges as y~ 1/\T at the critical fields and thus leads to a strong softening of the crystal.
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I. INTRODUCTION

By now, the field-induced Bose-Einstein condensation of
magnons'? and its one-dimensional analog®* have been ob-
served in many different spin compounds’ such as coupled
spin-dimer systems,®® arrays of coupled spin-1 chains,”!® or
spin ladders.!"!2 Typically, the ground state of these systems
is a spin singlet, separated by a finite energy gap from the
lowest triplet excitation. Increasing the magnetic field, two
quantum phase transitions are induced. There is a first quan-
tum critical point at a field H,.;, where the spin gap closes,
and a second at H.,>H_., when the fully field-polarized
state becomes the exact ground state of the system. The
phase between the two critical fields is gapless and, depen-
dent on the dimensionality, is characterized either by long-
range order or power-law correlations*!'* among magnetic
moments.

Recently, we have reported in Ref. 14 high-resolution
measurements of thermal expansion and magnetostriction of
single  crystalline  piperidinium  copper  bromide
(CsH,N),CuBr,. This compound has been previously
identified"' to be a good realization of a two-leg spin ladder.
As such, it serves as a perfect model system to test experi-
mentally the validity and applicability of theoretical predic-
tions for quantum critical thermodynamics in a controlled
fashion. In particular, it has been argued that the thermal
expansion « is an especially useful probe in the presence of
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pressure coupling to the critical subsystem because « is then
more singular than the specific heat. This results in a diver-
gent Griineisen parameter close to quantum criticality®!13-17
with an exponent characteristic for the universality class of
the transition. Furthermore, as the thermal expansion is given
by the entropy derivative with respect to pressure, «
«dS/dp, it should exhibit a characteristic sign change near
the quantum phase transition signaling the accumulation of
entropy.'® The experimental check of these predictions in a
controlled model system gives important insights about their
reliability and applicability in the pursuit of quantum criti-
cality, especially in materials where the nature of the quan-
tum critical point is unknown.'%2°

In (CsH,N),CuBry, the presence of two adjacent quan-
tum critical points H,.; and H,, indeed leads to a rich struc-
ture of sign changes of thermal expansion reflecting the po-
sitions of entropy extrema in the phase diagram. As
illustrated in Ref. 14, at low temperatures a maximum in
entropy is located near each of the critical fields H,,, with
an enclosed minimum in between. Upon increasing tempera-
ture 7, the two maxima approach each other and merge at
higher temperatures. Moreover, the low dimensionality of the
spin ladder results in a diverging thermal expansion'# behav-
ing as a~ 1/\T at the two quantum critical points.

The compound (CsH;,N),CuBr, has a monoclinic crystal
structure (8=99.3°) 2! with the legs of the spin ladders ori-
ented along the a axis and the rungs roughly (=20°) along
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the ¢* axis of the reciprocal lattice. The single crystals used
for our study have been grown by slow evaporation of a
solution of (CsH;,N),CuBr, in ethanol. Typical crystals
grow in plates of several mm? with (010) faces and the a and
¢ axes oriented parallel to the edges.”> The measurements
have been performed on a homebuilt capacitance dilatometer
in longitudinal magnetic fields up to 17 T for temperatures
0.3 K=T=10 K. The absence of three-dimensional Neél
order in (CsH;,N),CuBr, down to temperatures Ty
<100 mK implies a very weak interladder coupling giving
rise to an extended temperature regime controlled by one-
dimensional physics.?> In this regime, the magnetic sub-
system of (CsH,N),CuBr, is well described by the two-leg
spin-ladder Hamiltonian
N
H=2 [71Si1Sia+Ji(Si1Sivi1 +8i2Si412)

i=1
- gupH(S; |+ S5))], (1.1)

where the first and second indexes specify the rung and the
leg, respectively. We have identified the exchange couplings
tobe J, /kg=12.9 K and J;/kz=3.6 K (see Sec. Il C). The g
factor is in fact a tensor and so depends on the crystallo-
graphic axis along which the magnetic field H is applied.?!

In the following, we shortly review the properties of the
different ground states of the spin-ladder Hamiltonian (1.1)
that appear as a function of the magnetic field.>* At zero
magnetic field H=0 the ground state of the spin ladder is a
singlet made of short-ranged valence bonds.”> Due to the
dominant rung interaction J | /J;~4, these valence bonds can
be pictured in a good approximation as the singlet states of
the spin dimers located on each rung of the ladder.?-2% The
resulting spectrum has a finite gap separating the ground
state from the lowest-lying triplet excitations, and, as a con-
sequence, the spin-spin correlations decay exponentially with
distance. Upon increasing the magnetic field, this gap de-
creases until the lowest-lying dispersing triplet excitation
touches the singlet energy giving rise to a quantum phase
transition at H,.;. For higher fields, singlet and triplet excita-
tions hybridize giving rise to a finite magnetization in the
ground state. This phase is a Luttinger liquid and has gapless
excitations representing fluctuations of the magnetization
perpendicular to the applied magnetic field. Finally, for even
higher magnetic fields the zero temperature magnetization
saturates above a critical field, i.e., for H>H_,. Here, the
excitations on top of the fully polarized ground state have
again a gap that increases with the distance to the transition
H-H,.

