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Based on the Kotliar–Ruckenstein slave-boson scheme, we develop a configuration-interaction �CI� ap-
proach that is suitable to evaluate energy corrections for symmetry-broken saddle-point solutions. The theory
is applied to spin-polaron states in the Hubbard model and compared with analogous results obtained within
the Hartree–Fock approximation. In addition, we show that within the infinite D prescription of the Gutzwiller
method a CI approach does not correct the variational result since in the thermodynamic limit matrix elements
between different inhomogeneous states vanish due to an “orthogonality catastrophe.”
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I. INTRODUCTION

The Gutzwiller Ansatz is a variational wave function for
correlated electronic models with purely local interaction.1,2

The basic idea to treat these Hubbard-type Hamiltonians is to
partially project out configurations with doubly-occupied
sites from the Fermi sea in order to optimize the contribu-
tions from kinetic and potential energy. As a consequence, in
contrast to the conventional Hartree–Fock �HF� theory, the
Gutzwiller wave function captures correlation effects like the
band narrowing already on the variational level. However,
the exact evaluation of the ground-state energy within the
Gutzwiller wave function is fairly difficult and up to now has
only been achieved in one and infinite dimensions.3 In the
latter case, the solution is equivalent to the so-called
Gutzwiller approximation �GA�, which has been applied to
describe a variety of finite-dimensional systems ranging from
the properties of normal 3He �cf. Ref. 4� to the stripe phase
of high-Tc cuprates.5–7

The GA in its original formulation was restricted to ho-
mogeneous paramagnetic systems and only later on general-
ized to arbitrary Slater determinants by Gebhard8 and more
recently by Attaccalite and Fabrizio.9 The same energy func-
tional was obtained from the Kotliar–Ruckenstein �KR�
slave-boson formulation of the Hubbard model when the
bosons are replaced by their mean values.10 Unconstrained
minimization of the KR �or Gebhards� energy functional in
general yields inhomogeneous solutions that break transla-
tional and spin-rotational invariance.11,12 This approach has
been used e.g., for the investigation of electronic inhomoge-
neities, such as stripes and checkerboards,7,13–15 in the con-
text of high-Tc superconductors, and for interface controlled
electronic charge inhomogenities in correlated hetero-
structures.16,17

For local observables, the good agreement between inho-
mogeneous slave-boson and quantum Monte Carlo methods
has been demonstrated in Ref. 18.

Incorporation of fluctuations in the frame of the time-
dependent Gutzwiller approximation tends to restore the
original symmetry of the system.19 An alternative would be
the construction of a wave function, which is a linear super-
position of equivalent symmetry-broken states. In case of
stripe states,7,13,14 one could e.g., envisage a superposition of
solutions that are translated perpendicular to the stripe direc-

tion and also the corresponding solutions which are rotated
by 90°. In case of the unrestricted Hartree–Fock approxima-
tion, such a configuration-interaction �CI� method has been
proposed in Ref. 20 and applied to the case of stripe textures
in Ref. 21.

The present paper investigates the possibility whether an
improvement of the inhomogeneous Gutzwiller approxima-
tion is possible within an analogous framework. In Sec. II,
we evaluate the matrix elements of the Hubbard Hamiltonian
between different inhomogeneous solutions obtained from
the saddle-point approximation of the KR slave-boson
scheme.10 Based on these results, we construct a CI method
which in Sec. III is applied to spin-polaron states. We com-
pare ground-state energies with exact diagonalization results
and for larger lattices evaluate the dispersion relation of the
spin-polaron states which can be compared with analogous
solutions obtained in the tJ-model. In this context we also
compare our results with angle-resolved photoemission
�ARPES� experiments on Sr2CuO2Cl2.

In Appendix A it is shown that the infinite D prescription
of the Gutzwiller approximation8 cannot be used for an
analogous construction of a CI approach. The reason is that
in the thermodynamic limit this scheme leads to an “orthogo-
nality catastrophe”22 so that energy corrections and the dis-
persion of quasiparticles vanish.

II. MODEL AND FORMALISM

Our investigations are based on the one-band Hubbard
model

H = �
ij,�

tijci,�
† cj,� + U�

i

ni,↑ni,↓ �1�

where ci,�
�†� destroys �creates� an electron with spin � at site i,

and ni,�=ci,�
† ci,�. U is the on-site Hubbard repulsion.

