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We extend the previously established mode-expansion theory to study the eigenmodes of metallic ring
systems made by thin wires possessing filmlike rectangular cross sections. Applications of the theory to a
single split-ring resonator �SRR� yield essentially the same results with finite-difference-time-domain �FDTD�
simulations on realistic structures, which justify some basic assumptions adopted in the theory. We then apply
the theory to study the resonance properties of a broadside coupled split-ring resonator and show that such a
planar resonator exhibits magnetic responses along all three dimensions under different conditions. FDTD
simulations on realistic structures are performed to successfully verify the predictions based on the extended
mode-expansion theory and reveal that mutual-SRR interactions in a periodic SRR array may lead to a
significant change of the eigenmode properties, including a reversal of the frequency sequence for two reso-
nance modes. We finally employ FDTD simulations to design a realistic layered metamaterial that exhibits
magnetic responses along all three dimensions.
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I. INTRODUCTION

Stimulated by recently demonstrated left-handed metama-
terials �LHM� and their many fascinating electromagnetic
�EM� properties,1–3 microstructures that can provide nega-
tively magnetic responses have attracted considerable atten-
tion. The split-ring resonator4 �SRR� was proposed as the
first candidate to realize a negative � for B field along the
direction normal to the ring, and then many of its topological
equivalents, such as rectangular SRRs, were
investigated.3,5–11 Recently, there were much interests in new
types of resonant structures such as the rod-pair structure12,13

and the fishnet structure,14,15 which were demonstrated to
also exhibit negatively magnetic responses under certain
conditions. However, all these proposed resonant structures
can provide magnetic responses usually only along one or
two specific directions. In order to obtain a metamaterial that
has magnetic responses along all three dimensions, one
needs to rotate the proposed resonant elements and combine
them with the original ones to fabricate a composite material
with complex microstructures. Recently, the designs and fab-
rications of isotropic SRRs have also drawn intensive
attention.16–23

Extensively theoretical studies have been performed on
the EM properties of the available resonance units, particu-
larly the SRR structures. These studies include analytical
ones with effective circuit parameters determined
empirically4,24,25 and brute-force numerical simulations6–9 on
realistic structures. Within the quasistatic approximation
�QSA�, we recently proposed an analytical theory to calcu-
late the EM eigenmodes of a metallic ring system made by
wires of circular cross sections,26 and applied the theory to
study a double-ring SRR in which the two rings are placed
on the same plane �denoted by coplanar double-ring SRR in
what follows�.27 The essential idea in our theory is to expand
every quantity �current, inductive and/or capacitive field, re-

sistivity, etc.� to Fourier series and then derive explicit ex-
pressions to calculate the inductance and/or capacitance pa-
rameters for every Fourier components in terms of the
geometrical parameters. By doing so, our theory has taken
account of the inductive and/or capacitive effects completely
through considering all Fourier modes and calculated those
circuit parameters rigorously �within the QSA�. The obtained
results were in excellent agreements with those obtained
with brute-force numerical simulations.26,27 However, there
is an important limitation that makes our theory inapplicable
to more realistic situations. While we assumed the wire
forming the SRR to have a circular cross section,26,27 this is
not generally the case in practical situations, where the wire
usually possesses a filmlike rectangular cross section.2,4,28–33

The motivations of the present work are to extend the
mode-expansion theory26,27 to more realistic situations and to
search for new resonant units which have better EM proper-
ties. In this paper, based on several reasonable assumptions,
we extend the mode-expansion theory to the situations where
the wires forming the ring possess filmlike rectangular cross
sections �denoted as flat wires in what follows�. As a bench-
mark test, we first apply the theory to study a single-ring
SRR made with flat wires and show that the obtained reso-
nance frequencies are in excellent agreement with finite-
difference-time-domain �FDTD� simulations on realistic
structures. As another illustration, we then employ the theory
to re-examine the broadside coupled SRR �BC-SRR� struc-
ture first proposed by Marques and coworkers30–32 which
consists of two identical split rings placed on different planes
separated a small vertical distance. We show that such a reso-
nator possesses rich electric/magnetic resonance properties.
In particular, such a planar resonator with certain geometry
exhibits magnetic responses along all three directions at
some particular frequency. We finally perform accurate
FDTD simulations on realistic structures to successfully
demonstrate all theoretical predictions based on the extended
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mode-expansion theory and design a realistic structure to
exhibit three-dimensional �3D� magnetic responses at the
same frequency.

