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I. INTRODUCTION

A. Functions of infinite variables

One of the most important problems in condensed matter
physics is to understand how particles are organized in the
ground state. Almost all the low energy properties of a sys-
tem are determined by such an organization. Mathematically,
the ground state of N particles is described by a wave
function—a complex function of N variables ��r1 , . . . ,rN�,
where ri is the coordinate of the ith particle. Thus, the prob-
lem of understanding the patterns of the many-particle orga-
nizations �or in physical terms, of understanding the quantum
phases of many-particle systems� is to classify the complex
wave functions ��r1 , . . . ,rN� in the N→� limit.

Such a classification problem is one of the most funda-
mental problems in physics since it determines the possible
quantum phases of many-particle systems. Due to the suc-
cess of the Landau symmetry breaking theory in describing
phases and phase transitions,1 for a long time physicists be-
lieve that the phases of matter are classified by their symme-
try properties. Mathematically, this is equivalent to believing
that the wave functions are classified by their symmetry
properties, such as, for example, whether the wave function
is invariant under translation ��ri�→��ri+a� or not. Under
such a belief, the wave functions with the same symmetries
are grouped into one class and such a class represents a
single phase of matter. This is why group theory becomes an
important mathematical foundation in physics.

However, after the discovery of fractional quantum Hall
�FQH� states,2,3 it was realized that symmetry is not enough
to classify all the possible organizations encoded in the wave
functions ��r1 , . . . ,rN�. This is because the wave functions
that describe different FQH states have exactly the same
symmetry. Thus, the wave functions of FQH states contain
new kinds of organizations of particles that has nothing to do
with symmetry.4,5 The new organizations of the particles are
called topological orders.

Intuitively, what is new in the FQH wave functions is that
the wave functions contain a long-range quantum
entanglement.6,7 This is why the FQH wave functions de-
scribe new states of matter that cannot be described by sym-

metries. The wave functions with long-range entanglements
and the corresponding topological orders not only appear in
FQH systems, but they also appear in various quantum spin
systems. Understanding this new class of wave functions and
the resulting new states of matter is currently a very active
research direction in condensed matter physics.8–28

To gain a deeper and more precise understanding of topo-
logical orders and the associated long-range entanglements,
we need to solve the related mathematical problem of clas-
sifying ��r1 , . . . ,rN� in the N→� limit. This is a difficult
problem which is not well studied in mathematics. The prob-
lem is not even well defined. However, this does not mean
that the problem is not important. It is common not to have a
well defined problem when we wander into an unknown ter-
ritory. The first task of knowing the unknown is usually to
come up with a proper definition of the problem.

In this paper, we will not attempt to classify generic com-
plex wave functions ��r1 , . . . ,rN�. We limit ourselves to a
simpler problem of trying to classify FQH states and their
topological orders. �For a review on topological order in
FQH states, see Refs. 29 and 30.� The corresponding math-
ematical problem is to classify symmetric and antisymmetry
polynomials of N variables ��zi , . . . ,zN� in the N→� limit.
We will first try to come up with a physically meaningful and
mathematically rigorous definition of the problem. Then, we
will solve the problem in some simple cases. This leads to a
class of “simple” �anti�symmetric polynomials which corre-
sponds to a class of simple FQH states. The constructed FQH
states include both Abelian and non-Abelian FQH states.14,15

II. FRACTIONAL QUANTUM HALL STATES AND
POLYNOMIALS

A. Fractional quantum Hall wave functions

First, we would like to give a brief review on FQH theory.
A FQH state is a quantum ground state of two-dimensional
electrons in a magnetic field. Such a quantum state is de-
scribed by a complex wave function,

��x1,y1,x2,y2, . . . ,xN,yN� ,

where �xi ,yi� are the coordinates of the ith electron and N is
the total number of electrons. In the strong magnetic field
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limit, if the filling fraction � of a FQH state is less than 1,
then all the electrons are in the lowest Landau level. In this
case, the ground state wave function has the following form:

� = ��z1, ¯ ,zN�exp�−
1

4�
i=1

N

�zi�2� ,

where zi=xi+ iyi and ��z1 , . . . ,zN� is a holomorphic function
of zi �i.e., ��z1 , . . . ,zN� does not depend on zi

��. Since
��z1 , . . . ,zN� has no poles, ��z1 , . . . ,zN� is a polynomial of
zi’s.

Due to the Fermi statistics of the electrons, ��z1 , . . . ,zN�
must be an antisymmetric polynomial. If we assume the elec-
trons to have Bose statistics, then ��z1 , . . . ,zN� must be a
symmetric polynomial. Thus, to understand the phases of
FQH systems is to classify antisymmetric or symmetric poly-
nomials.

It turns out that for every antisymmetric polynomial
�anti-sys�z1 , . . . ,zN�, one can uniquely construct a symmetric
polynomial �sys�z1 , . . . ,zN�=

�anti-sys�z1,. . .,zN�
	i�j�zi−zj�

. Thus, classifying
antisymmetric polynomials and classifying symmetric poly-
nomials are almost identical problems. Therefore, in this pa-
per, we will assume electrons to have Bose statistics and
concentrate on classifying symmetric polynomials.

For a system of N bosonic electrons, which symmetric
polynomial will represent the ground state of the system? It
will depend on the interaction between the electrons. If the
interaction potential between two electrons has a �-function
form

V1�z1,z2� = ��z1 − z2� , �1�

then the ground state is described by the symmetric polyno-
mial

�1/2 = 	
i�j

�zi − zj�2.

Such a state has a vanishing total potential energy Vtot=0,
where

Vtot 
� 	
i

d2zi�
���zi
��

i�j

V�zi,zj����zi
� .

The vanishing of the total potential energy Vtot requires that
the wave function ���zi
� to be zero as z1→z2. Since the
average energy Vtot�0 for any wave functions, the vanishing
Vtot for �1/2 indicates that �1/2 is the ground state.

If the interaction potential between two electrons is given
by31

V2�z1,z2� = v0��z1 − z2� + v2�z1
�

2
��z1 − z2��z1

2 , �2�

with v0	0 and v2	0, then the ground state will be

�1/4 = 	
i�j

�zi − zj�4.

For interaction �2�, the vanishing of the total potential energy
Vtot not only requires that the wave function ���zi
� to be
zero as z1→z2, but it also requires ���zi
� to vanish faster
than �z1−z2�2 as z1→z2. This means that the symmetric poly-

nomial must have a fourth order zero as zi→zj. One such
polynomial is given by �1/4=	i�j�zi−zj�4, which has the
lowest total power of zi’s.

More complicated ground states can be obtained through
more complicated interactions. For example, consider the
following three-body interaction between electrons:32,33

VPf�z1,z2,z3� = S�v0��z1 − z2���z2 − z3�

− v1��z1 − z2��z3
���z2 − z3��z3

� , �3�

where S is the total symmetrization operator between z1, z2,
and z3. Such an interaction selects the symmetric
polynomial14

�Pf = A� 1

z1 − z2

1

z3 − z4
¯

1

zN−1 − zN
�	

i�j

�zi − zj�

to describe the ground state �which has a vanishing total
potential energy Vtot�. Here, A is the total antisymmetrization
operator between z1 , . . . ,zN.

Three symmetric polynomials �1/2, �1/4, and �Pf contain
different topological orders and correspond to three different
phases of an N-electron system in the N→� limit. They are
the filling fraction �=1 /2 Laughlin state,3 the filling fraction
�=1 /4 Laughlin state, and the filling fraction �=1 Pfaffian
state.14 We would like to find a classification of symmetric
polynomials such that the above three symmetric polynomi-
als belong to three different classes.

B. Ideal Hamiltonian and zero-energy state

The above three examples share some common proper-
ties. The Hamiltonians described by the interaction potentials
V1, V2, and VPf are all positive definite and contain zero-
energy eigenstates. The zero-energy eigenstates of V1, V2,
and VPf are known and are given by �1/2, �1/4, and �Pf.
Thus, �1/2, �1/4, and �Pf are exact ground states of the cor-
responding Hamiltonians. Since the interaction potentials are
constructed from � functions and their derivatives, the exact
ground states �the zero-energy states� for such type of poten-
tials are characterized by the pattern of zeros, i.e., the orders
of zeros of the ground state wave function, as we bring two
or more electrons together.

In this paper, we will concentrate on such ideal Hamilto-
nians and their exact zero-energy ground states. From this
point of view, classifying FQH states corresponds to classi-
fying patterns of zeros in symmetric polynomials. In other
words, for each pattern of zeros, we can define an ideal
Hamiltonian such that the symmetric polynomials with the
given pattern of zeros will be the zero-energy ground states
of the Hamiltonian. Such symmetric polynomials will de-
scribe a phase of a FQH system provided that the Hamil-
tonian has a finite energy gap.

Clearly, for the ideal Hamiltonians, apart from the zero-
energy ground states, other eigenstates of the Hamiltonian all
have nonzero and positive energies. However, this does not
imply the Hamiltonian to have a finite energy gap. Only
when the minimal energy of the excitations has a finite non-
zero limit as electron number approaches to infinity, does the
Hamiltonian have a finite energy gap. Thus, to classify the
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FQH states, we not only need to classify the patterns of zeros
and the associated ideal Hamiltonians, we also need to judge
if the constructed ideal Hamiltonian has a finite energy gap
or not. At the moment, we do not have a good way to make
such a judgment. Therefore, here, we will concentrate on
classifying the patterns of zeros and the associated zero-
energy states.

III. PATTERN OF ZEROS

A. Derived polynomials and their Dab characterization

In order to classify translation invariant symmetric poly-
nomials of N variables ��z1 , . . . ,zN� in the N→� limit, we
need to define the polynomials for any N. The key in our
definition is to introduce “local conditions.” These local con-
ditions apply to polynomials of any numbers of variables.

From the discussion in Sec. II A, we see that one way to
implement the local condition is to let one variable approach
another and to specify the power of the zero as follows:

���z1, . . . ,zN��z1→z2
� �z1 − z2�D11.

We would like to stress that the above local condition is
consistent with the translation invariance of the polynomial.

However, D11 does not contain all the information that is
needed to specify various interesting polynomials. To imple-
ment more general local conditions, we need to bring three
or more variables together and specify the patterns of
zeros.19,32

To describe the patterns of zeros in a systematic way, we
obtain from a polynomial ��z1 , . . . ,zN� another polynomial
P� by letting z1→z2 as follows:

���z1, . . . ,zN��z1→z2
z�2� � �z1 − z2�D11P��z�2�,z3, . . . ,zN�

Here, � means equal up to a nonzero complex constant. The
value of D11 encodes a part of the local conditions. Then, we
let z3→z�2� in P��z�2� ,z3 , . . . ,zN� as follows:

P��z�2�,z3, . . . ,zN� � �z3 − z�2��D12P��z�3�,z4, . . . ,zN� ,

where z�3�=z�2�. In this way, we obtain a new polynomial
P��z�3� ,z4 , ¯ ,zN�. In general, we obtain P��zi

�a�
�, where z�a�

is a type-a variable obtained by fusing a zi variables together.
Note that zi

�1�=zi is the original variable. If we view zi=zi
�1� as

coordinates of electrons, then zi
�a� are coordinates of bound

states of a electrons. We will call such a bound state a type-a
particle.

P��zi
�a�
� is a symmetric polynomial that is symmetric be-

tween variables of the same type. It satisfies certain local
conditions and forms a Hilbert space. The polynomial
P��zi

�a�
� is also called a derived polynomial since it is ob-
tained from ���zi
� by fusing variables together.

The general local conditions on ���zi
� are specified by
pattern of zeros in its derived polynomial P��zi

�a�
�,

P��z1
�a�,z1

�b�, . . .��z1
�a�→z1

�b�
z�a+b� � �z1
�a� − z1

�b��DabP̃�z�a+b�, . . .�

+ o��z1
�a� − z1

�b��Dab� , �4�

where Dab satisfy

Dab = Dba � Z, Daa = even, Dab � 0. �5�

�Dab
 is the set of data that specifies the local condition that
���zi
�’s must satisfy. Such a set of data is called a pattern of
zeros.

We note that there are many different ways to fuse a zi
variables into a z�a� variable. The different ways of fusion
may lead to different derived polynomials which are linearly
independent. Here, we will impose a unique-fusion condition
on the symmetric polynomial ���zi
�: The derived polynomi-
als obtained from different ways of fusion are always linearly
dependent; i.e., the derived polynomials form a one-
dimensional linear space. In this paper, we will study sym-
metric polynomials ���zi
� that satisfy this unique-fusion
condition and are characterized by the data Dab.