Whereas in Ref. 14 we focused on the thermal expansion
and magnetostriction along the ¢* axis of (CsH,;,N),CuBry,
in the present paper we also discuss our experimental data
measured along the a and b axes. Furthermore, we present a
detailed comparison with the results of quantum Monte
Carlo (QMC) simulations of the Hamiltonian (1.1) for the
full magnetic field range extending beyond the second criti-
cal field H.,. As explained in detail in Sec. II, we numeri-
cally evaluate for this analysis spin-spin correlation functions
that are related to magnetostriction, as was noted before by
Zapf et al. in Ref. 29. We find excellent quantitative agree-
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ment between theory and experiment that allows one to de-
termine the magnetoelastic couplings of (CsH;,N),CuBr,
and their respective uniaxial pressure dependencies. In addi-
tion, we present a discussion of the quantum critical thermal
expansion near H,, in Sec. III A. The effective critical theory
describing its behavior is known exactly, which enables us to
directly calculate the thermal expansion near H., without
adjustable parameters. Finally, in Sec. III B we note that not
only the thermal expansion but also the elastic moduli obtain
a quantum critical correction that diverges upon approaching
the critical fields. This results in a strong softening of the
crystal that finally triggers a first-order transition in the elas-
tic system. We present a mean-field discussion of the phase
diagram with the expected position of the line of first-order
transitions and the accompanying coexistence regions. Fi-
nally, we estimate that this effect is too weak in
(CsH,N),CuBr, to be observable because the strong one-
dimensional signatures will be cut off by interladder interac-
tions before a first-order transition can develop.

II. MAGNETOELASTIC COUPLING IN (CsH;,N),CuBr,

In the range of temperatures considered here, the main
contribution to thermodynamics of (CsH;,N),CuBr, can be
attributed to the spin system, i.e., the spin ladders. As the
interladder coupling is sufficiently weak, 7Ty<<100 mK, it
can be neglected, and we can approximate the magnetic part
of the free energy,

F,, =—kgT In tr{e s} (2.1)
as arising from an ensemble of decoupled spin ladders. The
Hamiltonian thus decomposes into a sum of Hamiltonians

H =23, H,, where the index n counts the number of equivalent
ladders in the transverse plane orthogonal to the ladder-leg
direction, the @ axis in (CsH;,N),CuBr,. The Hamiltonian
'H,, represents a single ladder system as defined in Eq. (1.1).
The free energy density is

1 1
_Fm = _Fm b
V' " VN

(2.2)
where V=859 A% is the volume per rung,22 and N is the
number of rungs in the ladder. The free energy F,, deriving
from a single spin-ladder Hamiltonian H, Eq. (1.1), is given
by F,,=—kgT In tr{e”"ksT},

The dilatometric properties of (CsH;,N),CuBr, are char-
acterized by its elastic energy,?® whose low-temperature and
magnetic-field dependencies we expect to be dominated by
the spin subsystem. The couplings J,, with a= L ,|l, of the
spin-ladder Hamiltonian (1.1) are determined by the ex-
change integrals depending on the electronic wave functions
for given values of lattice parameters. In the presence of
strain in the lattice, u;;, the lattice parameters slightly change
and thus induce a variation in the effective couplings, J,
=J,(u;;). Expanding this dependence to linear order in the
strain, J,(u;;) = J o+ gu;;, with g=gh=0J,/ du; . we can
separate from Eq. (1.1) a magnetoelastic interaction Hamil-
tonian,
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(a) (b)

FIG. 1. Pictorial representation of the magnetoelastic mode-
coupling corrections to the elastic energy, Eq. (2.4). The wiggly line
represents strain u;; and the dot is the strain-spin interaction g,. The
loop of straight lmes in diagram (a) represents a two- and in dia-
gram (b) a four-spin correlation function. The tadpole diagram (a)
results in a force on the lattice responsible for the magnetostriction
and thermal expansion effect. Diagram (b) modifies the elastic
tensor.

N
Hine= 2 [¢"" i1Si2+ gﬁlm(si,lsm,l + Si,2si+l,2)]unm’
i=1

(2.3)

where summation over the indices n and m is implied. The
strain u,,, fluctuates locally and so depends on the site index
i. The spin ladder couples linearly to strain and thus acts as a
force on the lattice. The lattice responds according to
Hooke’s law and, as a consequence, inherits the characteris-
tic temperature and magnetic-field dependence of the spin-
spin correlations in the ladder.

In order to obtain an effective elastic theory, we consider
the corrections to the elastic energy density £ in second-
order perturbation theory in the magnetoelastic coupling g,,.
Generally, a correction of order g to the elastic energy is
weighted by a 2n-spin correlation function that can be con-
veniently represented as an nth derivative of the free energy
F,, Eq. (2.1), with respect to the couplings J,; the most
important contributions are illustrated in Fig. 1. The resulting
effective elastic energy density reads

F,,
—elu+0(gh). (2.4

E(u) = +—
(u) ijCijkiUkl vaJ,

The magnetoelastic coupling gives a contribution linear in
strain u;; represented by the tadpole diagram (a) of Fig. 1.
The derlvatlve oF,,/dJ, acts on the lattice as a H and T
dependent force that will lead to magnetostriction and ther-
mal expansion. In addition, the elastic tensor obtains a cor-
rection that is second order in the interaction g [see Fig.

1(b)].
1 ‘9sz ij ki

= 25
Vil a1, 8k @3)

Cijki = Cijig t
The tensor C?jkl characterizes the elasticity of the crystal in
the absence of spin-strain coupling. Typically, the magneto-
elastic coupling g, is small and the second-order correction
in Eq. (2.5) can be neglected. In the following, we will there-
fore treat the elastic tensor c;;; as independent of magnetic
field and temperature. As we will discuss in Sec. III B, this
assumption is very well justified in the temperature range of
the experimental data that we present below. Only very close
to the quantum critical points H.,,., the tensor c;;, obtains a
strong dependence on H and T as the second-order deriva-
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tives °F,,/ 0J ,0J g diverge, resulting in a pronounced soften-
ing of the crystal.