The present paper is organized as follows: In the Sec. II,
we establish the extended mode-expansion theory for flat-
wire cases with some reasonable assumptions. We then apply
the theory to study a single-ring flat-wire SRR and compare
the calculated results with brute-force numerical calculations
in Sec. III. Section IV contains the discussions on the EM
properties of a BC-SRR, with predictions fully supported by
FDTD simulations on realistic systems, including both the
SRR arrays and a single resonator. In Sec. V, we employ
FDTD simulations to design a realistic metamaterial that
possesses magnetic responses along all three dimensions at
the same frequency. Finally we conclude our paper in Sec.
VI.

II. MODE-EXPANSION THEORY FOR METALLIC RINGS
MADE BY FLAT WIRES

We consider a single ring of a radius R placed on the x-y
plane to establish our theory. The metallic ring is made from
a flat wire with a rectangular cross section defined by t
�2a, where 2a and t are the width and thickness of the wire,
as schematically shown in the inset to Fig. 1�a�. We focus on
the situation that R�2a� t, which is generally the case in
practice.2,4,28–33 Following the mode-expansion theory estab-
lished in Ref. 26, we need to first understand the distribution
of the current flowing in the metallic flat wire. In general, the
current distributions over the rectangular cross section
should be very complicated and depend on the concrete form

of the probing field. For a good metal, however, the skin
effect dictates that the current should mainly distribute on the
metal surface, within a thin layer of a thickness equal to the
metal skin depth. Since t�2a, we can neglect the current
flowing along the two side surfaces located at r=R�a and
model the true current distributions as two identical current
sheets located at z= � t /2. Noting that a�� with � being
the wavelength of the probing EM wave of interest, we fur-
ther take an approximation to assume that the current distrib-
utes uniformly along the wire width. Collecting all these con-
siderations, we can write the current distribution as:

j��r��

= � j��� · t����z + t/2� + ��z − t/2��e��, � � �R − a,R + a�
0, otherwise

,

�1�

where t�� t is the skin depth of the metal.
To verify the above assumptions, we performed FDTD

simulations to study the current distributions on the flat-wire
SRRs. We considered two different situations that the SRR

was illuminated by a plane EM wave with E� � ŷ ,k� � ẑ or

E� � ŷ ,k� � x̂, and computed the surface current distributions on

the flat wires by using J� =n� �H� . Here, E� , H� , and k� denote the
electric field, magnetic field, and the wave vector of the
plane EM wave, correspondingly. The results were shown in
Figs. 1�a� and 1�b�, from which we found that the current
distribution is indeed nearly uniform along the wire width,
justifying Eq. �1� that we have assumed.34–36

With the current distributions known, we now follow the
procedures of the mode-expansion theory26 to derive the re-
quired equations for the flat-wire situations. First, consider
the inductance parameters. Different from the circular cross-
section case which possesses a well-defined symmetry,26

here in the flat-wire case, the inductive field E� L�� ,�� has a
nonlocal relation with the current distribution for the coordi-

nate �. Specifically, E� L�� ,�� not only depends on the current
density at the local point �� ,��, but also depends on the
current density at a general point ��� ,���. The nonlocal
problem for the coordinate � is solved later by the Fourier
transformation in the spirit of the mode expansion. However,
the nonlocal problem for index � is difficult to handle and
makes it difficult to define the inductance parameters of the
structure unambiguously. To solve this problem, we average

both E� L�r�� and j��r��� over the cross-section area of the wire in
which the current flows and then set up the relationship be-
tween the two averaged quantities. By doing do, we can
define the circuit parameters unambiguously and derive the
explicit expressions to calculate these circuit parameters. We
follow with Eq. �1� and define the averaged inductive field to
be
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FIG. 1. �Color online� Surface current density versus � on the
flat wire of a single-ring SRR at a fixed angle �=	, calculated by
FDTD simulations. Here, the SRR is illuminated by plane EM

waves with �a� E� � ŷ, k� � ẑ and �b� E� � ŷ, k� � x̂; the geometrical param-
eters of the single-ring SRR are R=16 mm, a=1 mm, t=0.2 mm
and the gap width 
=	 /36. Inset shows schematically the geom-
etry of the rectangular cross section of the single-ring SRR.
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EL��� =
� E� L��,z,�� · e��t����z + t/2� + ��z − t/2��dzd�

� t����z + t/2� + ��z − t/2��dzd�

,

�2�

After a tedious but straightforward derivation �see Appendix
A�, we obtain

EL
m = − i��Lm + Lm� �Im/2, �3�

where EL
m and Im are the Fourier components of the averaged

electric field EL��� and the current I���= j��� ·4at�, and
Lm ,Lm� are the inductance parameters. The capacitance pa-
rameters were calculated similarly,

EC
m = −

1

2

1

i�
� 1

Cm
+

1

Cm�
	Im, �4�

where EC
m are the Fourier components of the capacitive field

and Cm ,Cm� are the inductance parameters. For the present
flat-wire system with t�R, it is shown in Appendix A that
Lm� 
Lm and 1 / Cm� 
 1 / Cm . Therefore, we can further sim-
plify Eqs. �3� and �4� as

�EL
m = − i�LmIm

EC
m = −

Im

i�Cm

�5�

for the flat-wire case with t /R→0.
We note that Eq. �5� can also be derived assuming that the

current across the flat wire takes a uniform distribution, i.e.,

j��r�� = � j��� · t · ��z�e��, � � �R − a,R + a�
0, otherwise

. �6�

This fact indicates that the current distribution Eq. �1� can be
further simplified as Eq. �6�. The physics underlying this
simplification lies on the following two facts: First, when
t�R, the differences between the self-interaction contribu-
tions �Lm� ,Cm� , etc.� and the mutual-interaction ones �Lm� ,Cm� ,
etc.� approach zero. Second, all those circuit parameters do
not depend on the thickness of the current sheet t�.

With all circuit parameters known, we follow the mode-
expansion theory established in Ref. 26 to set up the circuit
equation,

�
m�

�̃�m − m�� + i��Lm −

1

�Cm
	�mm��Im� = Em

ext, �7�

where �̃�m� and Em
ext are the Fourier components of the resis-

tivity function of the ring �̃��� and the external driven field
Eext���. We then solve the matrix problem �Eq. �7�� to cal-
culate the eigenmode properties of the flat-wire SRR, includ-
ing the resonance frequency, the dipole moments under arbi-
trary external probing fields, etc.

III. APPLICATIONS TO A SINGLE-RING FLAT-WIRE
SPLIT-RING RESONATOR

In order to justify the approximations that we adopted, we
apply the theory to study the eigenmode properties of a

single-ring SRR made with flat wires and compare our re-
sults with brute-force FDTD simulations on realistic sys-
tems. For a single-ring SRR with geometrical parameters set
as a /R=0.05, gapwidth 
=	 /36, we solved the circuit Eq.
�7� with the current distribution given by Eq. �6�. Numerical
calculations show that the lowest resonance frequency is
�1=0.457�0, independent of the film thickness t, which is
shown by a dashed line in Fig. 2. Here, �0=c /R is the fre-
quency unit of the present problem with c as the speed of
light. If we adopt the more realistic current distribution form
Eq. �1�, we found that the resulting resonance frequency ex-
hibits a very weak dependence on the parameter t, also
shown in Fig. 2 by the solid line. We performed FDTD simu-
lations on a series of realistic single-ring SRRs with R
=10 mm, 2a=1 mm, 
=	 /36, and different values of t. The
lowest resonance frequencies of these SRRs obtained by
FDTD simulations are shown as solid stars in Fig. 2, which
are in good agreements with the numerical results obtained
from the extended mode-expansion theory. Such a good
agreement justifies the basic assumptions �i.e., the current
distribution Eq. �6�� that we adopted to derive the extended
mode-expansion theory. In particular, the FDTD simulations
confirmed that the resonance frequency is indeed almost in-
dependent of the film thickness for the flat-wire SRR, which
is consistent with our arguments leading to the simplified
current distribution Eq. �6�.