Following KR,10 we enlarge the original Hilbert space by
introducing four subsidiary boson fields ei

�†�, si,↑
�†�, si,↓

�†�, and
di

�†� for each site i. These operators stand for the annihilation
�creation� of empty, singly occupied states with spin up or
down, and doubly-occupied sites, respectively. Since there
are only four possible states per site, these boson projection
operators must satisfy the completeness condition
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ei
†ei + �

�

si,�
† si,� + di

†di = 1. �2�

Furthermore

ni,� = si,�
† si,� + di

†di. �3�

Then, in the physical subspace defined by Eqs. �2� and �3�,
the Hamiltonian �1� takes the form

H̃ = �
ij,�

tijzi,�
† f i,�

† f j,�zj,� + U�
i

di
†di �4�

with

zi,� = ei
†si,� + si,−�

† di �5�

and has the same matrix elements than those calculated for
Eq. �1� in the original Hilbert space. The operators f i,�

�†� are
the electron annihilation �creation� operators in the new Hil-
bert space.

In the saddle-point approximation, we can represent the
wave function for a specific inhomogeneous solution � as

���� = ��0
�� � �B0

�� �6�

where ��0
�� is a Slater determinant and the bosonic part �B0

��
is a coherent state

�B0
�� = e�i�d̄i

�di
†+��s̄i,�

� si,�
† +ēi

�ei
†−1/2��0� , �7�

Since a coherent state contains an arbitrary number of bosons
the constraints Eq. �2� and �3� are only fulfilled on average
for a given inhomogeneous solution � provided that

1 = �ēi
��2 + �

�

�s̄i,�
� �2 + �d̄i

��2,

�ni,��� � ��0
��ni,���0

�� = �s̄i,�
� �2 + �d̄i

��2.

Note that here and in the following, expectation values of
fermion operators are denoted with respect to the Slater de-
terminant of f-electron operators. For completeness it should
be mentioned that the assumption of “condensed” bosons has
been criticized since phase fluctuations may prevent the bo-
son fields to acquire a finite value. On the other hand, it has
been shown recently23 that a radial decomposition of the
bosonic field may be a way out of this problem.

Another problem with the Ansatz Eq. �6� is that one does
not recover the correct noninteracting limit U→0 for which
zi,�→1. Therefore, KR10 introduced a unitary transformation
in order to represent the z operators in Eq. �5� as

zi,� =
1

�ei
†ei + si,−�

† si,−�

�ei
†si,� + si,−�

† di�
1

�di
†di + si,�

† si,�

�8�

so that

����zi,�
† f i,�

† f j,�zj,����� = �qi
���qj

���0
��f i,�

† f j,���0
�� . �9�

The expectation values of the z-operators Eq. �8�

qi,�
� = �B0

��zi,��B0
�� �10�

are equivalent to the renormalization factors derived within
the infinite D prescription of the Gutzwiller approximation8

�cf. Eq. �A10� in Appendix A�.
In previous works,11,12 we have proposed a method for

minimizing the KR energy functional E�= ����H���� on fi-
nite clusters without imposing constraints with respect to
translational and spin-rotational invariance. In the remainder
of this section, we evaluate the matrix elements of the Hub-
bard model between two different inhomogeneous solutions
����, which then will be used in order to partially restore
these symmetries.

We start with the overlap between wave functions belong-
ing to different inhomogeneous solutions

S�� = ������� = ��0
���0

���B0
��B0

�� �11�

where the overlap between coherent states reads as

�B0
��B0

�� = e�i�d̄i
�d̄i

�+��s̄i,�
� s̄i,�

� +ēi
�ēi

�−1�. �12�

The fermionic overlap is given by

��0
���0

�� = ��0
���0

��↑��0
���0

��↓ �13�

and the evaluation of the spin-dependent factors is outlined
in Appendix B.

We now proceed by calculating the matrix elements of the
Hamiltonian �4� in the basis of the inhomogeneous wave
functions ����. From the above definitions, one obtains for
the Hubbard interaction

����U�
i

di
†di���� = U��0

���0
���B0

��B0
���

i

d̄i
�d̄i

�. �14�

The kinetic term is evaluated in a similar way as

����T̂���� = �
ij,�

tijzi,�
��zj,�

����0
��f i,�

† f j,���0
���B0

��B0
�� �15�

with the fermionic part

��0
��f i,�

† f j,���0
�� = 	f i,�

† f j,�
����0
���0

��−� �16�

and the brackets are defined in Eq. �B7� of Appendix B.
The matrix elements of the “bare” bosonic “z” operators

from Eq. �5� read as

zi,�
�� � �B0

��zi,�
† �B0

�� = d̄i
�s̄i,−�

� + s̄i,�
� ēi

�. �17�

Now we have to deal again with the problem that the z
factors as defined in Eq. �17� do not yield the uncorrelated
limit, i.e., zi,�

��→1 for U→0. It is straightforward to proof
that the representation of Eq. �8� does not work in this case
since the above limit is only obeyed for homogeneous para-
magnetic solutions. However, due to a nonsymmetric popu-
lation of momentum states on finite clusters or in case of
inclusion of an electron-phonon coupling, the charge and
spin structure in general is inhomogeneous even in the limit
U→0.