Treating the effective elastic theory (2.4) on a mean-field
level, we can minimize the elastic energy (2.4), d€/du;;=0,
to obtain the strain

LoFw u

— (o, I m
ul.]_ (C )Uklvaj 8a =

S, (2.6)
where we made use of the inverse of the elastic tensor
(c‘l)[jk,ck,nm=2(z‘5m5jm+ Oim0,). For later convenience, we
also introduced the dimensionless constants

1 aJ,

( _l)zjkl (27)

y 1
= _ C_l Loy —— kl:
‘yla ( )zjleDga VD& i | o

that quantify the strain dependence of the exchange energies;
Vp is again the volume per rung. Moreover, we defined

_VpdF, 1%,
““val, N,

(2.8)

[see Eq. (2.2)]. These quantities can be identified with the
spin-spin correlation functions along the rung and along the
leg of the ladder, a= L I,

N
1
S, (T,h) = ]T/E (Si1Sin (2.9a)
N
1
S|(T,h) = X,E (Si 1S+ 82801 203 (2.9b)

where (O);,=tr{Oe " 8T} /tr{e~"*sT} They depend on tem-
perature 7 and magnetic field H; the dependence on the latter
only enters via the effective field h#=gugH. These correlators
will be basic ingredients in what follows. They determine the
H and T dependence of the strain due to the magnetoelastic
coupling and lead to the magnetostriction and the magnetic
contribution to the thermal expansion of (CsH;,N),CuBr,.

Uniaxial length changes. The resulting length change
along some axis n can be obtained by projection of the strain
(2.6),

oL
L

n=ﬁ SL’}/JI_'FS”’}/’ (210)

n

where 7 is a unit vector along the n axis. We introduced the
abbreviation

1 aJ,

=AVIh =— = . 2.11
%al/ I’ll’}}a I’ll’l(C )zjklv aukl 0 ( )

Using (¢™"),ju=duy/! do;, with the stress tensor o;;, we iden-
tify the coefficients ., with the derivatives of the exchange

couplings with respect to uniaxial pressure p,,

144, 1 aJ,

—2h = ——<
VD('?O'

. 2.12
VD (9[7" ( )

Yo=—1
Length measurements on (CsH,,N),CuBr, were performed
along the a, b, and ¢* axes. Our detailed comparison between
theory and experiment allows us to determine the coeffi-
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cients )/L” for n=a,b,c*, which will be given below.
Magnetostriction. The magnetostriction is defined as the
change of length as a function of magnetic field H,

AL(T,h,) 8L, OL,

= - — . 2.13
L T 213

n n

The magnetostriction depends on the magnetic field H, only
via the effective field h,=g,upH. In the present experimental
setup the magnetic field has always been aligned parallel to
the measured length change such that the g factor also carries
the same index n. The g factors in the three directions, the a
axis, g, (along the legs of the spin ladder), the b axis, g;, and
the ¢* axis, g. (roughly along the ladder rungs), of
(CsH,,N),CuBr, were determined in Ref. 21 to

2,=2.06, g,=2.18, g.=2.15. (2.14)

The magnetostriction can be expressed in terms of the spin
correlators of the ladder,

ALn(T’hn)
— - Y1D,(T.h,) + ¥/D(T.h,),  (2.15)
where we introduced the abbreviation
DL,H(th) = SL’H(T,]’I) - SL’H(T,O). (2 16)
Similarly, the derivative of the magnetostriction,
1 d6L, 48 4S8
N(T,h,) = Ly, (2.17)

L, 0H '+ oH oH
can be decomposed into derivatives of the correlators S .

Thermal expansion. The uniaxial thermal expansion quan-
tifies the length changes of the crystal as a function of tem-
perature at constant magnetic field,

1 d4L, a8,

- 38
h,)= — =y — 4+ y—.
n L, T |, g %

It is determined by the derivatives of the correlators S
with respect to temperature 7.

A. Experimental results

Uniaxial magnetostriction of (CsH;,N),CuBr, was mea-
sured in a range of temperatures from 0.3 K up to 8 K along
the a, b, and ¢* axes [see panels (a), (b), and (c), respec-
tively, of Fig. 2]. The measurements reveal a rich and com-
plex magnetoelastic behavior. From the low-temperature
data, the critical magnetic fields H,;,, for each direction can
be identified by the kinks in the magnetostriction. At small
fields H<H,,, and low temperatures 7'<<J,/kp, the magne-
tostriction is exponentially small as a consequence of the
presence of the spin-triplet gap. Near H,.; the magnetostric-
tion starts to grow and saturates near the second critical field
H_,, becoming H independent for H> H,. For higher tem-
peratures T=J,/kg, the kinks near the critical fields are
smeared out. A saturation plateau at large fields is not
reached anymore, and the low-field behavior now becomes
quadratic, AL,/L,~ H?. The inboxes show the derivatives
N, see Eq. (2.17), for T=0.58 K <<J,/kg, that exhibit clear
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FIG. 2. (Color online). The symbols in each panel show the
measured magnetostriction AL,/ L, of (CsH,N),CuBr, along the n
axis with n=a, b, and ¢* for different temperatures. By construc-
tion, the magnetostriction vanishes at H=0. The curves at different
T are offset by =2 X 107 in panels (a) and (b), and by 1.5X 107 in
panel (c). The solid lines are results from QMC simulations. The
insets show the fit to the A, data from which the y coefficients in
Table I have been determined (see the text in Sec. I D).