Not all possible choices of �Dab
 are consistent. Only cer-
tain choices of �Dab
 correspond to symmetric polynomials
���zi
�. The key is to find those �Dab
’s that can be realized
by some polynomials ���zi
�.

To get a feeling what a consistent set of �Dab
 may look
like, let us consider the following symmetric polynomials
�the Laughlin state3�:

�1/q��zi
� = 	
i�j

�zi − zj�q, �6�

where q is an even integer. Such a symmetric polynomial
leads to the following derived polynomial:

P1/q��zi
�a�
� = �	

a�b
�	

i,j
�zi

�a� − zj
�b��qab��


�	
a
�	

i�j

�zi
�a� − zj

�a��qa2�� . �7�

Thus, the symmetric polynomial �1/q is specified by the pat-
tern of zeros,

Dab = qab, a,b � �1,2,3, . . .
 ,

where q is a positive even integer.

B. Sa characterization of polynomials

There is another way to implement local conditions on a
translation invariant symmetric polynomial ���zi
�. We in-
troduce a sequence of integers Sa, where a=0,1 ,2 , . . ., and
require that the minimal total powers of z1 , . . . ,za in ���zi
�
is given by Sa.19 �Here, S0 is defined as 0.� Thus, in addition
to �Dab
, we can also use �Sa
 to characterize a symmetric
polynomial. For a translation invariant symmetric polyno-
mial, ��0,z2 , . . . ,zN��0. Thus, S1=0.

The two characterizations, �Dab
 and �Sa
, are closely re-
lated. One way to see the relation is to put the symmetric
polynomial ��z1 , . . . ,zN� on a sphere as discussed in Appen-
dix A. Let N� be the maximum power of z1 in ��z1 , . . . ,zN�.
Then, ��z1 , . . . ,zN� can be put on a sphere with N� flux
quanta and each variable zi carries an angular momentum J
=N� /2.

From the discussion near the end of Appendix A, we find
that each type-a particle described by zi

�a� in P��zi
�a�
� carries

a definite angular momentum, which is denoted as Ja. Since
the lowest total power of z1 , . . . ,za is Sa, the minimal total Lz
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quantum number for those variables is −aJ+Sa. Therefore,
the angular momentum of the zi

�a� variable is

Ja = aJ − Sa. �8�

Since zi
�1�=zi, we find that J1=J.

Again, according to the discussion near the end of Appen-
dix A, if we fuse two variables z�a� and z�b� into z�a+b�, the
type-�a+b� particle described by z�a+b� will carry an angular
momentum

Ja+b = Ja + Jb − Dab. �9�

We see that Dab can be expressed in terms of Sa as fol-
lows:

Dab = Sa+b − Sa − Sb. �10�

The conditions on Dab �Eq. �5�� can be translated into the
conditions on Sa,

S2a = even, Sa+b � Sa + Sb. �11�

From the recursive relation Ja+1=Ja+J1−Da,1, we find
Sa+1=Sa+Da,1. Using S1=0, we see that Sa can also be cal-
culated from Dab,

Sa = �
b=1

a−1

Db,1. �12�

Due to the one-to-one correspondence between �Dab
 and
�Sa
, we will also call the sequence �Sa
 a pattern of zeros.

C. Boson occupation characterization

The symmetric polynomial ��z1 , . . . ,zN� can be written as
a sum of polynomials described by boson occupations

���zi
� = �
�ñl


C�ñl

��ñl


��zi
� ,

where ��ñl

is a boson occupation state with ñl bosons occu-

pying the zl orbital. Mathematically, ��nl

��zi
� is given by

��nl

�z1, . . . ,zN� = �

P
	
i=1

N

zP�i�
li , �13�

where P is a one-to-one mapping from �1, . . . ,N

→ �1, . . . ,N
; �P is the sum over all those one-to-one map-
ping; and li, where i=1,2 , . . ., is a sequence of ordered inte-
gers such that the number of l valued li’s is nl.

What kinds of boson occupations �ñl
 appear in the above
sum? Let us set z1=0 in ���zi
�. Since ��0,z2 , . . . ,zN��0
due to the translation invariance, there must be a boson oc-
cupation �ñl
 in the above sum that contains one boson oc-
cupying the zl=0 orbital. Now let us assume that a boson
occupies zl=0 and bring the second particle z2 to 0; the mini-
mal power of z2 in ��0,z2 , . . . ,zN� is D11:

��0,z2, . . . ,zN� � z2
D11P2�z3,z4, . . .� + o�z2

D11� .

Thus, among those �ñl
 which have one boson occupying the
zl=0 orbital, there must an �ñl
 that contains a second boson
occupying the zl2 orbital where l2=D11=S2−S1. Next, let us

assume that two bosons occupy the zl=0 and zl2 orbitals and
we bring the third particle z3 to 0; the minimal power of z3 is
D21:

P2�z3,z4, . . .� � z3
D21P3�z4,z5, . . .� + o�z3

D21� .

Thus, among those �ñl
 which have two bosons occupying
the zl=0 and zl2 orbitals, there must be an �ñl
 that contains a
third boson occupying the zl3 orbital where l3=D21=S3−S2.
This way we can show that there must an �ñl
 such that the
ath boson occupies the orbital zla with la=Sa−Sa−1. Here, a
=1,2 , . . . and l1=0. Let nl be the numbers of la=Sa−Sa−1 that
satisfy la= l. We see that the boson occupation state ��nl


��zi
�
happens to be the state with its ath boson occupying the
orbital zla. This allows us to show that ��z1 , . . . ,zN� has the
form

���zi
� = ��nl

��zi
� + �

�ñl

C�ñl


��ñl

��zi
� , �14�

or in other words,

���nl

��� � 0. �15�

The two sequences, �Sa
 and �nl
, have a one-to-one cor-
respondence. We will call �nl
 the boson occupation descrip-
tion of the pattern of zeros �Sa
.

The boson occupation distributions �ñl
 that appear in the
sum in Eq. �14� satisfy certain conditions. First, the boson

occupation �ñl
 can be described by a pattern of zeros �S̃a
.
Then, the conditions on �ñl
 can be stated as S̃a�Sa. Thus,

the minimal total power of z1 , . . . ,za in ��ñl

��zi
� is S̃a,

which is equal or bigger than Sa.
Haldane34 conjectured that ñl’s in expression �14� can be

obtained from nl by one or many squeezing operations. A
squeezing operation is a two-particle operation that moves

one particle from the orbital zl1 to the orbital zl1� and the other

from zl2 to zl2�, where l1� l1�� l2�� l2, and l1+ l2= l1�+ l2�. We
can show that if ñl is obtained from nl by squeezing opera-
tions, then the minimal total power of z1 , . . . ,za in ��ñl


��zi
�
is equal or bigger than Sa. This is consistent with the above
discussion.

Let Pa,Ja
be a projection operator acting on the state � on

a sphere. Pa,Ja
projects into the subspace where a particles in

� have a total angular momentum equal to Ja or less. We see
that for a symmetric polynomial ��z1 , . . . ,zN� described by a
pattern of zero Sa, it satisfies

PN,JN
. . . P3,J3

P2,J2
��z1, . . . ,zN� = ��z1, . . . ,zN� ,

where Ja=aJ−Sa. This allows us to obtain

PN,JN
. . . P3,J3

P2,J2
��nl


�z1, . . . ,zN� � 0, �16�

where nl is the boson occupation description of Sa.

IV. CONSISTENT CONDITIONS ON THE PATTERN OF
ZEROS

For a translation invariant symmetric polynomial ���zi
�,
the corresponding pattern of zeros �Dab
 and �Sa
 satisfies
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some special properties. Here, we would like to find those
properties as much as possible. Those properties will be
called consistent conditions on the pattern of zeros. If we
find all the consistent conditions, a set of integers �Dab
 or
�Sa
 that satisfies those consistent conditions will correspond
to a translation invariant symmetric polynomial ���zi
�. We
have already found some consistent conditions �11� and �16�
on �Sa
. Here, we would like to find more conditions.

A. Concave condition

If we fix all variables zi
�a� except z1

�a�, then the derived
polynomial P
��zi

�a�
� gives us a complex function f�z1
�a��.

The complex function f�z1
�a�� has isolated zeros at zi

�b�’s and
possibly also at some other points.

Let us move z1
�a� around two points z1

�b� and z1
�c�. The phase

of the complex function f�z1
�a�� will change by 2�Wa,bc,

where Wa,bc is an integer �see Fig. 1�. Since f�z1
�a�� has an

order Dab zero at z1
�b� and an order Dac zero at z1

�c�, the integer
Wa,bc satisfies

Wa,bc � Dab + Dac

because f�z1
�a�� has no poles. Now, let z1

�b�→z1
�c� to fuse into

z�b+c�. In this limit, Wa,bc becomes the order of zeros between
z1

�a� and z�b+c�: Wa,bc=Da,b+c. Thus, we obtain the following
conditions on Dab:

Da,b+c � Dab + Dac. �17�

Concave condition �17� is equivalent to a condition on Sa,

Sa+b+c + Sa + Sb + Sc � Sa+b + Sb+c + Sa+c. �18�

We note that the Laughlin state �1/q��zi
�=	i�j�zi−zj�q satu-
rates the above conditions: Da,b+c=Dab+Dac or Sa+b+c+Sa
+Sb+Sc=Sa+b+Sb+c+Sa+c.

B. Symmetry condition

If we fix all variables zi
�a� except z1

�a�, z2
�b�, and z3

�c�, then the
derived polynomial P
��zi

�a�
� gives us a complex function
f�z1

�a� ,z2
�b� ,z3

�c��. Let us assume z1
�a�, z2

�b�, and z3
�c� are very close

to each other and far away from all other variables.
f�z1

�a� ,z1
�b� ,z1

�c�� has a Dabth order zero as z1
�a�→z2

�b� and a
Dabth order zero as z1

�a�→z3
�c�. Thus, Da,b+c−Dab−Dac is the

number of zeros of f�z1
�a�� in the same neighborhood that are

not at z2
�b� and z3

�c� �see Fig. 2�.
Here, we would like to assume that ���zi
� satisfies the

unique-fusion condition. In this case, the type-a variables in
the derived polynomials have “no shapes” and can be treated
as points. Since other variables are far away, the zeros of
f�z1

�a� ,z2
�b� ,z3

�c�� must satisfy certain symmetry conditions �see
Fig. 2�.

We see that when a=b=c, f�z1
�a� ,z2

�a� ,z3
�a�� can be zero

only when zi
�a�→zj

�a� or when z1
�a�, z2

�a�, and z3
�a� form an equi-

lateral triangle. Thus, the zeros of f�z1
�a� ,z2

�a� ,z3
�a�� �when

viewed as a function of z1
�a�� that are marked by the crosses

must appear in pairs. We find that Da,a+a−Da−Da must be
even, or equivalently

S3a − Sa = even. �19�

C. n-cluster condition

The structure of symmetric polynomials with infinite vari-
ables is very complicated and hard to manage. Here, we
would like to introduce an n-cluster condition that makes a
polynomial with infinite variables behave more like a poly-
nomial with a finite number of variables. A symmetric poly-
nomial satisfies the n-cluster condition if after we fuse the
variables of ���zi
� into n-variable clusters, the derived poly-
nomial

Pc�z1
�n�, . . . ,zNc

�n�� � 	
i�j

�zi
�n� − zj

�n��l �20�

has a simple Laughlin form where l is a positive integer.
To see the structure of cluster form more clearly, let us

assume that the polynomial ��z1 , . . . ,zN� describes a FQH
state with filling fraction �. This means that as a homogenous
polynomial, the total order of the zi, SN, in ��z1 , . . . ,zN� sat-
isfies

SN =
1

2�
N2 + O�N� .

This motivates us to write ��z1 , . . . ,zN� as

���zi
� = G��zi
�����zi
� ,

cb

FIG. 1. Wa,bc obtained by moving z1
�a� along a large loop around

z1
�b� and z1

�c� counts the total numbers of zeros of f�z1
�a�� in the loop.

The crosses mark the zeros of f�z1
�a�� not at z1

�b� and z1
�c�.