In order to overcome these difficulties, it is helpful to
adopt the interpretation of the z factors in terms of “probabil-
ity ratios,”4,24 which leads us to the following representation:
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zi,�
�� = �ni,−���

d̄i
�s̄i,−�

�

��ni,↑���ni,↓��
��ni,−����1 − �ni,����

+ �1 − �ni,−����

�
s̄i,�

� ēi
�

��ni,����1 − �ni,−������1 − �ni,↑����1 − �ni,↓���
.

�18�

Then the state ��0
��f i,�

† zi,�
�� that enters Eq. �15� can be con-

sidered as the sum of two processes: The contribution
�f i�

† �1− �ni,−���� originates from the annihilation of a singly
occupied �and thus creation of an empty� site in the Slater
determinant ��0

�� and is weighted by the ratios between pro-
jected and unprojected probabilities of this process. The con-
tribution �f i�

† �ni,−��� weights in a similar way the annihila-
tion of an electron on a doubly-occupied site. The “z factors”
Eq. �18� thus show the correct behavior zi,�

��→1 for U→0
and the diagonal elements reduce to the KR renormalization
factors Eq. �10�, i.e., zi,�

��=qi,�
� . An open problem remains in

deriving Eq. �18� from a unitary transformation of the boson
operators, similar to the transformation from Eq. �5� to Eq.
�8�. A straightforward construction of zi,�

† which yields zi,�
�� in

the saddle-point approximation suffers from the fact that it is
not gauge invariant.

In Appendix A it is shown that the renormalization factors
Eq. �18� can be also motivated from the generalized
Gutzwiller approach in the limit D→�.

III. RESULTS

In Sec. II, we have calculated the matrix elements be-
tween different inhomogeneous states ���� of the Hubbard
model. These results are now used for evaluating ground-
state energy and wave-function corrections similar to the
configuration-interaction approach based on unrestricted HF
wave-functions.21

We apply the method to the investigation of spin-polaron
states on a square lattice, i.e., we have one hole with respect
to half filling. Minimization of the KR �or GA� energy func-
tional leads to the localization of this hole at a given site R�

�cf. Ref. 11 for a method of performing the unrestricted
variation� and we denote the corresponding projected or
fermion-boson wave-function with ����.

Now we generate all translations of this solution within
the same sublattice since solutions belonging to different
sublattices are orthogonal. The superposition

��� = �
�

v����� �19�

thus only includes states ���� with the same energy E=E�.
In principle, one could systematically improve the approach
by including also excited states of the underlying fermionic
Slater determinant.

If we apply the slave-boson transformed Hamiltonian �4�
to Eq. �19�, one obtains the following eigenvalue problem:

����H̃����v� = 	S��v� �20�

where the matrix S�� is defined in Eq. �11�. Note that the
Hamiltonian entering Eq. �20� does not contain the con-
straints Eqs. �2� and �3� but only the slave-boson transformed
kinetic and potential energy. The constraints establish a rela-
tion between the boson and fermion parts of each individual
wave function ���� but not between different wave functions
���� and ���� so that the corresponding matrix elements
have no physical significance.

A. One hole states in the 4Ã4 lattice

We start by investigating the quality of the present ap-
proach with regard to exact results and the HF configuration-
interaction method �CIHF�.

Table I reports the energy correction obtained with our
slave-boson configuration-interaction approach �CISB� as
compared to the unrestricted GA. The values for the exact
result, the CIHF and the unrestricted HF �from Ref. 20� are
also shown for comparison.

It turns out that the CISB leads to an energy correction to
the GA result which is of the same order of magnitude than
the CIHF correction to the HF energy. However, this im-
provement is on top of the GA which itself provides a much
better estimate for the ground-state energy than the HF ap-
proximation. For example, one finds that for U / t=8 the
CISB differs from the exact result by �5% whereas it is
�13% in case of the CIHF.

B. One hole states in the 16Ã16 lattice

We continue by evaluating the dispersion of the spin po-
laron on a 16�16 lattice. This problem has been extensively
investigated within the tJ model,25–33 where for small J / t one
finds a bandwidth �J which turns over into a 2t2 /J4 behav-
ior for large J / t. Further on, the dispersion is characterized

TABLE I. Energy per site for 15 particles on a 4�4 lattice. The values of the exact result, HF and CIHF
method have been taken from Ref. 20.