anomalies at both critical fields H,; and H,,. As discussed
already in Ref. 14, at the lowest temperature the magneto-
striction and \ . along the ¢* axis resemble closely the mag-
netization and susceptibility of (CsH;,N),CuBr,,'" respec-
tively. For the measurements along the a and b directions,
the shape of the magnetostriction derivative is much less
symmetric with respect to (H,,+H,,)/2. In particular, \, has
only a tiny peak at H,.;. As will be seen below, this is due to
the fact that the uniaxial pressure dependence of H,.; almost
vanishes for a-axis pressure p, due to a partial cancellation
of the uniaxial pressure dependencies of J, and J|; see Eq.
(2.21) and Table I.
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TABLE I. Magnetoelastic couplings y,=(d/,/dp,)/ Vp [see Eq.
(2.12)], obtained from a fit
(CsH,N),CuBry to the QMC data as shown in Fig. 2, and the
resulting uniaxial pressure p,, dependencies of the exchange cou-
plings J, and J|. The changes of J, and J; under hydrostatic pres-
sure are given by the respective sums of their uniaxial pressure
dependencies.

Axis Y| X10°  X10°  dlnJ, /dp, d1n Jy/ dp,,
a 4.2 7.7 20%/GPa 133%/GPa
b -8.2 -6.0 -40%/GPa  —104%/GPa
c* 13.5 -1.1 65%/GPa -19%/GPa

Figure 3 displays some representative data of the thermal
expansion measurements along the a axis (legs) and along
the b axis. For both directions, we find a rich structure in «,
with various sign changes, similar to our data along the c¢*
axis, which have been discussed in detail in Ref. 14. Close to
H_, there are again clear indications for a diverging low-
temperature thermal expansion for both «, and ¢,. In con-
trast, however, the features around H_., are much less pro-
nounced, which is due the aforementioned weak pressure
dependencies of H,, for a-axis and b-axis pressure.

B. Two-parameter scaling

A remarkable prediction of Eq. (2.17) is that the magne-
tostriction curves along the three directions are linearly de-
pendent. In particular, the magnetostriction in one of the
three directions, say, along the b axis can be obtained as a
linear superposition of the other two, along the ¢* and a axis,
i.e., the rung and leg directions, respectively,

of the magnetostriction of
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Ny(Toh) = e (T 1) + e\ (T, ), (2.19)

where ¢, and ¢, are constants independent of temperature
and magnetic field. It is important here to account for the
g-factor anisotropy (2.14) by comparing the three measure-
ments at the same effective field h=gugH. The sizable
g-factor anisotropy is reflected e.g., in the slight shift of the
positions of the high-field peaks of A, for the different field
directions, as is illustrated in the inset of Fig. 4.

Figure 4 confirms that the relation (2.19) is obeyed by the
experimental data. The symbols in Fig. 4 show the measure-
ments along the b axis at different temperatures and the solid
line is obtained from the magnetostriction along the ¢* and a
axes and Eq. (2.19) with the fitted values

¢, =—036, c,=—0.85. (2.20)

This agreement serves as an experimental proof that the ther-
modynamics is fully grasped by a model Hamiltonian with
only two pressure-dependent coupling constants.

C. Determination of the couplings J, and J

To perform a quantitative comparison of the dilatometric
experimental data with theory, we first need to determine the
two coupling constants J, and J; of the spin-ladder Hamil-
tonian (1.1). For this purpose, we take the critical fields as an
experimental input and derive J, and J; from their second-
order strong-coupling expressions’!

3
) } (2.21)

Lol
2\J, J,
(2.22)

I
gupH oy =JJ_|:1 -7t
guHo=J, +2J).

Jo

The formula for H,, is exact in all orders in J.2
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FIG. 4. (Color online). Uniaxial magnetostriction along the b
axis \, [see Eq. (2.17)], of (CsH,N),CuBr, at different tempera-
tures (symbols). The higher temperature curves are each offset by
additional 107/ T. The magnetic field is given in units of Kelvin,
guipH /! kg, with a g factor along the b axis g;,=2.18. The solid lines
are fits using the measurements along the ¢* and a axes and relation
(2.19) with the temperature-independent fitting parameters (2.20).
The inset compares the magnetostriction along the three directions
at 7=330 mK as a function of the magnetic field H.

To obtain the values of H,; and H,, we make use of the
temperature scaling of the pronounced peaks near the critical
fields in the derivative of the magnetostriction along the ¢*
axis A\ «(H) [see Fig. 5(a)]. As the temperature is lowered, the
peak positions are expected to approach the critical magnetic
fields. From the known universality class of the quantum
phase transitions, cf. the discussion in Sec. III, we expect the
magnetic-field value of the peak positions to scale linearly
with temperature close to criticality, and this is indeed con-
firmed by the experimental data as shown in Figs. 5(c) and
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5(d) (circles). From the extrapolation we obtain for the criti-

*

cal fields along the ¢* axis, H,;=6.8 T and Hﬁ;:13.9 T.
These values correspond to critical effective fields A,

*
_ c
_gc*/-LBHcl/29

holky=9.8 K, hlky=20.1 K. (2.23)

The measurements along a and b yield practically (within 0.1
K) the same value for %,,, but due to the small peaks around
H_, they do not allow for a reliable quantitative determina-
tion of the lower critical fields.

Another feature of the peaks in \«(H) is the steepening of
its left and right flank near H.; and H,,, respectively, upon
lowering T. As a consequence, two A.(H) measurements
closest in temperature show a crossing point on these flanks
whose position approaches the critical magnetic fields as the
mean of their temperatures vanishes. The extrapolation of the

crossing point position confirms the extracted value of H, as

shown in Fig. 5(c) (stars). The corresponding test for the Hf;
value is not possible due to the enhanced noise in the experi-
mental A\« data at higher magnetic fields.