IV. EIGENMODE PROPERTIES OF THE BROADSIDE
COUPLED SPLIT-RING RESONATOR

Encouraged by the good results obtained for a single-ring
SRR, we now apply the theory to study another type of reso-
nator – a BC-SRR consisting of two identical split rings
placed on different planes, with one ring having a small gap
at �=0 while another ring having a small gap at �=	. In
Ref. 27, we studied the resonance properties of a coplanar
double-ring SRR with the wire of a circular cross section
forming the SRR. The BC-SRR was first proposed by
Marques et al.30 and its properties were extensively studied
by the same group in Refs. 31 and 32 using numerical simu-
lations. Here we employed the extended mode-expansion
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FIG. 2. �Color online� Lowest resonance frequencies of a single-
ring flat-wire SRR obtained by the extended mode-expansion theory
with current distribution form assumed as a uniform one Eq. �6�
�dashed line� and as more realistic form Eq. �1� �solid line�, and by
FDTD simulations �solid stars� as functions of the thickness t, with
R=10 mm, 2a=1 mm, and 
=	 /36.
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theory to re-examine the eigenmode properties of the BC-
SRR. Our results confirmed many observations noted previ-
ously, such as the eigenmode splitting and the suppression of
the bianiostropy effect.30–32 We found several interesting
physics related to such structures, which were not found in
the coplanar double-ring SRRs.27 We now describe our re-
sults in details.

A. Results of the extended mode-expansion theory

The geometry of the BC-SRR is shown schematically in
Fig. 3�a�. Following Refs. 26 and 27, we find that the circuit
equation for the BC-SRR should be

�
m�j�

H�mj�,�m�j��Im�j� = Emj
ext, �8�

where the matrix elements are

H�mj�.�m�j�� = � j�m − m��� j j� + i��Lm
jj� −

1

�Cm
jj�	�mm�. �9�

Here, j , j�=1,2 label the two rings, m ,m� denote the Fourier
components, Lm

11=Lm
22=Lm and Cm

11=Cm
22=Cm are the self-

inductive and capacitive parameters, which have been de-

fined in Eqs. �A8� and �A15�, and Lm
12=Lm

21= L̃m and Cm
12

=Cm
21= Ĉm are the mutual inductance and/or capacitance pa-

rameters, whose forms can be found in Appendix A.
Now, diagonalize the matrix H as defined in Eq. �8� with

a transformation matrix Q, Q-1HQ=diag��1 ,�2 ,�3 , . . .�, we

find that the matrix Eq. �8� becomes Ĩk= Ẽk
ext /�k, where Ĩk

= �
m�j�

�Q−1�k,�m�j��I�m�j�� and Ẽk
ext= �

m�j�

�Q−1�k,�m�j��E�m�j��
ext . The

resonance frequencies can be determined by the condition of
Min���k��=0.26 Following Refs. 26 and 27, we could com-
pute all nonzero dipole moments of the present system in-
duced by the external driven field. Specifically, according to
the formula m� = 1 / 2��r�� j��dr�, we find that all three compo-

nents of the magnetic-dipole moments are nonzero and given
by

�
mx = −

	dR

4 �
k

Ẽk
ext

�k
�Q�−11�,k + Q�11�,k − Q�−12�,k − Q�12�,k�

my = −
	dR

4i
�

k

Ẽk
ext

�k
�Q�−11�,k − Q�11�,k − Q�−12�,k + Q�12�,k�

mz = 	R2 · �
k

Ẽk
ext

�k
�Q�01�,k + Q�02�,k�

.

�10�

Similarly, according to the formula p� =�r��e�r��dr�, where �e is
the charge density, we find that the nonzero components of
electric-dipole moments are

�px =
	R

�
· �

k

Ẽk
ext

�k
�Q�−11�,k − Q�11�,k + Q�−12�,k − Q�12�,k�

py =
	R

i�
· �

k

Ẽk
ext

�k
�Q�−11�,k + Q�11�,k + Q�−12�,k + Q�12�,k�

.