U/t exact HF GA CIHF CISB

4 −0.91658 −0.83139 −0.88815 −0.83501 −0.89091

6 −0.74794 −0.64222 −0.70020 −0.66214 −0.70497

8 −0.634203 −0.52884 −0.57518 −0.54767 −0.60295

16 −0.42546 −0.33589 −0.37130 −0.34604 −0.38091

32 −0.308473 −0.23160 −0.27209 −0.23627 −0.27685

50 −0.266039 −0.19335 −0.23954 −0.19617 −0.24362
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by a maximum at �0,0� �and the analogous �
 ,
� point� and
displays a “hole pocket” at �
 /2,
 /2� which is slightly
lower in energy than the �
 ,0� point.

Figure 1 displays the polaron dispersion obtained within
the SBCI method for U / t=10,20,40. For comparison, we
also show the U / t=10 result obtained from the CIHF
method. Since the wave function incorporates only polaron
states localized on the same sublattice the dominant contri-
bution to the dispersion is given by Ek�4t� cos�kx�cos�ky�
+2t	cos�2kx�+cos�2ky�
. Therefore at the point k= �
 ,
 /2�
the energy difference between CIHF and CISB corresponds
to the difference between GA and HF energies for the spin
polaron. Since within the CISB approach, the matrix ele-
ments which enter Eq. �20� are additionally scaled by the
bosonic exponential overlap Eq. �12� the corresponding
long-range contributions to the dispersion are in generally
smaller than for the CIHF method. On the other hand, this
scaling affects also the matrix Sm�� in Eq. �20� so that due to
partial cancellation the overall effect on the bandwidth is less
pronounced as one might expect �see below�.

From analogous investigations in the tJ-model,25–33 it is
known that the dispersion of a single hole has a saddle-point
at k= �
 ,0� and k= �
 /2,
 /2�, where the latter corresponds
to the minimum of the band. From Fig. 1, it turns out that the
CIHF spin-polaron dispersion also displays the minimum at
k= ��
 /2, �
 /2� whereas within the CISB method the
state at k= ��
 ,0� , �0, �
� is slightly lower in energy.
However, a direct comparison of results between tJ and Hub-
bard model is hampered by the fact that the strong-coupling

expansion of the Hubbard model generates a three-site term
of order J in addition to the “conventional” tJ model. Since
we find that the energy difference between k
= ��
 /2, �
 /2� and k= ��
 ,0� , �0, �
� states is always
smaller than J=4t2 /U there appears no inconsistency with
results from the tJ model. In fact, calculations of a single
hole in the antiferromagnet based on an expanded tJ model
�including the three-site term� provide evidence that the
minimum of the band may be at k= ��
 ,0� , �0, �
�.34 This
finding is also substantiated by exact diagonalization results
of the same model on small clusters.35 Unfortunately, for the
full Hubbard model, there are no conclusive answers from
quantum Monte Carlo or exact methods yet available.36,37

Table II reports the bandwidth, and the energy at k
= ��
 /2, �
 /2� of the spin-polaron dispersion obtained
within the SCBA,25 CIHF, and CISB method, respectively.
Note that for the latter approach the bandwidth is W=E�0,0�
−E�
,0� whereas for the SCBA and CIHF methods it is given
by W=E�0,0�−E�
/2,0�. Despite this difference we find that the
CISB bandwidth scales as W�2.2J up to J�0.3 in agree-
ment with analogous considerations in the tJ model. It also
turns out that �at least for J�0.1� the CISB bandwidth is
smaller than that of the CIHF approach. Formally, this is
again due to the additional renormalization of the matrix
elements by the bosonic exponential overlap Eq. �12�. On the
other hand, it is quite natural that the CISB approach leads to
“heavier” spin polarons than the CIHF method due to the
incorporation of correlation effects already on the Gutzwiller
level. Similar to the case of the 4�4 lattice the CISB leads
to a significant energy correction with regard to the CIHF as
exemplified by the value of E�
/2,
/2� in Table II.

C. Comparison with experiment

Undoped cuprate superconductors are antiferromagnetic
Mott insulators. Within a angle-resolved photoemission
�ARPES� experiment, one can in principle observe the dis-
persion of the created hole in the antiferromagnetic back-
ground of these compounds and compare with that of the
spin-polaron quasiparticle concept from the previous section.
On the basis of the single-band description, it is now well
established from LDA38 and the analysis of ARPES data39

that a next-nearest-neighbor hopping t� has to be considered
in the model. In particular, it has been found39 that the qua-
siparticle dispersion from �
 ,0� to �
 /2,
 /2�, which is de-
termined by t�, is characteristic for the different cuprate
families. Our analysis below is therefore based on the ex-

(0,0) (π,0) (π,π) (π/2,π/2) (0,0)-3

-2

-1

0
E

po
la

ro
n

-E
A

F
CIHF (U/t=10)
CISB (U/t=10)
CISB (U/t=20)
CISB (U/t=40)

FIG. 1. �Color online� Dispersion of the spin polaron in the
Hubbard model evaluated within the CISB �U / t=10,20,40� and
CIHF �U / t=10� method. Energies are with respect to the half-filled
antiferromagnet.