From the critical fields of the c*-axis measurements we
obtain the coupling constants by using Egs. (2.21) and (2.22)
that are valid up to second order in the small parameter
Jy/J .. We get

Jlkg=129 K, J/kg=3.6 K. (2.24)

These values are used for the quantum Monte Carlo simula-
tions of the spin-ladder Hamiltonian (1.1) presented in the
following.

D. Quantitative comparison of magnetostriction with theory

With the values for the exchange couplings (2.24) the
spin-ladder Hamiltonian describing (CsH,N),CuBr, is de-

30 , . , . , , . . ,
- 305 mK 2O 40
—_
= FIG. 5. (Color online). The de-
‘?O rivatives of the magnetostriction,
= N\, of (CsH,N),CuBr; measured
< along c* [panel (a)] and along the
a and b axes [panel (b)] for differ-
ent temperatures. Panel (c) shows
. ) . ) . . ) ) . the linear-T scaling of the posi-
5 10 15 5 10 15 tions of the maxima of .« (dots)
Magnetic Field (T) Magnetic Field (T) and of the crossing points (stars)
o T T T T T T T near H,; and (d) the positions of
o 76 c* axis ~ a axis (dpy 144 the maxima of \,, near H,, for the
-E 79 L 1140 different axes, n=a,b,c.* (see the
Q c*axis ] text for further explanation).
S 68 13.6
g
= 64 - b axis 13.2
L | L |

0.0 0.5 1.0 0.0 0.5
Temperature (K)

Temperature (K)
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FIG. 6. (Color online) Correlators D  [see Eq. (2.16)] of the
spin-ladder Hamiltonian (1.1) with the parameters (2.24), computed
with QMC as a function of the effective magnetic field h=gugH (in
units of Kelvin) for different temperatures. The simulations are per-
formed always in the limit of a large number of sites N
>J, /(kgT). The inset shows the magnetization per spin of the lad-
der. Note the similarity between the rung correlator and the magne-
tization at low 7.

termined. We computed with the quantum Monte Carlo
(QMC) algorithm®® the spin correlation functions that enter
the dilatometric quantities. In Fig. 6 we show the numeri-
cally evaluated correlators Dy and D, of Eq. (2.16) as a
function of the effective magnetic field h=gugzH for a series
of different temperatures.

The rung correlator D in Fig. 6(b) increases monotoni-
cally with increasing /. This can be simply understood in the
strong-coupling limit J, >J,. The rung dimers then form an
almost perfect singlet at 2=0 such that a finite magnetic field
augments the triplet component to the ground state and thus
enhances the ferromagnetic correlations. At low tempera-
tures, the rung correlator D | effectively measures the den-
sity of triplets and attains a shape very similar to the magne-
tization curve of the ladder, shown in the inset of Fig. 6(b).
In zero field 2=0 the correlator D | vanishes by construction
while at 4 — o it saturates to a value close to one. The de-
viation from one is due to the in-chain quantum fluctuations
at h=0 that reduce the antiferromagnetic correlations along
the rung. We can obtain the saturation value from the follow-
ing expansion for the ground state energy per rung:3!

{3 3<J|>2 3(1)3 (L)“}
Eoy=—J|=+-\— ] +—=|— ] +0|— | |.
47 8\J, ) T16\J, J,

(2.25)

For the parameters (2.24) we get for the saturation value

OE
- —%~0.96,

1
D1 (0,h)] = YRRPY; (2.26)
L

in agreement with our numerical findings in Fig. 6(b).
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At low temperatures, the leg correlator D of Fig. 6(a) is
instead a nonmonotonic function of the magnetic field. The
existence of a minimum can be understood in terms of com-
peting resonant valence bonds.> Below the first critical field,
the ground state will consist of singlet bonds that for J
>J, are mainly formed along the rungs. For h=h,, the
ground state acquires a small triplet component, which is
reflected in the presence of rare rung-triplet states. In the
presence of these triplets, stronger singlets can be accommo-
dated along the chains enhancing effectively the antiferro-
magnetic correlations along the legs such that D, first de-
creases. However, increasing i even further the density of
triplets grows, their singlet screening clouds start to overlap,
and ferromagnetism finally prevails leading to a sign change
in the Dy function.

The saturation value at 7=0 can again be derived with the
help of the ground state energy (2.25),

1 JE,
DH(O’h)|h~>oo = - _0 = 075,

2.27
2 A, 2.27)

which coincides with the numerical value in Fig. 6(a).

In Fig. 2, we show the comparison between the experi-
mentally measured magnetostrictions AL, /L, and the quan-
tum Monte Carlo data. With the help of the correlators D |
and D; computed for 7=580 mK as a function of H and the
relation (2.15), we determine the mixing coefficients /| and
v, of Eq. (2.12), by a fit to the experimental data. The result-
ing values of 9/  are listed in Table I. One can check that the
coefficients in Table I are consistent with the relation (2.19)
using Eq. (2.20). Remarkably, these coefficients determined
at one temperature yield parameter-free predictions for all
the magnetostriction curves measured at other temperatures.
As shown in Fig. 2, the agreement between the theory and
experiment is perfect in a range of 7 of almost one decade.
The experimental curves at 7<<400 mK have not been cal-
culated because our QMC algorithm could not produce reli-
able data at such a low temperature.