(a)

b c

(b) (c)

a a
b c

FIG. 2. Pattern of zeros of f�z1
�a� ,z2

�b� ,z3
�c�� �when viewed as a

function of z1
�a��: �a� Da,b+c−Db−Dc=1, �b� Da,b+c−Db−Dc=2, and

�c� a=b=c and Da,a+a−Da−Da=2. The dashed lines form two equi-
lateral triangles. The zeros that are not located at any variable are
marked by crosses.
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����zi
� = 	
i�j

�zi − zj��−1
. �21�

Here, G��zi
� satisfies

G��z1, . . . ,�zN� = �sNG�z1, . . . ,zN�, sN = O�N� . . . .

Note that G��zi
� is, in general, not a single-valued function
since ����zi
� is, in general, not single valued. However, the
product of G��zi
� and ����zi
� is a single-valued symmetric
polynomial.

We can fuse the variables in G��zi
� to obtain a derived
function G��zi

�a�
� �just as how we obtain the derived polyno-
mial P��zi

�a�
� from the original symmetric polynomial
���zi
��. Similarly, we can also fuse the variables in ����zi
�
to obtain a derived function ����zi

�a�
� as follows:

����zi
�a�
� = 	

i,j;a�b

�zi
�a� − zj

�b��ab/� 	
i�j;a

�zi
�a� − zj

�a��a2/�.

�22�

Thus, the derived polynomial P��zi
�a�
� can be expressed as

P��zi
�a�
� = G��zi

�a�
�����zi
�a�
� . �23�

Equation �23� can be viewed as a definition of G��zi
�a�
�.

Assuming ���zi
� has an n-cluster form, then if we fuse
the variables of G��zi
� into n-variable clusters, the derived
function

G��zi
�n�
� = 1.

Here, we will require G��zi
�a�
� to satisfy more strict condi-

tions,

G��zi
�a�
� = G��zi

�a%n�
� ,

G�. . . ;zi
�n�; . . .� = G�. . . , . . .� . �24�

The second condition states that G�. . . ,zi
�a� , . . .� does not de-

pend on zi
�a� if a%n=0. If G satisfies Eq. �24�, we will say

the corresponding symmetric polynomial ���zi
�
=G��zi
�����zi
� to have an n-cluster form.

For a symmetric polynomial ���zi
� of an n-cluster form,
its pattern of zeros Dab can be written as

Dab = �−1ab + dab, �25�

where dab satisfy

dab = dba,

dab = 0 if b%n = 0,

da,b+n = dab. �26�

The pattern of zeros Dab that satisfies the above conditions is
said to have an n-cluster form. Note that �−1ab in Eq. �25�
describe the pattern of zeros in the derived function
����zi

�a�
� �see Eq. �22�� and dab describes the pattern of ze-
ros in the derived function G��zi

�a�
�.
Setting �a ,b�= �n ,n� and �a ,b�= �1,n� in Eq. �25�, we find

that

�−1n2 = even, �−1n = integer.

or

�−1 =
m

n
, mn = even. �27�

We also find that

Da,b+n = Da,b + am . �28�

Let

sa = Sa −
1

2�
a�a − 1� . �29�

We find that �see Eq. �10��

dab = sa+b − sa − sb. �30�

Cluster conditions �26� become

sa+n − sa − sn = 0,

sa+n − sa = sb+n − sb. �31�

Since S1=s1=0 �see Eq. �8��, we find that sn+1=sn and sa+n
−sa=sn. Thus,

sa+kn = ksn + sa, where a = 1,2, . . . ,� . �32�

This allows us to obtain sa for any a	0 from s1 ,s2 , . . . ,sn.
Similarly, all the Sa’s can be determined from S1 ,S2 , . . . ,Sn:

Sa+kn = sa+kn +
m

2n
�a + kn��a + kn − 1�

= ksn + sa +
m

2n
�a + kn��a + kn − 1�

= Sa −
m

2n
a�a − 1� + k�Sn −

m

2
�n − 1��

+
m

2n
�a + kn��a + kn − 1�

= Sa + kSn +
k�k − 1�nm

2
+ kma . �33�

The above result is actually valid for any positive integer a.
It is convenient to introduce

ha
sc 
 sa −

a

n
sn = Sa −

aSn

n
+

am

2
−

a2m

2n
. �34�

From Eq. �32�, we can show that ha
sc is periodic:

ha
sc = ha+n

sc .

Since s1=0, we see that h1
sc=−sn /n and sa=ha

sc−ah1
sc. From

Eq. �29�, we see that Sa can be calculated from ha
sc:

Sa = ha
sc − ah1

sc +
a�a − 1�m

2n
. �35�

Equations �34� and �35� imply that the two sequences of
numbers, �Sa
 and �ha

sc
, have a one-to-one correspondence
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and can faithfully represent each other. In this paper, we will
use both sequences to characterize the symmetric polynomi-
als. The ha

sc characterization turns out to have a close relation
to the conformal field theory �CFT� description of the FQH
states �see Appendix B�.14,35–37

If Sa has n-cluster form �33�, then the corresponding bo-
son occupation numbers nl have some nice properties. From
Eq. �33�, we see that Sa+n−Sa−1+n=Sa−Sa−1+m. Thus, li=Si
−Si−1 satisfy li+n= li+m. This means that the boson occupa-
tion in the orbitals zl has a periodic structure: every time we
skip n bosons, we skip m orbitals. Or, in other words, if we
know the occupation distribution of the first n bosons, the
occupation distribution of second n bosons can be obtained
from that of first n bosons by shifting the orbital index l by
m. Thus, the occupation numbers nl satisfy nl=nl%m �see Eq.
�52��. Also, each m orbital contain n bosons. Due to the
one-to-one correspondence between Sa and nl, we can also
use n0 , . . . ,nm−1 to describe the pattern of zeros in ���zi
�.

D. Translation invariance

To study the translation invariance of the symmetric poly-
nomial ��z1 , . . . ,zN�, let us put the polynomial on a sphere
�see Appendix A� and study its rotation invariance. In fact, in
this paper, when we mention translation invariance, we actu-
ally mean rotation invariance on a sphere.

Let N� be the number of flux quanta going through the
sphere. Then, each variable zi in ��z1 , . . . ,zN� carries an an-
gular momentum J=N� /2. What is the total angular momen-
tum of ��z1 , . . . ,zN�? In general, ��z1 , . . . ,zN� does not carry
a definite angular momentum. Therefore, here we will calcu-
late the maximum angular momentum of ��z1 , . . . ,zN� from
the pattern of zeros Dab.

The maximum angular momentum is nothing but the an-
gular momentum of z�N�—the particle obtained by fusing all
the N electrons together. The angular momentum of z�N� is
given by �see Eqs. �8� and �12��

JN = Jtot = NJ − �
a=1

N−1

Da,1 = NJ − SN. �36�

If JN=0 for a symmetric polynomial ���zi
�, then ���zi
� is
invariant under the O�3� rotation of the sphere. In other
words, ���zi
� is translation invariant.

However, for an arbitrary choice of N and J, JN is not zero
in general. JN can be zero only for certain combinations of
�N ,J�. For the filling fraction �=1 /q Laughlin state, JN

=NJ−q N�N−1�
2 . We find JN=0 if

2J = N� = qN − q . �37�

This is the relation between the number of magnetic flux
quanta, N�, and the number of electrons, N, of the �=1 /q
Laughlin state if the Laughlin state is to fill the sphere com-
pletely �which gives rise to a rotation invariant state�.

Assume that the symmetric polynomial ��z1 , . . . ,zN� has
an n-cluster form described by the data �m ; �Sa�a=1,. . .,n�. If we
put the polynomial on a sphere, the maximum total angular
momentum of ��z1 , . . . ,zN� is given by Eq. �36�. If N=nNc,
we find from Eq. �33� that

SnNc
= Sn+�Nc−1�n = NcSn +

mnNc�Nc − 1�
2

,

Jtot = JnNc − NcSn −
mnNc�Nc − 1�

2
. �38�

When N=nNc, ��z1 , . . . ,zN� can give rise to the Laughlin
wave function �20� after fusing zi’s into Nc zi

�n�’s �see Eq.
�20��. Since it is always possible to fill the sphere with the
Laughlin state, this implies that there exists an integer 2J to
make Jtot=0. Such an integer is given by

2J = N� =
2SnNc

nNc
=

2Sn

n
+ m�Nc − 1� . �39�

This requires that

2Sn = 0 mod n . �40�

To summarize, the n-cluster condition requires that if
N%n=0 and �N� ,N� satisfies Eq. �39�, then the symmetric
polynomial ��z1 , . . . ,zN� must represent a rotation invariant
state on sphere. The existence of such rotation invariant state
requires Sn to satisfy Eq. �40�.

V. CONSTRUCTION OF IDEAL HAMILTONIANS

We have seen that the pattern of zeros in an electron wave
function ���zi
� can be described by a set of integers
S2 ,S3 , . . .. In this section, we are going to construct an ideal
Hamiltonian on sphere to realize such a kind of electron
wave function as a ground state of the Hamiltonian.

On a sphere, the set of integers Sa also has a very physical
meaning. For an electron system on a sphere with N� flux
quanta, each electron carries an orbital angular momentum
J=N� /2 if the electrons are in the first Landau level.31 For a
cluster of a electrons, the maximum allowed angular mo-
mentum is aJ. However, for the wave function ���zi
� de-
scribed by Sa, the maximum allowed angular momentum is
only Ja=aJ−Sa. The pattern of zeros forbids the appearance
of angular momenta aJ−Sa+1,aJ−Sa+2, . . . ,aJ for any
a-electron clusters in ���zi
�.

Such a condition can be easily enforced by a Hamiltonian.
Let PS

�a� be a projection operator that acts on a-electron Hil-
bert space. PS

�a� projects onto the subspace of a electrons with
total angular momenta aJ−S+1, . . . ,aJ. Now consider the
Hamiltonian19,38,39

H�Sa
 = �
a

�
a-electron clusters

PSa

�a�, �41�

where �a-electron clusters sum over all a-electron clusters. The
wave function ���zi
� with a pattern of zeros described by
Sa, if it exists, will be the zero-energy ground state of the
above Hamiltonian.

We note that the Hamiltonian H�Sa
 is well defined for any
choice of Sa. However, for a generic choice of Sa, the zero-
energy ground state of H�Sa
 may not be the one with a pat-
tern of zeros described by Sa. This is because when we say
that the wave function ���zi
� has a pattern of zeros de-
scribed by Sa, we mean two things:
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�a� The angular momenta aJ−Sa+1, ¯aJ do not ap-
pear for any a-electron clusters in ���zi
�.

�b� The angular momenta aJ−Sa does appear for
a-electron clusters in ���zi
�.

The zero-energy ground state of H�Sa
 satisfies condition �a�.
However, sometimes, we may find that condition �a� also
implies that aJ−Sa does not appear for a-electron clusters in
���zi
� for certain values of a. This means that the zero-
energy ground state of H�Sa
 is actually described by a pattern

of zeros S̃a which satisfy S̃a�Sa. However, for a certain
special set of �Sa
 that describe the pattern of zeros of an

existing symmetric polynomial, we have S̃a=Sa. For those
Sa, the zero-energy ground state of H�Sa
 is described by the
pattern of zeros of �Sa
 itself.

We have seen that for a FQH state described by a pattern
of zeros �Sa
, a state of a-electron clusters has a nonzero
projection into the space Ha,Sa

, where Ha,Sa
is a space with a

total angular momentum aJ−Sa. However, different posi-
tions of other electrons may lead to different images in the
space Ha,Sa

. Let Ha be the subspace of Ha,Sa
that is spanned

by those images. In general, Ha,Sa
�Ha. So, in general, the

zero-energy ground state of the ideal Hamiltonian H�Sa
 may
not be unique. In an attempt to construct an ideal Hamil-
tonian for which the FQH state � is the unique ground state,
we can add additional projection operators and introduce a
new ideal Hamiltonian

H�Sa
 = �
a

�
a-electron clusters

�PSa

�a� + PHa
� , �42�

where PHa
is a projection operator into the space Ha and Ha

is a subspace of Ha,Sa
formed by vectors that is perpendicular

to Ha.

VI. SUMMARY OF GENERAL RESULTS

In Secs. III and V, we have considered a subclass of sym-
metric polynomials ���zi
� �of infinity variables� that satisfy
�a� a unique-fusion condition �see discussion in Sec. III A�,
�b� an n-cluster condition �see discussion in Sec. IV C�, and
�c� the translation invariance

���zi
� = ���zi − z
� .

The unique-fusion condition requires that when we fuse the
variables zi together to obtain new polynomials, we will al-
ways get the same polynomial no matter how we fuse the
variables together. The n-cluster condition requires that if we
fuse all the variables zi into clusters of n variables each, the
resulting polynomial of the clusters has the Jastrow form
	i�j�zi

�n�−zj
�n��q.