TABLE II. Binding energy Epolaron−EAF taken at momentum q= �
 /2,
 /2� and the bandwidth W for
various values of J=4t2 /U. Shown are results for the self-consistent Born approximation �SCBA� of the
tJ-model �from Ref. 25� and the CIHF and CISB method for the Hubbard model, respectively.

SCBA CIHF CISB

J E�
/2,
/2� W E�
/2,
/2� W E�
/2,
/2� W

0.1 −2.785 0.239 −1.84 0.231 −2.4786 0.263

0.2 −2.540 0.430 −1.703 0.513 −2.204 0.421

0.3 −2.360 0.600 −1.588 0.817 −2.036 0.68

0.4 −2.209 0.741 −1.487 1.118 −1.95 1.031

G. SEIBOLD PHYSICAL REVIEW B 77, 235109 �2008�

235109-4



tended Hubbard model, which corresponds to Eq. �1� when
the hopping tij is restricted to nearest �t and next-nearest
�t� neighbors. In Fig. 2, we fit the resulting spin-polaron
dispersion to ARPES data on undoped Sr2CuO2Cl2 obtained
by Wells et al.40 Since the experiment measures the single-
particle Green’s function for electrons the dispersion in Fig.
2 is “reversed” with respect to those shown in Fig. 1 which
were obtained for holes.

We can use the experimental energy differences E1
=E�
/2,
/2�−E�0,0� and E2=E�
/2,
/2�−E�
,0� in order to fit
two of the three parameters �t, t�, U�. Therefore, we addition-
ally use our results from Ref. 41 where we have fitted the
magnon dispersion of undoped La2CuO4 within the time-
dependent Gutzwiller approximation. In this case, the value
of the Hubbard repulsion U / t�8 could be accurately deter-
mined from the dispersion of spin excitations along the mag-
netic Brillouin zone whereas this dispersion is rather unsen-
sitive to t�. Given that the Cu onsite repulsion should not
depend very much on the material we also use the ratio U / t
in our present fit of the spin-polaron dispersion for
Sr2CuO2Cl2. As a result we find that the ratio t� / t=−0.2
yields an overall good agreement with the data and the
nearest-neighbor hopping t=300 meV is set by the absolute
energy scale. The ARPES data in addition allow for an ac-
curate determination of t� so that a combination of both ap-
proaches in principle can be used to obtain parameter sets for
the Hubbard model in order to describe different materials.

IV. CONCLUSIONS

We have developed a configuration-interaction approach
based on the KR slave-boson mean-field formulation of the
Hubbard model.10 In principle, this method provides a con-
trolled scheme for including fluctuations beyond the mean-
field solution. Formally this has been achieved by several
authors within the functional-integral formalism.42–50 Here
we have discussed an alternative extension which is based on
the observation that unrestricted variation of the KR energy

functional in general leads to a class of degenerate solutions
which are connected by symmetry transformations. The
CISB method discussed in this paper allows for a tunneling
between these degenerate solutions and thus for a construc-
tion of eigenstates with well defined momentum.

Although the KR mean-field energy functional is identical
to the that obtained with the generalized Gutzwiller wave-
function in D→� 8 the considerations in Appendix A show
that the latter approach leads to an “orthogonality catastro-
phe” for matrix elements between different inhomogeneous
states. Therefore, one would have to invoke 1 /D corrections
in order to construct a CI approach also within the
Gutzwiller method. It should be noted that a similar orthogo-
nality catastrophe occurs in the large N limit of the KR
representation51,52 where the individual “mean-field” solu-
tions become exact. It is therefore a consistent result that the
configuration interaction does not induce corrections to the
saddle-point solutions in this limit, i.e., that the overlap be-
tween these solutions vanishes for large N.