The two correlators D, contribute roughly equally to the
magnetostriction along the a axis (leg direction) and the b
axis; the corresponding ratio of mixing coefficients is of or-
der one. Along the ¢* axis (rung direction), however, the
magnetostriction is dominated by D | except for a small 8%
admixture of the leg correlator. This agrees with the naive
expectation that squeezing the ladder along the rung mainly
affects J . As a consequence, the magnetostriction AL.«/L .«
inherits the characteristic shape of the correlator D that
resembles at low T the magnetization of the ladder as a func-
tion of H. This also explains the similarity between the
susceptibility!! of (CsH,N),CuBr, and the derivative X\,
which shows two characteristic peaks located close to the
critical fields H,.,,. In Ref. 14, we neglected the 8% admix-
ture of the leg correlator and interpreted the thermal expan-
sion data along the ¢* direction solely in terms of a pressure
dependence of J | . In this approximation, the thermal expan-
sion a.+ can be related to the H derivative of the entropy,
a«*dS/0H, which allows one to understand in simple terms
the various sign changes of thermal expansion.'®
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III. QUANTUM CRITICALITY

Near the two critical fields H,.; and H,,, the lowest-lying
triplet excitation or the spin-wave excitation become gapless,
respectively. Both transitions are described by a Hamiltonian
of free nonrelativistic fermions, c(x), representing the corre-
sponding excitations?*33

2
He= dch(x)<— ﬁ_&i + r) c(x), (3.1)
2m
where the mass m differs for the two transitions and the
control parameter r<H—H ., measures at 7=0 the distance
to the quantum critical point. The resulting critical contribu-
tion to the free energy density is

a \2m s T
___(kBT)
Vp #h kB

with the volume V}, per rung and the distance a between the
rungs. The scaling function is given by

fcr(r’T) = (32)

Flx)= f‘” d—yln[l +exp(-y?—x)]. (3.3)
0o

A. Critical thermal expansion near H,

In the following, we will focus on the critical behavior
near the upper critical field, H.,. The ground state of the
system for H>H, is particularly simple: all spins are fully
polarized by the magnetic field. This allows the exact deter-
mination of the parameters,?

h2
m=—; r=g,U,BH—(JL+2J”).

e (3.4)

We will consider the predictions for the uniaxial thermal ex-
pansion «, and compare it to experiment. The uniaxial length
change close to H,, can be obtained from Eq. (2.6) by ap-
proximating the magnetic free energy by its critical part,
F,,/V=f.. Moreover, the dominant contribution originates
from the sensitivity of f.. upon small variations of the control
parameter r so that we can neglect df../dm as it only gives
subleading corrections close to the quantum critical point. So
we obtain

6_01‘ 0.]“(.1’

L, =V it

29). (3.5)
From this expression, we derive the critical uniaxial thermal
expansion close to H,,, a;r=((95Lflr/ dT)/L,,

a, = (Y1 +29) \/ { —F'(x) - x}'"(x)} ,

x=rlkgT
(3.6)

where the primes indicate derivatives of the function F(x),
Eq. (3.3). Formula (3.6) is the limiting behavior of thermal
expansion near the quantum critical point at H,.,. It is ex-
pected to describe asymptotically the experimental data in
the range |r|/kg,T<<J;/kz=3.6 K. At criticality r=0 the
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FIG. 7. (Color online) Quantum critical thermal expansion near
H,., of (CsH;,N),CuBr, (symbols) along the a and b axes and a
comparison with the parameter-free theory (3.7) (lines). The critical
fields along the two directions as extracted in Fig. 5(d) are given by
H%=14.5 T and H>,=13.7 T.

thermal expansion diverges with temperature as 1/\T,4

kg
JT’

with the prefactor C=(\s’§—1)((1/2)/(2\e’277)z—0.120 66.
The next-to-leading-order correction to the result (3.7) origi-
nates from two-magnon scattering processes that lead to a
temperature-independent contribution to «, at H=H_,. The
strain dependence of the mass m in Eq. (3.4) and higher-
order derivatives of the magnon dispersion, on the other
hand, yield corrections to Eq. (3.7) that are suppressed by a
relative factor kzT/J). All these corrections to scaling are
neglected in the following.

The mixing coefficients ¥}  entering Eq. (3.6) have been
already determined in Sec. II and are listed in Table I. This
allows the parameter-free calculation of «, near the quantum
critical point at H.,. Figure 7 shows a comparison of the
uniaxial thermal expansion of (CsH;,N),CuBr, with formula
(3.7) (lines) on a double-logarithmic scale. Note that the
critical field H, differs for the three crystallographic axes, as
it is given by Hl,=h.,/(g,mp), where h.,/kz=20.1 K and
the g factors are listed in Egs. (2.14). Measurements of a,
were performed at the critical field H%,=14.5 T and are dis-
played in Fig. 7(a). The data nicely approaches the
asymptotic 1/+ T behavior at lowest temperatures. Panel (b)
displays a,(T) along the b axis for two fields closest to the
critical field. The saturation of the curve at H=13.7 T at
lowest temperatures suggests that the critical field is slightly
higher than the value H”,=13.7 T, which follows from Eq.
(2.23) with g factor g,=2.18. The deviation is, however,
within the error bar for the critical-field value of =0.05 T
associated with the analysis in Fig. 5(d). As expected, in both
panels the corrections to the scaling behavior of «, are still
sizable in the considered temperature range.

a, |- 1, =C(YL+29)) (3.7)

B. First-order transition driven by quantum criticality

The above considerations were based on the assumption
made in Sec. II that the elastic tensor (2.5) is independent of
magnetic field and temperature, and in particular, is such to
ensure the stability of the crystal. Here we show that this
assumption breaks down in the immediate vicinity of the
quantum critical points of the spin ladder. Close to the quan-
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tum phase transition, the spin ladder is described by the
Hamiltonian (3.1). Near criticality, the most relevant magne-
toelastic interaction derives from the strain dependence of
the control parameter r. As r is just a certain function of the
exchange couplings J,, we can repeat the reasoning of Sec.
II to derive an effective magnetoelastic interaction Hamil-
tonian,

Hin = J dxc’(x)c(x) g} u(x), (3.8)

where the coupling g?: dr/ du;j|,—o measures the strain de-
pendence of the control parameter. In second-order perturba-
tion theory in g, this interaction then leads to an effective

elastic tensor of the form

0 ij Kkl
cijkl = Cijkl - Xcrgifjgr . (39)
The strong temperature and magnetic-field dependence en-
ters via the susceptibility ., that is obtained from the critical

free energy (3.2),
P(L) .