We find that each translation invariant symmetric polyno-
mial ���zi
� of the n-cluster form and satisfying the unique-
fusion condition is characterized by a set of non-negative
integers �m ;S2 , . . . ,Sn�. However, not all sets of non-
negative integers �m ;S2 , . . . ,Sn� can be realized by such
symmetric polynomials. The �m ;S2 , . . . ,Sn� that correspond
to existing translation invariant symmetric polynomials �that

satisfy the n-cluster and the unique-fusion conditions� must
satisfy certain conditions.

First, m and Sn must satisfy �see Eqs. �27� and �40��

m 	 0, mn = even,

2Sn = 0 mod n . �43�

From m ,S2 , . . . ,Sn and S1=0, we can determine Sa for any
a	1 �see Eq. �33��:

Sa+kn = Sa + kSn +
k�k − 1�nm

2
+ kma . �44�

Those Sa must satisfy �see Eqs. �11� and �18��

�2�a,a� = even,

�2�a,b� � 0, �3�a,b,c� � 0, �45�

where

�2�a,b� 
 Sa+b − Sa − Sb,

�3�a,b,c� 
 Sa+b+c − Sa+b − Sb+c − Sa+c + Sa + Sb + Sc.

�46�

Sa’s also satisfy another condition which is harder to de-
scribe. To describe the new condition, we first note that the
sequence �Sa
 can be encoded by another sequence of non-
negative integers nl, where l=0,1 , . . .. To obtain nl from Sa,
we introduce la
Sa−Sa−1 for a=1,2 , . . .. Then, nl is the
number of la’s that satisfy la= l. The two sequences, �Sa
 and
�nl
, have a one-to-one correspondence and can faithfully
represent each other. The number nl can be regarded as the
boson occupation number that was used to characterize FQH
states in the thin cylinder limit.40–42 nl is also used to label
Jack polynomials that describe FQH states.43,44

Now, let us introduce 2J+1 orbitals �mz�, mz=−J ,−J
+1, . . . ,J−1,J, which form a representation of SU�2� with
an angular momentum J. �Here 2J is an integer.� We can
create a many-boson state ��nl
� by putting nl bosons into the
mz= l−J orbitals. Then, Sa must be such that �see Eq. �16��

PN,NJ−SN
¯ P3,3J−S3

P2,2J−S2
��nl
� � 0, �47�

where Pa,Ja
is a projection operator that projects into the

subspace where any a particles have a total angular momen-
tum equal to Ja or less and N is the number of particles in
��nl
�.

We will call �m ;S2 , . . . ,Sn� an S vector and denote it as

S = �m;S2, . . . ,Sn� .

We find that translation invariant symmetric polynomials
�that satisfy the n-cluster and the unique-fusion conditions�
are labeled by the S vectors that satisfy Eqs. �43�, �45�, and
�47�.

We would like to stress that Eqs. �43�, �45�, and �47� are
only necessary conditions for �m ;S2 , . . . ,Sn� to describe a
translation invariant symmetric polynomial of the n-cluster
form and satisfying the unique-fusion condition. We do not
know if those conditions are sufficient or not. Some S vec-
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tors that satisfy Eqs. �43�, �45�, and �47� may not correspond
to an existing symmetric polynomial. Also, there may be
more than one symmetric polynomial that are described by
the same S vectors that satisfy Eqs. �43�, �45�, and �47�. Each
such symmetric polynomial corresponds to a FQH state. By
solving Eqs. �43�, �45�, and �47�, we can obtain
�m ;S2 , . . . ,Sn�’s that correspond to the Laughlin states, the
Pfaffian state,14 the parafermion states,19 and many new non-
Abelian states.

We also obtained some additional results. Our numerical
studies of Eqs. �43� and �45� suggest that all solutions of the
equations satisfy

ha
sc = hn−a

sc , �48�

where

ha
sc = Sa −

aSn

n
+

am

2
−

a2m

2n
, �49�

although we cannot derive Eq. �48� analytically. Such a re-
lation implies that

Sn−a = Sa +
n − 2a

n
Sn.

ha
sc’s also satisfy

ha
sc = ha%n

sc , ha
sc � 0,

where a%n
a mod n.
From Eq. �49�, we find that �h1

sc , . . . ,hn
sc� and �S2 , . . . ,Sn�

have a one-to-one correspondence. They can faithfully rep-
resent each other. Due to the one-to-one relation between Sa
and ha

sc, we can also use n, m, and h1
sc , . . . ,hn

sc to characterize
the pattern of zero in the symmetric polynomial ���zi
�. We
will package the data in the form

h = �m

n
;h1

sc, . . . ,hn
sc� ,

and call h an h vector. We see that patterns of zeros in a
symmetric polynomial can also be described by the h vec-
tors.

Each symmetric polynomial described by the pattern of
zeros �Sa
 is related to a CFT generated by simple-current
operators which have an Abelian fusion rule �see Appendix
B�. �h1

sc , ¯ ,hn
sc� turn out to be the scaling dimensions of

those simple-current operators. Since �3�a ,b ,c� only de-
pends on ha

sc,

�3�a,b,c� = ha+b+c
sc − ha+b

sc − hb+c
sc − ha+c

sc + ha
sc + hb

sc + hc
sc,

and �3�a ,b ,c��0 is a property of the simple-current CFT.
Condition �47� is hard to check. So let us consider Eqs.

�43� and �45� only. One class of solutions of Eqs. �43� and
�45� is given by

ha
sc = ha

Zn 

�a%n��n − �a%n��

n
.

This class of solutions corresponds to the Zn parafermion
CFT which is generated by simple-current operators �a that
satisfy an Abelian fusion rule �a�b=�a+b and �0=�n=1. The

scaling dimensions of �a is given by the above ha
Zn. The

parafermion states introduced in Ref. 19 are related to such a
class of solutions.

A more general class of solutions of Eqs. �43� and �45�
corresponds to generalized parafermion CFTs. A generalized
parafermion CFT is generated simple-current operators that
have the following dimensions:

ha
sc = ha

Zn
k



�ka%n��n − �ka%n��

n
.

Those solutions represent a new class of non-Abelian FQH
states, which will be called generalized parafermion states.

It turns out that all the solutions of Eqs. �43� and �45� are
closely related to parafermion CFTs; i.e., a solution ha

sc sat-
isfies

ha
sc = �

i

ki

2
ha

PFi mod 1, �50�

where ki’s are positive or negative integers and ha
PFi’s are the

scaling dimensions of the parafermion operators in some
parafermion CFTs labeled by i. They are given by

ha
PF = h

a

Z
n�
k

for certain integers k and n�, where n� is a factor of n.
If ha

sc=ha
PF, then the solution corresponds to an existing

symmetric polynomial generated by a �generalized� parafer-
mion CFT. If ha

sc= 1
2ha

PF, then the solution corresponds to the
square root of a symmetric polynomial generated by a �gen-
eralized� parafermion CFT. Therefore, the later solution does
not correspond to any existing symmetric polynomials. Nu-
merical experiments suggest that the later cases always have
�3�a ,b ,c�=odd for some a, b, and c. This motivates us to
introduce the new condition

�3�a,b,c� = even �51�

to exclude those illegal cases. Conditions �43�, �45�, and �51�
provide an easy way to obtain Sa’s that may correspond to
existing symmetric polynomials. The new condition �51� is a
generalization of necessary conditions �3�a ,a ,a�=even �see
Eq. �19��, �B8�, and Sa�1.

Our numerical studies suggest that the solutions of Eqs.
�43�, �45�, and �51� give rise to ha

sc that satisfy

ha
sc = �

i

kiha
PFi mod 2.

Those solutions also have the properties that m=even and
Sa=even.

We also find that for Sa satisfying Eqs. �43� and �45�, the
corresponding nl is a periodic function of l �for l�0� with a
period m:

nl = nl%m. �52�

The nl’s satisfy
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�
l=0

2J

nl = nNc, �
l=0

2J

�l − J�nl = 0, �53�

for any �J ,Nc� satisfying

2J =
2Sn

n
+ m�Nc − 1� �54�

VII. GENERAL STRUCTURE OF THE SOLUTIONS

The S vectors that satisfy Eqs. �43� and �45� have some
general properties. In this section, we will discuss those
properties.

A. n-cluster polynomial as �n-cluster polynomial

Let P��zi
�a�
� be a derived symmetric polynomial of

n-cluster form described by �m ;S2 , . . . ,Sn�. From Eq. �26�,
we see that P��zi

�a�
� can also be viewed as a symmetric poly-
nomial of �n-cluster form where � is a positive integer.
When viewed as a �n-cluster polynomial, P��zi

�a�
� is de-
scribed by ��m ,S2 , . . . ,S�n�, where Sn+1 , ¯ ,S�n are obtained
from �m ;S2 , . . . ,Sn� through Eq. �33�.

The filling fraction �=1 /q Laughlin state �1/q=	i�j�zi
−zj�q has a one-cluster form. Thus, �1/q can also be viewed
as an n-cluster polynomial for any positive n. When viewed
as an n-cluster polynomial, the �=1 /q Laughlin state is de-
scribed by

�m;S2, . . . ,Sn� = �nq;q, . . . ,
qn�n − 1�

2
� .

Such a �=1 /q Laughlin state always appears as a solution of
Eqs. �43� and �45� for any n.

B. Products of symmetric polynomials

Let P��zi
�a�
� and P���zi

�a�
� be two derived symmetric
polynomials of n-cluster form described by �m ;S2 , . . . ,Sn�
and �m� ;S2� , . . . ,Sn��, respectively. Then, their product

P̃��zi
�a�
�= P��zi

�a�
�P���zi
�a�
� is also a symmetric polynomial

of n-cluster form. P̃��zi
�a�
� is described by

�m̃, S̃2, . . . , S̃n� = �m + m�;S2 + S2�, . . . ,Sn + Sn�� .

This is because the pattern of zeros of P̃��zi
�a�
� is related to

the patterns of zeros of P��zi
�a�
� and P���zi

�a�
� through

D̃ab = Dab + Dab� .

Also, the relation between �m ;S2 , . . . ,Sn� and Dab is linear
�see Eqs. �10�, �12�, and �33��. Therefore, if two S vectors, S
and S�, describe two existing symmetric polynomials, then

their sum S̃=S+S� also describes an existing symmetric
polynomial, whose fillings fractions are reciprocally addi-
tive.

Indeed, the solutions of Eqs. �43� and �45� have a struc-
ture that is consistent with the above result. We note that Eqs.
�43� and �45� are linear in the S vector S= �m ;S2 , . . . ,Sn�.

Thus, if S1 and S2 are two solutions of Eqs. �43� and �45�,
then

S = k1S1 + k2S2 �55�

is also a solution for any non-negative integers k1 and k2.
Therefore, we can divide the solutions of Eqs. �43� and �45�
into two classes: primitive solutions and nonprimitive solu-
tions. The primitive solutions are those that cannot be written
as a sum of two other solutions. All solutions of Eqs. �43�
and �45� are linear combinations of primitive solutions with
non-negative integral coefficients.

As an application of the product rule, let us consider a
symmetric polynomial of n-cluster form ���zi
� which is de-
scribed by �m ;S2 , . . . ,Sn�. We can construct a new symmetric
polynomial of n-cluster form from ���zi
�,

�̃��zi
� = ���zi
�	
i�j

�zi − zj�q,

where q is even. The symmetric polynomial �̃��zi
� is de-
scribed by

�m̃; S̃2, . . . , S̃n� = �m + nq;S2 + q, . . . ,Sn +
qn�n − 1�

2
� .

VIII. SOME EXAMPLES

In this section, we will give some examples of symmetric
polynomials described by the S vector �m ;S2 , . . . ,Sn� that
satisfy Eqs. �43�, �45�, and �51�.

A. n=1 cases

If n=1, the different patterns of zeros are characterized by
an even integer m. We find Sa=ma�a−1� /2 and Dab=mab.
Each even m corresponds to a �=1 /m Laughlin state

�1/m��zi
� = 	
i�j

�zi − zj�m.

We have introduced three equivalent ways to describe a
pattern of zeros: the S vector �m ;S2 , . . . ,Sn�, the h vector
� m

n ;h1
sc , . . . ,hn

sc�, and the boson occupation number nl:
�n0 , . . . ,nm−1�. For the �=1 /m Laughlin state those data are
given by

�1/m : S = �m;� ,

�m

n
;h1

sc� = �m;0� ,

�n0, . . . ,nm−1� = �1,0, . . . ,0� .