Application of the CISB to the spin-polaron problem for
the Hubbard model leads to a significant energy gain with
respect to the CIHF method. Of course this result has to be
treated with the usual reserve that the present approach is not
variational and therefore does not necessarily yield an upper
bound for the total energy. This is similar to the RPA or to
the evaluation of fluctuation corrections to the KR energy
functional48 which can easily overshoot energy corrections.
In addition, we have obtained a minimum of the spin-polaron
dispersion at k= ��
 ,0� , �0, �
� in contrast to analogous
calculations in the tJ-model but also in contrast to the CIHF
method. However, calculations based on the full strong-
coupling expansion of the Hubbard model,34,35 which take
into account the three-site terms of order t2 /U, neglected in
the conventional tJ model, indicate the occurrence of disper-
sion minima around the corners of the magnetic Brillouin
zone. To our knowledge, there are no recent exact diagonal-
ization studies of one hole in a �18��18 or �20��20 Hub-
bard cluster which could substantiate the findings of Ref. 35.
However, since on the mean-field level, the KR slave-boson
formulation of the Hubbard model takes into account corre-
lations beyond HF we expect that the CISB is more accurate
concerning fine details of the spin-polaron dispersion as
compared to the CIHF method. Further investigations are
needed in order to confirm the finding of one hole dispersion
minima at k= ��
 ,0� , �0, �
� in the Hubbard model.

Finally, we have included a next-nearest-neighbor hop-
ping t� / t�0 in the bare Hamiltonian in order to fit the low
energy dispersion of Sr2CuO2Cl2 from ARPES
experiments.40 The parameter t� is essential in order to obtain
the measured dispersion along the border of the magnetic
Brillouin zone. More recent ARPES experiments53 have also
revealed a strong dispersion along the �0,0�→ �
 ,0� direc-
tion. Within a one-band description modeling of these data
requires inclusion of a significant third nearest-neighbor hop-
ping. However, since our CISB approach can be imple-
mented also on the more realistic three-band model, it would
be interesting to study the spin-polaron dispersion within this
Hamiltonian. The comparison with ARPES experiments
would then allow to elucidate the parameters of this Hamil-
tonian for different cuprate materials. Moreover, since the

(0,0) (π,π) (π,0) (0,0)

-1.2
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-0.8
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(π,0) (π/2,π/2) (0,π)

Wells et al., PRL74, 964 (1995)
CISB (U/t=8, t’/t=-0.2, t=300meV)

FIG. 2. �Color online� Dispersion of the spin polaron in the
extended Hubbard model evaluated within the CISB �U / t=8, t� / t
=−0.2, t=300 meV�. The right panel shows the direction along the
boundary of the magnetic Brillouin zone. Experimental data are
from Ref. 40.
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superposition in Eq. �19� can be extended to include also
excited states, it should be possible to calculate also the in-
coherent part of the ARPES spectrum and thus to provide a
more detailed description of the data. Work in this direction
is in progress.
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APPENDIX A: GENERALIZED GUTZWILLER
APPROXIMATION

Following Ref. 8, the Ansatz for a given inhomogeneous
state � can be written as

���� = gK̂�����0
�� = 

i

B̂i
���0

�� , �A1�

B̂i
� = gK̂i��� = gD̂i−���i,�

� n̂i,�+�i
�

�A2�

where the uncorrelated state ��0
�� is a Slater determinant with

an inhomogeneous density matrix � and D̂i=ni,↑ni,↓ is the
double occupancy operator. For later purposes we also define
the operators for single occupied �with spin �� and empty
sites:

Ŝi,� = n̂i,��1 − n̂i,−�� , �A3�

Êi = �1 − n̂i,���1 − n̂i,−�� . �A4�

The parameters �i,�
� and �i

� have to be determined variation-
ally. Gebhard8 has shown that the requirement

g2K̂��� � �
i

ln	1 + xi
��D̂i − Di

HF,��
 �A5�

leads to the same energy functional than the Kotliar–
Ruckenstein slave-boson approach in the mean-field approxi-
mation when the expectation values are formally evaluated
in the limit of infinite dimensions. Here, Di

HF,� denotes the
Hartree–Fock decoupled double occupancy operator in the
basis of the Slater determinant ��0

��. Equation �A5� yields a
relation between the variational parameters g, �i,�

� , �i
� and

the variables xi
� which turn out to be the relevant parameters

when one evaluates expectation values in infinite dimen-
sions. The essential step in this direction is to express the

operator B̂i
� defined in Eq. �A2� in terms of the xi

� as

B̂i
� = D̂i

�1 + xi
��Ei�� + �

�

Ŝi,�
�1 − xi

��Si,−��� + Êi
�1 + xi

��Di��

�A6�

and the expectation values are defined with regard to ��0
��.