Note that for the spin ladder, r<«H—-H_,, such that x, in-
deed coincides with the critical magnetic susceptibility of the
system. Moreover, x is positive so that the magnetoelastic
coupling correction in Eq. (3.9) reduces the elastic moduli.
In fact, the susceRtibility Xo diverges—Ilike the thermal
expansion—as 1/\T at criticality, r=0, resulting in a strong
softening of the crystal until it becomes unstable sufficiently
close but still away from the quantum critical point. The
lattice is then expected to undergo a first-order transition that
preempts quantum criticality.

The singular contribution to the elastic moduli in Eq. (3.8)
is attributed to the low dimensionality d=1 of the critical
system, i.e., the spin ladder. Generally, in the presence of a
strain coupling to the square of the order parameter, a diver-
gent contribution to elasticity is expected when

v(d+7z) <2,

Pfo _a V’%
&2}’ - VD ﬁ\"’m

Xer = (3.10)

(3.11)

where v is the correlation-length exponent and z is the dy-
namical exponent of the quantum critical point. If this crite-
rion is fulfilled the lattice becomes unstable before the quan-
tum phase transition is reached. The condition (3.11) is
related to the corresponding criterion for compressible clas-
sical critical systems.*37 There, it is known that a second-
order transition is preempted by an instability of the lattice if
the specific heat exponent is positive, «=2—wvd>0. From
this, the criterion for compressible quantum critical systems
(3.11) is obtained by replacing the spatial dimension d by the
effective dimension d+z.

Compressible critical systems have been studied exten-
sively in the past (see Ref. 38, and references therein).
Renormalization group (RG) treatments of such systems
yield runaway RG flow that is interpreted as an indicator for
a first-order transition. For isotropic media, where the elastic
tensor is characterized by just two moduli, compression and
shear, this conclusion is borne out by explicit calculations.?’
Interestingly, the arising transition turns out to be governed
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FIG. 8. Phase diagram numerically evaluated from the Landau
potential (3.12); temperature and control parameter are given in
units of the energy scale 80=%~ The first-order transition line
(solid) is embedded in a coexistence region which is bounded by
the dashed lines; the critical fluctuations at 7=0 are gapped (gap-
less) on the right- (left-)hand side of the transition line.

by long-range interactions and is therefore mean-field-like.
An analysis of compressible critical models for materials
with lower crystal symmetry is in general, however, rather
challenging.33-40

Here, we do not aim for a complete description of a pos-
sible first-order transition in the monoclinic crystal structure
of (CsH,N),CuBr, triggered by quantum critical fluctua-
tions. For an estimate of the location of first-order transitions
in the phase diagram, we consider instead the elastic proper-
ties on the level of a simplistic mean-field theory. Neglecting
phonon excitations and crystal anisotropies, an effective Lan-
dau potential for the macroscopic volume change u=AV/V
can be derived as follows:

Keff 2

W(u) = - + fo(r + gu,T), (3.12)
where K. is an effective bulk modulus and with f, given in
Eq. (3.2). The first argument of f,, is the control parameter
expanded in first order in u with the coupling constant g
= Jr/du|,—y. For conditions of fixed hydrostatic pressure,
minimization of the potential V yields the value of volume
change uy,,(rg,T) at given ry and temperature 7. At ro=T
=0, the critical part behaves as f,,~ |u|"“*?@(-u) and domi-
nates over the quadratic part of the potential if the criterion
(3.11) is fulfilled; for the spin ladder we have v(d+z)=3/2.
Due to this strong nonanalyticity of the Landau potential
(3.12) near the apparent quantum critical point, the value of
Ui jumps in its vicinity and thus avoids the strong critical
fluctuations by prohibiting the argument ry+gu.;, to ap-
proach zero.

The resulting line of first-order transitions and the coex-
istence region in the phase diagram are shown in Fig. 8. The
line of first-order transitions terminates in a second-order end
point, which we numerically evaluated to be located at

rleg=0.0205 = 0.0003, kgzT*/ey=0.0155 =+ 0.0005.
(3.13)

c e Ya¥2m .
The characteristic energy scale 80='{§m is suppressed by
the fourth power of the coupling g and the temperature 7™ is
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therefore expected to be small. We expect the second-order
transition at the end point (r*,T) to be particular: generi-
cally, it should be mean-field-like and as such it is not ac-
companied by critical fluctuations.?74?