B. n=2 cases

If n=2, the different patterns of zeros are characterized by
two integers m,S2. The following two sets of m, S2 are the
primitive solutions of Eqs. �43� and �45�:

�m;S2� = �1;0�, �m�;S2�� = �4;2� .
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Let us discuss the solution �m ;S2�= �1;0� in more detail.
The corresponding boson occupation numbers are

�n0,n1, . . .� = �2,2,2, . . .� ,

where there are two bosons occupying each orbital. Let us
check condition �47� for the J=1 /2 case wherein there are
only two orbitals. This leads to a state ��2,2
� with four
bosons described by the wave function

��2,2
 = z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4.

On sphere the above wave function becomes �see Appendix
A�

��2,2

sp = S�v1v2u3u4� ,

where S is the symmetrization operator. Since S4=2, we find
that J4=4J−S4=0 and P4,J4

is a projection into the subspace
with vanishing total angular momentum. A direct calculation
reveals that P4,J4

��2,2

sp =0. Thus, �m ;S2�= �1;0� does not sat-

isfy condition �47� and does not correspond to any transla-
tion invariant symmetric polynomial.

Now let consider m ,S2 that satisfy a new condition �51� in
addition to Eqs. �43� and �45�. The following two sets of
m ,S2 are the primitive solutions:

�2
2

;Z2
: �m;S2� = �2;0� ,

�m

n
;h1

sc, . . . ,hn
sc� = �2

2
;
1

2
,0� ,

�n0, . . . ,nm−1� = �2,0� ,

and

�1/2 : �m;S2� = �4;2� ,

�m

n
;h1

sc, . . . ,hn
sc� = �4

2
;0,0� ,

�n0, . . . ,nm−1� = �1,0,1,0� .

Here, we also listed the corresponding h vector h
= � m

n ;h1
sc , ¯ ,hn

sc� and the boson occupation numbers
�n0 , ¯ ,nm−1�.

Let us discuss the solution �m ;S2�= �2;0� in more details.
We find �S1 ,S2 ,S3 ,S4�= �0,0 ,2 ,4� and

�D11 D12

D21 D22
� = �0 2

2 4
� ,

which means that we will have no zero if we bring two
particles together and a second order zero if we bring a third
particle to a two-particle cluster. Such a pattern of zeros de-
scribes the following translation invariant symmetric polyno-
mial:

�2/2;Z2
��zi
� = A� 1

z1 − z2

1

z3 − z4
¯�	

i�j

�zi − zj� �56�

which is the filling fraction �=1 bosonic Pfaffian state.14

Here, A is the antisymmetrization operator. The Pfaffian

state can be written as a correlation of the following operator
in a CFT:

Ve�z� = ��z�ei��z�,

where ��z� is the Majorana fermion operator in the Ising
CFT �which is also the Z2 parafermion CFT�. The h1

sc=1 /2 in
the h vector is the scaling dimension of �.

The other solution �m ;S2�= �4;2� gives rise to the follow-
ing Dab:

�D11 D12

D21 D22
� = �2 4

4 8
� .

It describes the symmetric polynomial

�1/2��zi
� = 	
i�j

�zi − zj�2, �57�

which is the filling fraction �=1 /2 bosonic Laughlin state.
The �=1 /2 Laughlin state can be written as a correlation of
the following operator in the Gaussian model �or U�1� CFT�:

Ve�z� = ei�2��z�.

We note that the �=1 /2 bosonic Laughlin state is charac-
terized by a pattern of boson occupation numbers �nl�
= �1,0 ,1 ,0 ,1 ,0 , . . .� and that the �=1 bosonic Pfaffian state
is characterized by �nl�= �2,0 ,2 ,0 ,2 ,0 , . . .�. Those patterns
match the boson occupation distributions of the two states in
the thin cylinder limit.40–44 This appears to be a general re-
sult: the nl that characterize a symmetric polynomial corre-
spond to one of the boson occupation distribution of the
same state in the thin cylinder limit. Or more precisely: the nl
that characterize a symmetric polynomial correspond to the
boson occupation distribution of the same state in the thin
sphere limit.45

The solution �m ;S2�= �4;0�=2
 �2;0� gives rise to the
following Dab:

�D11 D12

D21 D22
� = �0 4

4 8
� . �58�

It describes a symmetric polynomial which is the square of
�2/2;Z2

,

�Z2Z2
��zi
� = �2/2;Z2

2 ��zi
�

= �A� 1

z1 − z2

1

z3 − z4
¯��2

	
i�j

�zi − zj�2.

�59�

Let us consider another translation invariant symmetric
polynomial

�dw��zi
� = S� 1

�z1 − z2�2

1

�z3 − z4�2¯�	
i�j

�zi − zj�2, �60�

where S is the symmetrization operator. We note that
�dw��zi
� and �Z2Z2

��zi
� have the same pattern of zeros
given by Eq. �58�. In the following, we would like to show
that

�dw��zi
� � �Z2Z2
��zi
� .
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We first note that �Z2Z2
��zi
� can be written as a correla-

tion of the following operator in a CFT:

Ve�z� = �1�z��2�z�ei��z�,

where �1�z� is the Majorana fermion operator in a Ising CFT
and �2�z� is the Majorana fermion operator in another Ising
CFT. Thus, the operator Ve�z�=�1�z��2�z�ei��z� is an operator
in Ising
 Ising
U�1� CFT.

The state �dw��zi
� can also be written as a correlation of
the following operator in a CFT:

Ve�z� = �z�̃�z�ei��z�,

where �̃�z� is the field in a second U�1� CFT. Thus, the

operator Ve�z�=�z��z�ei��z� is an operator in U�1�
 Ũ�1�
CFT.

From the bosonization of the Ising
 Ising CFT, one can

show that the Ising
 Ising CFT is equivalent to the Ũ�1�
CFT and �1�2 has the same N-body correlation functions as
�z�̃�z�. Thus, �dw��zi
�=�Z2Z2

��zi
�. Numerical calculations
have suggested that �dw��zi
� has gapless excitation and is
unstable.

Next, let us consider the following two polynomials:

��Z2�q��zi
� = �2/2;Z2

q ��zi
�

= �A� 1

z1 − z2

1

z3 − z4
¯��q

	
i�j

�zi − zj�q,

�61�

and

�qw��zi
� = Sq� 1

�z1 − z2�q

1

�z3 − z4�q¯�	
i�j

�zi − zj�q,

�62�

where Sq=S when q=even and Sq=A when q=odd. The
two symmetric polynomials have the same pattern of zeros
Dab. However, when q	2, the two polynomials are differ-
ent. Those polynomials provide us examples that there can
be more than one polynomial that have the same pattern of
zeros.

C. n=3 cases

If n=3, the different patterns of zeros are characterized by
three integers m ,S2 ,S3. The following two sets of m ,S2 ,S3
are the primitive solutions of Eqs. �43� and �45�:

�3
2

;Z3
: �m;S2,S3� = �2;0,0� ,

�m

n
;h1

sc, . . . ,hn
sc� = �2

3
;
2

3
,
2

3
,0� ,

�n0, . . . ,nm−1� = �3,0� ,

and

�1/2 : �m;S2,S3� = �6;2,6� ,

�m

n
;h1

sc, . . . ,hn
sc� = �6

3
;0,0,0� ,

�n0, . . . ,nm−1� = �1,0,1,0,1,0� .

When n=odd, we find that the solutions of Eqs. �43� and �45�
automatically satisfy Eq. �51�.

From the h vector of the solution �m ;S2 ,S3�= �2;0 ,0�, we
find that the corresponding polynomial �3

2
;Z3

describes the

Z3 Read–Rezayi parafermion state19 since h1
sc=h2

sc=2 /3 in
the h vector match the scaling dimensions of the simple-
current operators in the Z3 parafermion CFT. Such a state has
a filling fraction �=3 /2. Here, we have been using �n/m;Zn

to
denote a Zn parafermion state. We will follow such a conven-
tion for the rest of this paper. The second solution
�m ;S2 ,S3�= �6;2 ,6� describes the �=1 /2 Laughlin state.

D. n=4 cases

When n=4, the different patterns of zeros are character-
ized by four integers m ,S2 ,S3 ,S4. The primitive solutions of
Eqs. �43� and �45� are given by the following three sets of
m ,S2 ,S3 ,S4:

�m;S2,S3,S4� = �1;0,0,0�,�2;0,1,2�,�8,2,6,12� .

The solution S= �2;0 ,1 ,2� is the same as solution S
= �1;0� for the n=2 case �i.e., the two solutions give rise to
the same sequence �Sa
, a=1,2 ,3 , . . .�. Such a solution does
not satisfy Eq. �47�, as shown in Sec. VIII B.

The solution S= �1;0 ,0 ,0� does not satisfy Eq. �47� ei-
ther. Let us check condition �47� for the J=1 /2 case wherein
there are only two orbitals. This leads to a state ��4,4
� with
eight bosons. On a sphere, such a state is given by

��4,4

sp = S�v1v2v3v4u5u6u7u8� .

Since S8=4, we find that J8=8J−S8=0 and P8,J8
is a projec-

tion into the subspace with vanishing total angular momen-
tum. Explicit calculation shows that the state ��4,4


sp has a
vanishing projection onto the Jtot=0 subspace.

Thus, we consider the solutions of Eqs. �43�, �45�, and
�51� to exclude those invalid cases. The primitive solutions
of Eqs. �43�, �45�, and �51� are

�4/2;Z4
: �m;S2, . . . ,Sn� = �2;0,0,0� ,

�m

n
;h1

sc, . . . ,hn
sc� = �2

4
;
3

4
,1,

3

4
,0� ,

�n0, . . . ,nm−1� = �4,0�; �63�

�2/2;Z2
: �m;S2, . . . ,Sn� = �4;0,2,4� ,

�m

n
;h1

sc, . . . ,hn
sc� = �4

4
;
1

2
,0,

1

2
,0� ,

�n0, . . . ,nm−1� = �2,0,2,0�; �64�

�1/2 : �m;S2, . . . ,Sn� = �8;2,6,12� ,
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�m

n
;h1

sc, . . . ,hn
sc� = �8

4
;0,0,0,0� ,

�n0, . . . ,nm−1� = �1,0,1,0,1,0,1,0� .

Among those three primitive solutions, only �4/2;Z4
is

new. From the h vector in Eq. �63�, we find that the solution
�m ;S2 ,S3 ,S4�= �2;0 ,0 ,0� describes the Z4 parafermion state
�4/2;Z4

with �=2.
The solution �m ;S2 ,S3 ,S4�= �4;0 ,2 ,4� is the same as the

�=1 bosonic Pfaffian state �m ;S2�= �2;0� discussed before.
So the h vectors of the two solutions, � m

n ;h1
sc , . . . ,h4

sc�
= � 4

4 ; 1
2 ,0 , 1

2 ,0� and � m
n ;h1

sc ,h2
sc�= � 2

2 ; 1
2 ,0�, characterize the

same state. In fact, the repeated � 1
2 ,0� pattern in �h1

sc , . . . ,h4
sc�

implies that � m
n ;h1

sc , . . . ,h4
sc�= � 4

4 ; 1
2 ,0 , 1

2 ,0� can be reduced to
� m

n ;h1
sc ,h2

sc�= � 2
2 ; 1

2 ,0�. Also, the two solutions lead to the
same pattern of boson occupation numbers: �nl�
= �2,0 ,2 ,0 ,2 ,0 ,2 ,0 , . . .�, again indicating that the two solu-
tions describe the same state.

The solution �m ;S2 ,S3 ,S4�= �8;2 ,6 ,12� describes the �
=1 /2 Laughlin state �1/2 characterized by � m

n ;h1
sc , . . . ,h4

sc�
= � 8

4 ;0 ,0 ,0 ,0�. We have seen that h1/2= � 2
1 ;0�, h2/4

= � 4
2 ;0 ,0�, h3/6= � 6

3 ;0 ,0 ,0�, and h4/8= � 8
4 ;0 ,0 ,0 ,0� all de-

scribe the same �=1 /2 Laughlin state �1/2. All the above
solutions share the same pattern of boson occupation num-
bers: �nl�= �1,0 ,1 ,0 ,1 ,0 ,1 ,0 , . . .�.