An important result of the d→� description is the equiva-
lence of local densities in the projected and unprojected
states

����ci,�
† ci,����� = ��0

��ci,�
† ci,���0

�� �A7�

which will be used in the following.
First the double occupancy can be evaluated as

����D̂i���� � Di
� = �Di���1 + xi

��Ei��� �A8�

which allows one to perform the variations with respect to
the double occupancy Di

� instead of xi
� �or g, �i,�

� , and �i
��.

Analogously the hopping term of Eq. �1� is given by

����ci,�
† cj,����� = qi,�

� qj,�
� ��0

��ci,�
† cj,���0

�� �A9�

with the hopping renormalization factors

qi,�
� =

1 − �ni,−���

��Ei���Si,���
�Si,�

� Ei
� +

�ni,−���

��Di���Si,−���
�Di

�Si,−�
� .

�A10�

Similar than in Eq. �A8� expectation values of a projection

operator P̂i= D̂i, Ŝi,�, Êi with regard to ���� have been de-
noted with calligraphic letters.

We now proceed by evaluating the matrix S which con-
tains the overlap elements of wave-functions belonging to
different inhomogeneous states

S�� = ������� = 
i

��0
��B̂i

�B̂i
���0

��

= 
i
��

�

� Si,�
� Si,�

�

�Si,����Si,��� ��0
��Ŝi,���0

��

+� Ei
�Ei

�

�Ei���Ei�� ��0
��Êi��0

��

+� Di
�Di

�

�Di���Di�� ��0
��D̂i��0

��� �A11�

where we have used Eqs. �A6�–�A8� and the fact that only
local contractions survive in infinite dimensions. Equation

�A11� also requires the evaluation of matrix elements of P̂i

between different Slater determinants ��0
��P̂i��0

��. For ex-
ample, one finds for the double occupancy operator

��0
��D̂i��0

�� = 	n̂i,↑
��	n̂i,↓
�� �A12�

and the brackets are defined in Eq. �B7�.
Schwartz’s inequality together with the relation between

harmonic and geometric mean

��0
��P̂i��0

�� � ��Pi���Pi��, �A13�

�Pi
�Pi

� � �Pi
� + Pi

��/2, �A14�

yields

��0
��B̂i

�B̂i
���0

�� � 1 �A15�

where the equals sign holds for �=�. Therefore in the ther-
modynamic limit, the overlap Eq. �A11� is a product of an
infinite number of factors �1 which yields an orthogonality
catastrophe S���=0. The difference to the analogous slave-
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boson expression Eq. �12�, where this orthogonality catastro-
phe does not occur in general, can be understood from the
spin-polaron example investigated in Sec. III. In this case the
doped charge is confined to approximately five sites �central
site and four adjacent sites� and spin and charge densities on
sites further apart from the polaron core coincide practically
with those of the undoped AF solution. The exponent of Eq.
�12� then equals “zero” when site “i” belongs to an AF re-
gion of both solutions ����, ����. In case site i belongs to a
polaron site of ���� or ���� �there are at most ten such sites�
the exponent is smaller than zero. The value of Eq. �12� is
therefore mainly determined from the contributions where i
belongs to a polaron site and hence the overlap Eq. �12� can
be small but remains finite. In contrast, the analogous expres-
sion for the GA in Eq. �A11� depend on the matrix elements
Eqs. �B4� and �B5� which decay with the distance between
the polaron cores of solutions ����, ����. For this reason the
‘=’ sign in Eqs. �A13� and �A14� only holds for �=�. Oth-
erwise for ��� all factors in Eq. �12� are smaller “one”
whereas for the bosonic overlap this is only the case when
the site i belongs to the polaron core of ���� and �or� ����..

Analogously to S, one can evaluate the matrix elements of
the Hubbard Hamiltonian Eq. �1�. For the double occupancy
operator one obtains

����D̂i���� =
��0

��B̂i
�D̂iB̂i

���0
��

��0
��B̂i

�B̂i
���0

��
S��

=� Di
�Di

�

�Di���Di��

��0
��D̂i��0

��

��0
��B̂i

�B̂i
���0

��
S��

�A16�

and the matrix elements of the hopping term are given by

����ci,�
† cj,����� =

��0
��B̂i

�ci,�
† B̂i

�B̂j
�cj,�B̂j

���0
��

��0
��B̂i

�B̂i
���0

����0
��B̂j

�B̂j
���0

��
S��.