In order to get the order of magnitude for the transition
temperature 7* we estimate the energy scale g, near the criti-
cal field H., of (CsH,N),CuBr,. Away from criticality, the
coupling g obeys g=§—ir=—Keff%rEKeffVDy; with the ex-
pres4si2013 for the mass m, Eq. (3.4), we then obtain g,
=%’H)Ke“. Using for the modulus the estimate K
~ 10 GPa (assuming a rather soft material) and a y value
y~107* of the order of those in Table I we get the rough
estimate £q/kz~ 107 K. The small numerical prefactor in
Eq. (3.13) suppresses the critical temperature further by two
orders of magnitude, 7~ 1077 K. This small value of T*
suggests that the phenomenon of fluctuation-induced first-
order transitions close to quantum criticality is irrelevant for
(CsH,N),CuBr, and cannot be observed. In particular, the
above discussion applies only to the temperature regime
where thermodynamics is dominated by the one-dimensional
physics of the spin ladders. At criticality, the inter-ladder
coupling J;3p, leads to a dimensional crossover at a tempera-
ture T5p from 1D to 3D quantum critical behavior,>*' which
weakens the nonanalyticity in the effective Landau potential
for the strain u, and Eq. (3.12) ceases to be applicable for
temperatures 7= T;p. Moreover, quantum criticality in the
3D regime is not strong enough to have the criterion (3.11)
fulfilled. In the framework of the 3D dilute interacting Bose
gas with anisotropic hopping,? the crossover temperature Tsp
can be estimated to be of the order of the interladder cou-
pling, T3p~J3p/kg. From the measured Néel temperature
near (H.,+H,)/2, Ty=80 mK,?? it follows that J5p is at
least three orders of magnitude larger than our estimate of
T*. This means that in (CsH,,N),CuBr, the divergent correc-
tion to the elastic tensor (3.8) is cut off by interladder inter-
actions before any modulus vanishes. Nevertheless, the
strong softening of the crystal close to the critical fields
should give pronounced signatures, e.g., in ultrasound mea-
surements.

The derivation of the quantum critical correction to the
elastic tensor (3.9) was based on very general arguments. In
particular, the prediction of the correction being proportional
to the magnetic susceptibility y carries over to any magnetic-
field-driven quantum critical point. Such a correspondence
between y and the elastic moduli was indeed found by
Schmidt et al** in the spin-dimer system NH,CuCl;. This
compound exhibits a series of quantum phase transitions as a
function of magnetic field that are ascribed to the successive
polarization of nearly decoupled spin-dimer subsystems.*344

IV. SUMMARY

The magnetostriction and thermal expansion of
(CsH,,N),CuBr, are described to a remarkable level of ac-
curacy by the two-leg spin-ladder Hamiltonian of Eq. (1.1),
with the two exchange couplings J, and J; given in Eq.
(2.24). The presence of only two characteristic energy scales
leads to an interdependence of the magnetostriction mea-
sured along different crystallographic directions. This pre-
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dicted dependence is confirmed by the experiments, as
shown in Fig. 4, and justifies'! the disregard of other possible
terms in the Hamiltonian, e.g., diagonal or ring exchange
couplings. As a consequence, the contribution of the spin
subsystem to the elastic properties are captured by two static
nearest-neighbor spin-spin correlation functions,?® which we
calculated numerically by QMC. Their contribution to mag-
netostriction along some arbitrary axis n is weighted by ef-
fective magnetoelastic coupling constants that we denoted by
Y1 [see Eq. (2.12)]. A detailed fit to the experimental mag-
netostriction data, see Fig. 2, allowed us to determine these
coupling coefficients for the three crystallographic directions
a, b, and ¢* of (CsH,N),CuBr,. Their values are given in
Table I.

In particular, we find that along the rungs of the ladder,
i.e., the ¢* axis, the magnetostriction is dominated by the
strain dependence of the rung coupling J , . This explains the
resemblance of the magnetostriction along the ¢* axis with
the magnetization of the ladder.!! This correspondence was
already exploited in Ref. 14 to explain the three consecutive
sign changes of the low-temperature thermal expansion
along ¢* as a function of the magnetic field, in terms of
entropy extrema.'8

In addition, we analyzed the thermal expansion near the
upper critical field H,,. Sufficiently close to the quantum
critical point at H,,, the spin-ladder Hamiltonian (1.1) be-
comes equivalent to a model of free nonrelativistic fermions
with known microscopic parameters (see Sec. III A). This
enables us to derive a parameter-free analytic formula for the
thermal expansion along the three crystallographic direc-
tions. At criticality H=H.,, we observe a 1/T divergence of
thermal expansion down to our lowest temperatures. As we
discussed in detail in Ref. 14, this strong singularity is rooted
in the low dimensionality of the critical subsystem.

Finally, we predict a correction to the elastic moduli of
(CsH|,N),CuBr,, whose magnetic field and temperature de-
pendence is governed by static four-spin correlation func-
tions of the spin ladder. Typically, this correction is small,
and it is indeed negligible for our analysis of magnetostric-
tion in the measured temperature range. However, close to
quantum criticality, the magnetic correction to the elastic
moduli becomes proportional to the magnetic susceptibility
X. As the susceptibility diverges at criticality as y~ 1/\T,
this should lead to a strong softening of the crystal rendering
the elastic system, in principle, unstable at sufficiently low
temperatures (see Sec. III B). We argued that this phenom-
enon is in fact generic for quantum critical systems if the
strain couples to the square of the order parameter and, in
addition, the criterion v(d+z) <2 is fulfilled. Our estimates
show, however, that in (CsH;,N),CuBr, this fluctuation-
induced first-order transition is not realized as the small in-
terladder coupling will cut off the strong singularities before
an instability can develop.

Whereas the strong singularity of y is particular to the
quantum critical point of the spin ladder, a correction to the
elastic tensor proportional to the magnetic susceptibility is a
generic feature of magnetic-field-driven quantum criticality.
Such corrections have been observed in ultrasound experi-
ments on NH,CuCl; by Schmidt et al.*?

As an outlook, we remark that the precise knowledge of
the magnetoelastic couplings of (CsH,,N),CuBr, as given in
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Table I will be especially useful in the quest for a theoretical
explanation of its thermal transport properties.*?
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