The product state �4/2;Z4
�2/2;Z2

described by

�4/2;Z4
�2/2;Z2

:�m;S2, . . . ,Sn� = �6;0,2,4� ,

�m

n
;h1

sc, . . . ,hn
sc� = �6

4
;
5

4
,1,

5

4
,0� ,

�n0, . . . ,nm−1� = �2,0,2,0,0,0�

is a possible stable �=2 /3 FQH state. Note that the above h
vector is the sum of the h vectors of the Z2 and Z4 parafer-
mion states.

E. n=5 cases

When n=5, conditions �43� and �45� have the following
three sets of primitive solutions:

�5/2;Z5
: �m;S2, . . . ,Sn� = �2;0,0,0,0� ,

�m

n
;h1

sc, . . . ,hn
sc� = �2

5
;
4

5
,
6

5
,
6

5
,
4

5
,0� ,

�n0, . . . ,nm−1� = �5,0�;

�5/8;Z5
�2� : �m;S2, . . . ,Sn� = �8;0,2,6,10� ,

�m

n
;h1

sc, . . . ,hn
sc� = �8

5
;
6

5
,
4

5
,
4

5
,
6

5
,0� ,

�n0, . . . ,nm−1� = �2,0,1,0,2,0,0,0�;

�1/2 : �m;S2, . . . ,Sn� = �10;2,6,12,20� ,

�m

n
;h1

sc, ¯ ,hn
sc� = �10

5
;0,0,0,0,0� ,

�n0, . . . ,nm−1� = �1,0,1,0,1,0,1,0,1,0� .

All other solutions are linear combinations of the above three
solutions.

� m
n ;h1

sc , . . . ,h5
sc�= � 2

5 ; 4
5 , 6

5 , 6
5 , 4

5 ,0� describes a Z5 parafer-
mion state �5/2;Z5

studied by Read and Rezayi.19

� m
n ;h1

sc , . . . ,h5
sc�= � 8

5 ; 6
5 , 4

5 , 4
5 , 6

5 ,0� describes a new parafer-
mion state �5/8;Z5

�2� with �=5 /8. The third state

� m
n ;h1

sc , . . . ,h5
sc�= � 10

5 ;0 ,0 ,0 ,0 ,0� describes the �=1 /2
Laughlin state �1/2.

The Z5 parafermion state �5/2;Z5
can be expressed as a

correlation of simple-current operators �1 in the Z5 parafer-
mion CFT. �1 has a scaling dimension of h1

sc=4 /5. The new
parafermion state �5/8;Z5

�2� can be expressed as a correlation
of simple-current operators �2 in the Z5 parafermion CFT. �2
has a scaling dimension of h2

sc=6 /5. In general, the simple-
current operator �l of a Zn parafermion CFT has a scaling
dimension

hl
sc =

l�n − l�
n

.

Here, we have been using �n/m;Zn
�k� to denote a generalized Zn

parafermion state. We will follow such a convention in the
rest of this paper.

F. n=6 cases

When n=6, conditions �43�, �45�, and �51� have the fol-
lowing four sets of primitive solutions:

�6/2;Z6
: �m;S2, . . . ,Sn� = �2;0,0,0,0,0� ,

�m

n
;h1

sc, . . . ,hn
sc� = �2

6
;
5

6
,
4

3
,
3

2
,
4

3
,
5

6
,0� ,

�n0, . . . ,nm−1� = �6,0� .

�2
2

;Z2
, �3/2;Z3

, and �1/2. Three of the four primitive solutions

have been discussed before and only one solution, �6/2;Z6
, is

new. The �6/2;Z6
state is the Z6 parafermion state.19 �2/2;Z2

and �3
2

;Z3
are the Z2 and Z3 parafermion states discussed

before.
Using �2/2;Z2

, �3/2;Z3
, and �6/2;Z6

, we can construct some
interesting and possibly stable composite states:

�3/2;Z3
�6/2;Z6

: �m;S2, . . . ,Sn� = �6;0,0,2,4,6� ,

�m

n
;h1

sc, . . . ,hn
sc� = �6

6
;
3

2
,2,

3

2
,2,

3

2
,0� ,

�n0, . . . ,nm−1� = �3,0,3,0,0,0�;
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�2/2;Z2
�6/2;Z6

: �m;S2, . . . ,Sn� = �8;0,2,4,8,12� ,

�m

n
;h1

sc, . . . ,hn
sc� = �8

6
;
4

3
,
4

3
,2,

4

3
,
4

3
,0� ,

�n0, . . . ,nm−1� = �2,0,2,0,2,0,0,0�;

�2/2;Z2
�3/2;Z3

: �m;S2, . . . ,Sn� = �10;0,2,6,12,18� ,

�m

n
;h1

sc, . . . ,hn
sc� = �10

6
;
7

6
,
2

3
,
1

2
,
2

3
,
7

6
,0� ,

�n0, . . . ,nm−1� = �2,0,1,0,1,0,2,0,0,0�;

�2/2;Z2
�3/2;Z3

�6/2;Z6
: �m;S2, . . . ,Sn� = �12;0,2,6,12,18� ,

�m

n
;h1

sc, . . . ,hn
sc� = �12

6
;2,2,2,2,2,0� ,

�n0, . . . ,nm−1� = �2,0,1,0,1,0,2,0,0,0,0,0� .

The filling fractions of those states are given by �=n /m.

G. n=7 cases

When n=7, conditions �43� and �45� have the following
five sets of primitive solutions:

�7/2;Z7
: �m;S2, . . . ,Sn� = �2;0,0,0,0,0,0� ,

�m

n
;h1

sc, . . . ,hn
sc� = �2

7
;
6

7
,
10

7
,
12

7
,
12

7
,
10

7
,
6

7
,0� ,

�n0, . . . ,nm−1� = �7,0�;

�7/8;Z7
�2� : �m;S2, . . . ,Sn� = �8;0,0,2,6,10,14� ,

�m

n
;h1

sc, . . . ,hn
sc� = �8

7
;
10

7
,
12

7
,
6

7
,
6

7
,
12

7
,
10

7
,0� ,

�n0, . . . ,nm−1� = �3,0,1,0,3,0,0,0�;

�7/18;Z7
�3� : �m;S2, . . . ,Sn� = �18;0,4,10,18,30,42� ,

�m

n
;h1

sc, . . . ,hn
sc� = �18

7
;
12

7
,
6

7
,
10

7
,
10

7
,
6

7
,
12

7
,0� ,

�n0, . . . ,nm−1� = �2,0,0,0,0,1,0,0,0,2,0,0,0,0,0�;

�7/14;C7
: �m;S2, . . . ,Sn� = �14;0,2,6,12,20,28� ,

�m

n
;h1

sc, . . . ,hn
sc� = �14

7
;2,2,2,2,2,2,0� ,

�n0, . . . ,nm−1� = �2,0,1,0,1,0,1,0,2,0,0,0,0,0�; �65�

and �1/2.
�7/2;Z7

is the Z7 parafermion state which can be expressed
as a correlation of simple-current operators �1 in the Z7 para-
fermion CFT. �1 has a scaling dimension of h1

sc=6 /7.
�7/8;Z7

�2� and �7/18;Z7
�3� are two new Z7 parafermion states.

�7/8;Z7
�2� can be expressed as a correlation of simple-current

operators �2 while �7/18;Z7
�3� can be expressed as a correlation

of simple-current operators �3 in the Z7 parafermion CFT. �2
has a scaling dimension of h2

sc=10 /7 and �3 has a scaling
dimension of h3

sc=12 /7.
Let us discuss the state �7/14;C7

in more detail. �7/14;C7
has the form

�7/14;C7
��zi
� = GC7

��zi
� 	 �zi − zj�2,

where the pattern of the zeros �or poles� for GC7
��zi
� is given

by �see Eq. �25��

�dab� =�
− 2 − 2 − 2 − 2 − 2 − 4 0

− 2 − 2 − 2 − 2 − 4 − 2 0

− 2 − 2 − 2 − 4 − 2 − 2 0

− 2 − 2 − 4 − 2 − 2 − 2 0

− 2 − 4 − 2 − 2 − 2 − 2 0

− 4 − 2 − 2 − 2 − 2 − 2 0

0 0 0 0 0 0 0

� ,

where a ,b=1, . . . ,7. It implies that there is a second order
pole as an a cluster approaches a b cluster if a+b�7 and a
fourth order pole as an a cluster approaches a b cluster if
a+b=7. Such a pattern of poles is reproduced by

GC7
��zi
� = S�fC7

2 �z1, . . . ,z7�fC7

2 �z8, . . . ,z14�¯� ,

where

fCn
�z1, . . . ,zn� =

1

z1 − z2

1

z2 − z3
¯

1

zn−1 − zn

1

zn − z1
.

To confirm such a result, we note that for a=2, . . . ,7, the
minimal total powers of a variables in fC7

2 are sa with
�s2 , . . . ,s7�= �−2,−4,−6,−8,−10,−14� �see Eq. �29��. The
minimal total powers of a variables in 	�zi−zj�2 are s̃a with
�s̃2 , . . . , s̃7�= �2,6 ,12,20,30,42�. Thus, the minimal total
powers of a variables in �7/14;C7

are given by Sa=sa+ s̃a:
�S2 , . . . ,S7�= �0,2 ,6 ,12,20,28�, which agrees with Eq. �65�.

The function fC7
�z1 , . . . ,z7� can be represented graphically

as in Fig. 3. In such a graphic representation, the maximum
total order of the poles of a variables is the maximum num-
ber of lines that connect a dots. Note that the maximum total
order of the poles of a variables is the negative of the mini-
mal total power of zeros of a variables.

In fact, for any n, we have a state �n/2n;Cn
described by

�h1
sc , . . . ,hn−1

sc ,hn
sc�= �2, . . . ,2 ,0�. The explicit wave function

is given by

�n/2n;Cn
= 	

i�j

�zi − zj�2S�fCn

2 �z1, . . . ,zn�fCn

2 �zn+1, . . . ,z2n�¯�
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H. n=8 cases

When n=8, conditions �43�, �45�, and �51� have the fol-
lowing six sets of primitive solutions:

�8/2;Z8
: �m;S2, . . . ,Sn� = �2;0,0,0,0,0,0,0� ,

�m

n
;h1

sc, . . . ,hn
sc� = �2

8
;
7

8
,
3

2
,
15

8
,2,

15

8
,
3

2
,
7

8
,0� ,

�n0, . . . ,nm−1� = �8,0�;

�8/18;Z8
�3� : �m;S2, . . . ,Sn� = �18;0,2,8,14,24,36,48� ,

�m

n
;h1

sc, . . . ,hn
sc� = �18

8
;
15

8
,
3

2
,
7

8
,2,

7

8
,
3

2
,
15

8
,0� ,

�n0, . . . ,nm−1� = �2,0,1,0,0,0,2,0,0,0,1,0,2,0,0,0,0,0�;

�8/8;C8/Z2
: �m;S2, . . . ,Sn� = �8;0,0,2,4,8,12,16� ,

�m

n
;h1

sc, . . . ,hn
sc� = �8

8
;
3

2
,2,

3

2
,2,

3

2
,2,

3

2
,0� ,

�n0, ¯ ,nm−1� = �3,0,2,0,3,0,0,0�;

�4
2

;Z4
; �2/2;Z2

; and �1/2.

�8/2;Z8
is the Z8 parafermion state which can be expressed

as a correlation of simple-current operators �1 in the Z8 para-
fermion CFT. �1 has a scaling dimension of h1

sc=7 /8.
�8/18;Z8

�3� is a new Z8 parafermion state. �8/18;Z8
�3� can be ex-

pressed as a correlation of simple-current operators �3 in the
Z8 parafermion CFT. �3 has a scaling dimension of h3

sc

=15 /8.
Let us discuss the state �8/8;C8/Z2

in more details. We note
that the h vector for the �8/8;C8/Z2

state is the difference of
the h vectors of the �8/2;C8

state and the �2/2;Z2
state:

�3

2
,2,

3

2
,2,

3

2
,2,

3

2
,0� = �2,2,2,2,2,2,2,0�

− �1

2
,0,

1

2
,0,

1

2
,0,

1

2
,0� .