�A17�

Using Eqs. �A6�–�A8�, the projections of the creation and
annihilation operators can be expressed as

B̂i
�ci,�

† B̂i
� = ��1 − ni,−��� Si�

� Ei
�

�Si����Ei��

+ ni,−�� Di
�Si,−�

�

�Di���Si,−����ci,�
† , �A18�

B̂j
�cj,�B̂j

� = ��1 − nj,−��� E j
�S j�

�

�Ej���Sj���

+ nj,−�� S j,−�
� D j

�

�Sj,−����Dj���cj,�. �A19�

In principle, it is possible to evaluate the matrix elements
from Eqs. �A17� in terms of the Slater determinants ��0

��,

however, the calculation of contributions which involve den-
sity correlations of the form ��0

��ni,−�nj,−���0
�� are rather

time consuming. We therefore simplify the expression of the
projections Eqs. �A18� and �A19� by the following argument.
With regard to the matrix element Eq. �A17� the projection
Eq. �A18� describes the annihilation of a particle with spin �
in the Slater determinant ��0

��. The two contributions mea-
sure the probabilty whether site i in the state � is singly or
doubly occupied. Accordingly, we replace the corresponding
projections by their mean values, e.g., 1−ni,−�→1− �ni,−���.
In the same way Eq. �A19� describes the annihilation of a
particle with spin � in the Slater determinant ��0

��� and we
approximate in this case 1−ni,−�→1− �ni,−���. Within this
approximation one obtains for the projected creation and an-
nihilation operators

B̂i
�ci,�

† B̂i
� = qi,�

��ci,�
† , �A20�

B̂j
�cj,�B̂j

� = qj,�
��cj,� �A21�

where the qi,�
�� are equivalent to the renormalization factors

	Eq. �18�
 derived with the KR slave-boson method.
In case of the GA, we observe from Eq. �A11� that S��� is

a product over lattice sites of terms less than one which in
the thermodynamic limit leads to an orthogonality
catastrophe22 and thus S��=���. Therefore we find that
within the “infinite D” prescription of the Gutzwiller
approximation8 different inhomogeneous states are orthogo-
nal to each other. As a consequence it turns out from Eqs.
�A16� and �A17� that these states are not connected by ma-
trix elements of the Hubbard Hamiltonian so that a CI ap-
proach does not yields any correction to the symmetry-
broken solutions.

APPENDIX B: FERMIONIC MATRIX ELEMENTS

When we restrict to collinear inhomogeneous Gutzwiller
solutions, i.e., where the associated density matrix is diago-
nal in spin space, we can represent the noninteracting state
��0

�� as

��0
�� = ��↑

�� � ��↓
�� , �B1�

���
�� = a1,�

�,†a2,�
�,†a3,�

�,† . . . aN�,�
�,† �0� �B2�

and the operators ak,�
� are related to the real-space operators

ci,� by the linear transformation

ak,�
� = �

i

�i,�
� �k�ci,� �B3�

which defines the specific inhomogeneous solution. Details
for the calculation of the amplitudes �i,�

� �k� within the
Gutzwiller approximation can be found in Ref. 11. Within
these definitions, the evaluation of matrix elements between
different Slater determinants is analogous to the scheme out-
lined in Ref. 20. Here, we have defined the single-particle
matrix elements as
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�k�
��q�

�� = �
i

�i,�
� �k��i,�

� �q� , �B4�

�k�
��ni,��q�

�� = �i,�
� �k��i,�

� �q� . �B5�

The matrix elements between Slater determinant and also those of single-particle operators between different Slater deter-
minants as used e.g., in Eq. �A12� are given by

��0
���0

��� = �
�1�

��1�
�� �1�

��2�
�� ¯ �1�

��N�
��

�2�
��1�

�� �2�
��2�

�� ¯ �2�
��N�

��
¯ ¯ ¯ ¯

�N�
��1�

�� �N�
��2�

�� ¯ �N�
��N�

��
� , �B6�

	n̂i,�
�� = �
�1�

��ni,��1�
�� �1�

��2�
�� ¯ �1�

��N�
��

�2�
��ni,��1�

�� �2�
��2�

�� ¯ �2�
��N�

��
¯ ¯ ¯ ¯

�N�
��ni,��1�

�� �N�
��2�

�� ¯ �N�
��N�

��
� + �

�1�
��1�

�� �1�
��ni,��2�

�� ¯ �1�
��N�

��
�2�

��1�
�� �2�

��ni,��2�
�� ¯ �2�

��N�
��

¯ ¯ ¯ ¯

�N�
��1�

�� �N�
��ni,��2�

�� ¯ �N�
��N�

��
� + + ¯

+ �
�1�

��1�
�� �1�

��2�
�� ¯ �1�

��ni,��N�
��

�2�
��1�

�� �2�
��2�

�� ¯ �2�
��ni,��N�

��
¯ ¯ ¯ ¯

�N�
��1�

�� �N�
��2�

�� ¯ �N�
��ni,��N�

��
� . �B7�
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