�8/8;C8/Z2
has the form

�8/8;C8/Z2
��zi
� = GC8/Z2

��zi
� 	 �zi − zj�

where the minimal total power of a variables in GC8/Z2
��zi
�

is given by sa with �s2 , . . . ,s8�= �−1,−3,−4,−6,−7,−9,
−12�. We find that

GC8/Z2
��zi
� = A�fC8/Z2

�z1, . . . ,z8�fC8/Z2
�z9, . . . ,z16�¯�

where A is the antisymmetrization operator and the function
fC8/Z2

�z1 , . . . ,z8� is represented by Fig. 4�a�.
We would like to mention that a state simpler than

�8/8;C8/Z2
is �4/4;C4/Z2

that has the same pattern of zeros as a
composite state of Z4 parafermion state �4/2;Z4

:

�4/4;C4/Z2
� �4/2;Z4

�4/2;Z4
.

Here, � means to have the same pattern of zeros. �4/4;C4/Z2
has the form

�4/4;C4/Z2
��zi
� = GC4/Z2

��zi
� 	 �zi − zj� ,

where the minimal total power of a variables in GC4/Z2
��zi
�

is given by sa with �s2 , . . . ,s4�= �−1,−3,−6�. We find that

GC4/Z2
��zi
� = A�fC4/Z2

�z1, . . . ,z4�fC4/Z2
�z5, . . . ,z8�¯�

where the function fC4/Z2
�z1 , . . . ,z4� is represented by Fig. 5.

In fact, fC4/Z2
�z1 , . . . ,z4�=	1�i�j�4

1
zi−zj

is the only function
whose total order of poles for two-, three-, and four-particle
clusters are given by 1, 3, and 6, respectively. Such a state is
studied recently by Yu.46

1

27

6

5 4

3

FIG. 3. The graph that represents fC7
. Each line between the ith

dot and the jth dot represent a factor 1 / �zi−zj�.

(a)

2

3

56

4

1

8

7

2

3

56

4

1

8

7

(b)

FIG. 4. The graphs that represent fC8/Z2
. Each line between the

ith dot and the jth dot represents a factor 1 / �zi−zj�. After the anti-
symmetrization, fC8/Z2

from graph �a� gives rise to a nonzero anti-
symmetric function, while fC8/Z2

from graph �b� gives rise to van-
ishing antisymmetric function.

4

1 2

3
FIG. 5. The graph that represents fC4/Z2

. Each line between the
ith dot and the jth dot represent a factor 1 / �zi−zj�.
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Another interesting state is �6/6;C6/Z2
which has the same

pattern of zeros as a composite state of Z3 and Z6 parafer-
mion states:

�6/6;C6/Z2
� �3/2;Z3

�6/2;Z6
.

�6/6;C6/Z2
has the form

�6/6;C6/Z2
��zi
� = GC6/Z2

��zi
� 	 �zi − zj� ,

where the minimal total power of a variables in GC6/Z2
��zi
�

is given by sa with �s2 , . . . ,s6�= �−1,−3,−4,−6,−9�. We find
that

GC6/Z2
��zi
� = A�fC6/Z2

�z1, . . . ,z6�fC6/Z2
�z7, . . . ,z12�¯�

where the function fC6/Z2
�z1 , . . . ,z6� is represented by Fig.

6�a�.

I. n=9 cases

When n=9, conditions �43�, �45�, and �51� have the fol-
lowing six sets of primitive solutions:

�9/2;Z9
: �m;S2, . . . ,Sn� = �2;0,0,0,0,0,0,0,0� ,

�m

n
;h1

sc, . . . ,hn
sc� = �2

9
;
8

9
,
14

9
,2,

20

9
,
20

9
,2,

14

9
,
8

9
,0� ,

�n0, . . . ,nm−1� = �9,0�;

�9/8;Z9
�2� : �m;S2, . . . ,Sn� = �8;0,0,0,2,6,10,14,18� ,

�m

n
;h1

sc, . . . ,hn
sc� = �8

9
;
14

9
,
20

9
,2,

8

9
,
8

9
,2,

20

9
,
14

9
,0� ,

�n0, . . . ,nm−1� = �4,0,1,0,4,0,0,0�;

�9/32;Z9
�4� : �m;S2, . . . ,Sn� = �32;0,6,14,26,42,60,84,108� ,

�m

n
;h1

sc, . . . ,hn
sc� = �32

9
;
20

9
,
8

9
,2,

14

9
,
14

9
,2,

8

9
,
20

9
,0� ,

�n0, . . . ,nm−1� = �2,0,0,0,0,0,1,0,1,0,0,

0,1,0,0,0,1,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0�;

�9/12;C9/Z3
: �m;S2, . . . ,Sn� = �12;0,2,4,8,14,20,28,36� ,

�m

n
;h1

sc, . . . ,hn
sc� = �12

9
;
4

3
,
4

3
,2,

4

3
,
4

3
,2,

4

3
,
4

3
,0� ,

�n0, . . . ,nm−1� = �2,0,2,0,1,0,2,0,2,0,0,0�;

�3/2;Z3
; and �1/2.

�9/2;Z9
is the old Z9 parafermion state. �9/8;Z9

�2� and
�9/32;Z9

�4� are new Z9 parafermion states, which can be ex-
pressed as a correlation of simple-current operators �2 and
�4 in the Z9 parafermion CFT, respectively. We also note that
the h vector for the �9/12;C9/Z3

state is the difference of the h
vectors of the �9/18;C9

state and the �3/2;Z3
state:

�4

3
,
4

3
,2,

4

3
,
4

3
,2,

4

3
,
4

3
,0� = �2,2,2,2,2,2,2,2,0�

− �2

3
,
2

3
,0,

2

3
,
2

3
,0,

2

3
,
2

3
,0� .

However, we do not know if a symmetric polynomial de-
scribed by the h vector � 12

9 ; 4
3 , 4

3 ,2 , 4
3 , 4

3 ,2 , 4
3 , 4

3 ,0� really ex-
ists or not.

IX. DISCUSSION

In this paper, we use a local condition—the pattern of
zeros–to classify symmetric polynomials of infinity vari-
ables. We find that symmetric polynomials of n-cluster form
�see Eqs. �23� and �24�� can be labeled by a set in integers
�m ;S2 , . . . ,Sn�. Those integers must satisfy conditions �43�,
�45�, and �47�.

Using the symmetric polynomials labeled by n and
�m ;S2 , . . . ,Sn�, we have constructed a large class of simple
FQH states. The constructed FQH states contain both the
Laughlin states and non-Abelian states, such as the Read–
Rezayi parafermion states, the new generalized parafermion
states, and some other new non-Abelian states. Although the
constructed FQH states are for bosonic electrons, the bosonic
FQH states and the fermionic FQH states have a simple one-
to-one correspondence:

�fermion = �boson	
i�j

�zi − zj� .

We can easily obtain fermionic FQH states from the corre-
sponding bosonic ones.

We have seen that the ground state wave functions of
different Abelian and non-Abelian fraction quantum Hall
states can be characterized by patterns of zeros �Sa
. One
may wonder: can we use the data �Sa
 to calculate various
topological properties of the corresponding fraction quantum
Hall state? In Ref. 45, we will show that many topological
properties can indeed be calculated from �Sa
, such as the
number of possible quasiparticle types and their quantum
numbers.

However, �Sa
 cannot describe all FQH states. More com-
plicated “multicomponent” FQH states, such as the �=2 /5

(b)

1 2

3

45

6

1 2

3

45

6

(a)

FIG. 6. The graphs that represent fC6/Z2
. Each line between the

ith dot and the jth dot represents a factor 1 / �zi−zj�. After the anti-
symmetrization, fC6/Z2

from graph �a� gives rise to a nonzero anti-
symmetric function, while fC6/Z2

from graph �b� vanishes.
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Abelian FQH state, are not included in our construction. This
suggests that certain non-Abelian states, such as the parafer-
mion states, belong to the same class as the simple one-
component Laughlin states. Thus, our result can be viewed
as a classification of “one-component” FQH states, although
the precise meaning of “one-component” remains to be clari-
fied. String-net condensation and the associated tensor cat-
egory theory26 provide a fairly complete classification of
nonchiral topological orders in two spatial dimensions. We
hope the framework introduced in this paper be a step toward
a classification of chiral topological orders in two spatial
dimensions.
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APPENDIX A: ELECTRONS ON A SPHERE

To test if the FQH Hamiltonian has an energy gap or not,
we need to put the FQH state on a compact space to avoid
the gapless edge excitations which are always present.47 In
this appendix, we will discuss how to put a FQH state on a
sphere.31 We assume that there is a uniform magnetic field on
a sphere with a total N� flux quanta. The wave function of
one electron in the first Landau level has the form31

���,�� = �
m=0

N�

cmvN�−mum, �A1�

where u=cos�� /2�ei�/2 and v=sin�� /2�e−i�/2.48

We can also use a complex number z=u /v to parameter-
ize the points on the sphere. In terms of z, the wave function
becomes

���,�� = e−iN��/2 sinN���/2��
m=0

N�

cmzm

=
e−iN��/2

�1 + �z�2�N�/2 �
m=0

N�

cmzm. �A2�

We see that we can use a polynomial ��z� to describe the
wave function of one electron in the first Landau level:

��z� = �
m=0

N�

cmzm. �A3�

Here, the power of z is equal or less than N�. Equations �A1�
and �A2� allow us to go back and forth between the spinor
representation ��u ,v� and the polynomial representation
��z� of the states on the sphere.

Since polynomials �A3� represent wave functions on a
sphere, hence they form a representation of SU�2� �or O�3��
rotation of the sphere. The dimension of the representation is
N�+1. Such a representation is said to carry an angular mo-
mentum

J =
N�

2
.

The SU�2� Lie algebra is generated by

Lz = z�z − J, L− = �z, L+ = − z2�z + 2Jz ,

which satisfy

�Lz,L�� = L�, �L+,L−� = 2Lz.

Those operators act within the space formed by the polyno-
mials of form �A3�. The inner product in the space of the
polynomials is defined through the inner product of the wave
functions �1�� ,��= e−iN��/2

�1+�z�2�N�/2 �1�z� and �2�� ,��
= e−iN��/2

�1+�z�2�N�/2 �2�z�:

��2��1� =� sin���d�d��2
���,���1��,��

=� 4 cos��/2�sin3��/2�d
cos��/2�
sin��/2�

d��2
��1

=� 4d2z

�1 + �z�2�2

1

�1 + �z�2�N�
�2

��z��1�z� .

Now let us consider a polynomial of two variables
��z1 ,z2� where the highest power for z1 is 2J1 and the high-
est power for z2 is 2J2 �here, 2J1 and 2J2 are integers�.
��z1 ,z2� can also be viewed as a representation of SU�2�,
wherein the generators of the SU�2� Lie algebra are given by

Lz = L1
z + L2

z , L� = L1
� + L2

�,

L1
z = z1�z1

− J1, L1
− = �z1

, L1
+ = − z1

2�z1
+ 2J1z1,

L2
z = z2�z2

− J2, L2
− = �z2

, L2
+ = − z2

2�z2
+ 2J2z2.

��z1 ,z2� is not an irreducible representation of SU�2�. It can
be decomposed as �J=�J1−J2�

J1+J2 HJ where HJ is an angular-
momentum J representation of SU�2�. We may say that z1
has angular momentum J1 and z2 has an angular momentum
J2. Thus, the angular momenta of ��z1 ,z2� are those ob-
tained by combining the angular momentum J1 and the an-
gular momentum J2.

What are the states in the space HJ? Let �J,m, where m
=−J ,−J+1, . . . ,J, be the polynomials in the HJ space such
that �J,m is the eigenstate of Lz with eigenvalue m. Let us
also introduce z�=z1�z2. We see that

L− = �z1
+ �z2

= 2�z+
,

L+ = −
1

2
�z+

2 + z−
2��z+

− z+z−�z−
+ 2J1z1 + 2J2z2,

Lz = z+�z+
+ z−�z−

− J1 − J2.

From L−�J,−J=0 and Lz�J,−J=−J�J,−J, we find that

�J,−J � z−
J1+J2−J = �z1 − z2�J1+J2−J. �A4�

�J,m’s are generated from �J,−J by applying L+’s. Since L+

never reduce the power of z−, �J,m thus has the form
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z−
J1+J2−Jf�z1 ,z2�= �z1−z2�J1+J2−Jf�z1 ,z2�. This reveals a close

relation between the order of zeros and the angular momen-
tum: the polynomial ��z1 ,z2� with angular momentum J
must have an order J1+J2−J zero as z1→z2.

On the other hand, let �D�z1 ,z2� be a polynomial that has
a Dth order zero as z1→z2, i.e., �D has the form �z1
−z2�Df�z1 ,z2�. We note that the actions of L� and Lz do not
decrease the power of zero as z1→z2. Therefore, the action
of L� and Lz can never change �D to �J,−J if J	J1+J2−D.
Thus, �D�z1 ,z2� can only contain angular momenta J�J1
+J2−D which lead to zeros of order D or more.

We can let z1→z2 in �D�z1 ,z2� and obtain F�z2� as

�D�z1,z2� = �z1 − z2�DF�z2� + O��z1 − z2�D+1� .

The minimum Lz eigenvalue for �z1−z2�DF�z2� is −J1−J2
+D which corresponds to F�z2�=1. After the SU�2� rota-
tions, we generate other polynomials F�z2� from F�z2�=1.
Those F�z2� polynomials form an angular momentum J1
+J2−D representation of SU�2�. Thus, fusing z1 and z2 to-
gether produces a variable with an angular momentum J1
+J2−D, where J1 is the angular momentum of z1, J2 is the
angular momentum of z2 and D is the power of the zeros as
z1→z2.

APPENDIX B: THE RELATION TO CONFORMAL FIELD
THEORY

It was pointed out that the symmetric polynomial
��z1 , . . . ,zN� that describes a FQH state can be written as an
N-point correlation function of a certain operator Ve in a
CFT,14,36,37

���zi
� = lim
z�→�

z�
2hN�V�z��	

i

Ve�zi�� . �B1�

To find the corresponding CFT of a symmetric polynomial �
described by a pattern of zeros �Sa
, we will first calculate
the scaling dimension of the operator Ve from Sa.

1. Spin of the type-a particles

Due to the relation between the scaling dimension and the
intrinsic spin, we will first calculate the intrinsic spin of the
electron and the a-electron clusters. From Eq. �8�, we see
that the angular momentum Ja of the type-a particle has the
form Ja=aJ−Sa, where Sa is an intrinsic property of the
type-a particle and is independent of the magnetic flux N�

=2J through the sphere �see Eq. �33��. Sa depend only on the
pattern of the zeros and is called the orbital spin of the type-a
particle.29,49,50

As discussed in Ref. 50, the orbital spin contains two
contributions Sa=Sa

sv+ha. Sa
sv comes from the spin vector and

ha is the intrinsic spin. The intrinsic spin is related to the
statistics of the particle through the spin-statistics theorem.
The statistics in turn is related to the scaling dimension �for
example, bosons always have integral scaling dimensions�.

To separate the two contributions, we need to identify the
contribution from the spin vector. This can be achieved by
noting that the spin vector contribution is proportional to a:
Sa

sv=Ca. The key is to find the proportional coefficient C.

For this purpose, let us consider SnNc
in Eq. �38�. SnNc

is
the orbital spin for the bound state of Nc type-n particles. We
know that the type-n particles form the Laughlin state �20�.
For a bound state of Nc type-n particles, its orbital spin SnNc
contains a term linear in Nc which is the contribution from
the spin vector and a term quadratic in Nc which is the in-
trinsic spin. From Eq. �38�, we see that the contribution from
the spin vector to SnNc

is

SnNc

sv = Nc�Sn −
mn

2
� .

After replacing Nc by a /n, we identify the contribution from
the spin vector to Sa:

Sa
sv = a�Sn

n
−

m

2
� . �B2�

Thus, the intrinsic spin is

ha = Sa − a�Sn

n
−

m

2
� . �B3�

ha is also the scaling dimension of the operator �Ve�a.

2. Symmetric polynomial as a correlation in a conformal field
theory

The electron operator Ve�z� in the CFT expression of �
�Eq. �B1�� has the form

Ve�z� = �1�z�ei��z�/��,

where ei�/�� is the vertex operator in a Gaussian model. The
vertex operator has a scaling dimension 1

2� . �1 is a simple-
current operator;14,35,37 i.e, �1 satisfies the following fusion
relation:

�a�b = �a+b, �a 
 ��1�a.

Such an Abelian fusion rule is closely related to the unique-
fusion condition discussed in Sec. III A. If ��z1 , . . . ,zN� has
an n-cluster form, �1 satisfies

�n = ��1�n � 1.

��z1 , . . . ,zN� can be decomposed according to Eq. �21�.
The correlation of the Gaussian part ei��z�/�� produces the ��

part of � and the correlation of the simple-current part �1
produces the G part of �.

The intrinsic spin ha is actually the scaling dimension of
the ath power of the electron operator, Va
�Ve�a. The scal-
ing dimension of the Gaussian part eia��z�/�� is �−1 a2

2 = a2m
2n and

ha
sc = ha −

a2m

2n
�B4�

is the scaling dimension of the simple-current operator �a.
We can obtain the scaling dimension ha of the operator Va

more directly without using the concept of spin vector and
orbital spin. First, we note that the derived polynomial
P��zi

�a�
� can be expressed as a correlation of Va�zi
�a��’s,
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P��zi
�a�
� = lim

z�→�
z�

2hN�V�z��	
i,a

Va�zi
�a��� .

The operator-product expansion of Va’s determines the pow-
ers of zeros in the correlation function P��zi

�a�
�. The �Dab�th
order zero as zi

�a�→zi
�b� implies that

Va�z1�Vb�z2� � �z1 − z2�DabVa+b + O��z1 − z2�Dab+1� .

Thus, the scaling dimension of Va satisfies

ha+b = ha + hb + Dab. �B5�

From Eq. �10�, we see that ha and Sa satisfy the same equa-
tion �except the S1=0 condition�. Thus,

ha = Sa − Ca

for a certain constant C. Since �nk
��1�nk=1 and Vkn

=eink�/��, hnk contains only a term that is quadratic in k. From
Eq. �38�, we see that

Snk = kSn +
mnk�k − 1�

2
. �B6�

Thus, we must choose C to cancel the linear k term in Eq.
�B6� to obtain hnk. We find that C=

Sn

n − m
2 and

ha = Sa −
aSn

n
+

am

2
. �B7�

This allows us to obtain the scaling dimension of the simple
current �a which is given by ha

sc in Eq. �34�. We can also
express Sa in terms of ha

sc �see Eq. �35��.
We note that CFT requires that ha=0 mod 1 since Va are

bosonic operators. This requires

C =
Sn

n
−

m

2
= 0 mod 1. �B8�

Such a condition is satisfied if we impose condition �51�.
Let us introduce V−a
Va

† where we have assumed �a
†

=�n−a. Consider

G�z1, . . . ,zk� = �Va1
�z1� ¯ Vak

�zk��

= P�z1, . . . ,zk�	
i�j

�zi − zj�Dai,aj,

where Da,b=ha+b−ha−hb, P is a polynomial of zi’s, and
�iai=0. The part 	i�j�zi−zj�Da,b reproduces the poles/zeros
of the correlation function as zi−zj→0. As z1→�, 	i�j�zi

−zj�Da,b behaves as z1
�i=2

k Da1,ai. As a CFT correlation function
G�z1 , . . . ,zk� should behave as 1 /z1

2ha1 in z1→� limit. Thus,
the maximal power of z1 in P�z1 , . . . ,zk� must be

�1 = − �
i=2

k

Da1,ai
− 2ha1

,

=�k − 3�ha1
+ �

i=2

k

hai
− �

i=2

k

ha1+ai
,

where a1=−�i=2
k ai. When k=4, we have

�1 = ha2+a3+a4
+ ha2

+ ha3
+ ha4

− ha2+a3
− ha3+a4

− ha3+a2
,

where we have used h−a=ha. The requirement that �1�0 is
the third condition in Eq. �45�.

3. Generalized vertex algebra

To understand the CFT representation of the symmetric
polynomial more deeply, let us consider generalized vertex
algebra.51 The CFT formed by the simple-current operators
�a is a special case of a generalized vertex algebra.

Consider operators A�z�, B�w�, etc., which form an
operator-product-expansion algebra

A�z�B�w� =
1

�z − w�
AB
��AB�
AB

�w� + �z − w��AB�
AB−1�w�

+ �z − w�2�AB�
AB−2�w� + ¯
 , �B9�

and

�z − w�
ABA�z�B�w� = �AB�w − z�
ABB�w�A�z� , �B10�

where �AB is a phase factor. Here, �z−w�
AB 
�z
−w�
ABe
ABi�zw, where �z−w�= �z−w�ei�zw and −���zw��.
The operator product in Eq. �B9� is assumed to be radially
ordered: A�z�B�w�→R�A�z�B�w��, where

�z − w�
ABR�A�z�B�w��

= ��z − w�
ABA�z�B�w� �z� 	 �w�
�AB�w − z�
ABB�w�A�z� �w� 	 �z� .�

We see that commutation relation �B10� ensures that the cor-
relation functions of A�z� and B�w� are smooth functions. Let
hA, hB and h�AB�
AB

be the scaling dimensions of A, B, and

�AB�
AB
, then


AB = hA + hB − h�AB�
AB
.

The self-consistency of the vertex algebra requires 
AB’s
to satisfy51


AB + 
AC − 
AD = 0 mod 1, �B11�

and �AB’s to satisfy

�AB�AC = �AD�− �
AB+
AC−
AD, �B12�

where D= �BC�
BC
.

The fusion rule of the simple-current operators �a�b
=�a+b requires that those operators form the following vertex
operator algebra:

�a�z��b�w� =
cab��a+b�w� + O�z − w��

�z − w�ha
sc+hb

sc−ha+b
sc ,

�a�z��−a�w� =
1 +

2ha
sc

c �z − w�2T�w� + O��z − w�3�

�z − w�2ha
sc ,

where �−a
�n−a and �a+n
�a.
We see that the above algebra of simple currents �a is a

special case of generalized vertex algebra. We have
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ab = ha
sc + hb

sc − ha+b
sc .

Condition �B11� becomes

�3�a,b,c� = 0 mod 1, �B13�

where we have used Eqs. �49� and �46�. From Eq. �B12�, we
see that if �3�a ,b ,c�=odd for certain choices of a ,b ,c, then
�ab cannot be trivial �i.e., �ab=1�. When �3�a ,b ,c�=even
for all a ,b ,c, then �ab can be a trivial solution �ab=1. Thus
condition �51� has a special meaning in CFT.

4. Conditions on the h vectors

Due to the one-to-one correspondence between the S vec-
tors and the h vectors �see Eqs. �34� and �35��, we can trans-
late conditions �43� and �45� on the S vectors to some con-
ditions on the h vectors.

Note that an h vector is specified by n, m, and
h1

sc , ¯ ,hn−1
sc . We extend h1

sc , . . . ,hn−1
sc to ha

sc for any integer a
by requiring

h0
sc = 0, ha

sc = ha+n
sc .

Conditions �43� become

Sa = ha
sc − ah1

sc +
a�a − 1�m

2n
= non-negative integer,

m 	 0, mn = even,

2nh1
sc + m = 0 mod n . �B14�

From 2nh1
sc+m=0 mod n, we see that 2nh1

sc is an integer.
From 2nha

sc−a�2nh1
sc�+a�a−1�m=even integer, we see that

2nha
sc are always integers. Also, 2nh2a

sc are always even inte-

gers and 2nh2a+1
sc are either all even or all odd. Since hn

sc=0,
thus when n=odd 2nha

sc are all even. Only when n=even can
2nh2a+1

sc either be all even or all odd.
To generate sets of ha

sc that satisfy the above conditions,
we will use Eq. �34�. Setting a=1 in Eq. �34�, we get
2nh1

sc=m�n−1�−2Sn. We see that when n=odd, 2nh1
sc

=even. When n=even, 2nh1
sc=even when m=even and

2nh1
sc=odd when m=odd. We also see that Sn�m�n−1� /2

which implies that Sa�m�n−1� /2 for a=2,3 , . . . ,n.
Conditions �45� become

nh2a
sc − 2anh1

sc + ma�2a − 1� = 0 mod 2n ,

ha+b
sc − ha

sc − hb
sc � −

abm

n
,

ha+b+c
sc − ha+b

sc − hb+c
sc − ha+c

sc + ha
sc + hb

sc + hc
sc � 0. �B15�

Condition �51� becomes

ha+b+c
sc − ha+b

sc − hb+c
sc − ha+c

sc + ha
sc + hb

sc + hc
sc = even.

�B16�

The first condition in Eq. �B14� and the second condition
in Eq. �B15� imply that

ha+b
sc − ha

sc − hb
sc +

abm

n
� 0,

ha+b
sc − ha

sc − hb
sc +

abm

n
= 0 mod 1, �B17�

which are part of defining conditions of parafermion CFT if
m=2. Thus, the pattern of zeros of symmetric polynomial
may have a natural relation to parafermion CFT.
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