�11�

Several interesting features are noted from analyzing Eqs.
�10� and �11�. First, we find that the present system can offer
magnetic polarization along all three dimensions under dif-
ferent conditions, in sharp contrast to other resonating units
which typically can only provide magnetic response along
certain directions.3 Second, while the mz component is
�roughly� proportional to the area of the ring �	R2, we find
that the two transverse magnetizations, mx ,my, are �roughly�
proportional to the cross-section area sandwiched between
the two rings �d ·R �see Eq. �18��. Therefore, an intuitive
expectation is that the transverse dipole moments can be en-
hanced through enlarging the inter-ring separation d. Finally,
we find from comparing Eq. �10� with Eq. �11� that the mx
polarization is closely related to the py polarization �both
proportional to �Q�−1j�,k+Q�1j�,k� for the jth ring� and the my
polarization is closely related to the px polarization �both
proportional to �Q�−1j�,k−Q�1j�,k� for the jth ring�. More inter-
estingly, we find that the way that the two rings contribute to
the electric polarization is just opposite to that the two rings
contribute to the magnetic polarization. Let us check the di-
pole moments mx , py as an example. Suppose the currents
flowing on the two rings are in-phase so that the Q�mj�,k ele-
ments are of the same sign for the two rings, we find that the
contribution to py from the two rings are constructively add-
ing to each other and the contribution to mx from the two
rings are destructively canceling each other. Similar argu-
ments hold for the two dipole moments my , px. In fact, these
peculiar eigenvector properties directly lead to the complete
suppressions of the bianisotropy of all eigenmodes in present
systems, which we will discuss later.

We now quantitatively study a model system with param-
eters set as R=4 mm, 2a=0.2 mm, t=0.05 mm, and d
=3 mm. A gap of a width 
=	 /40 is opened at �=0 for the
upper ring and at �=	 for the lower ring. The amplitude of
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FIG. 3. �Color online� �a� Schematic figure showing the cross
section of the BC-SRR. �b� Min���m�� as a function of � /�0 for a
single-ring SRR �solid line� and a BC-SRR �dashed line�. Here R
=4 mm, 2a=0.2 mm, t=0.05 mm, d=3 mm, and 
=	 /40.
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the lowest eigenvalue is shown in Fig. 3�b� as a function of
the reduced frequency; that of a single-ring SRR of the same
size is also shown in the figure as a reference. We note that
the size of this particle ��8 mm� is much smaller than wave-
length at resonance ��55 mm for the first mode�, and thus it
can serve as a building block in metamaterials. Compared
with the spectrum of the single-ring SRR, we find that each
single-ring mode has split into a pair of two modes with
different symmetries, caused by the mutual-ring interactions.
We follow the labeling scheme adopted in Ref. 27 to denote

the lower and higher modes split from the kth single-ring
mode ��k� as �k

L ,�k
H, respectively. Such a mode splitting

behavior is quite similar to the coplanar double-ring SRR
case27 and has also been noted previously.32 However, when
we studied the dipole moments related to these resonance
eigenmodes, we find the present system exhibits richer EM
properties than a coplanar double-ring SRR.27 In particular,
in addition to the perpendicular magnetic polarization mz,
two more in-plane polarization mx ,my can also be induced
for the BC-SRR under specific conditions.

We have calculated the dipole moments of the present
structure induced by four different types of external field
excitations and shown these moments in Figs. 4�a�–4�d�.
From the figures we can clearly identify the dipole moments
related to each eigenmode of the double-ring system; thus,
the peaks of the moments are labeled by the corresponding
eigenfrequencies. We summarize the characteristics of the
EM polarizations for the lowest four modes in Table I. All
these modes are completely free of bianisotropy �i.e., either
purely magnetic or purely electric�. This important character
has also been noted previously in Refs. 30–32.

Let us first consider the mode pair ��1
L ,�1

H� which origi-
nate from the first single-ring mode �1. From our previous
work,26 we understand that the �1 mode carries both electric
and magnetic polarizations �py ,mz�, which have also been
recorded in Table I. For the BC-SRR, the �1

L mode only
carries the mz moment and the �1

H mode only carries the py
moment, due to the symmetry of each mode. The most inter-
esting character is that a new dipole moment mx appears for
the �1

L mode, which does not exist for the corresponding
single-ring mode26 and the coplanar double-ring SRR.27 This
is also consistent with our previous observation that the mx
moment is closely related to the py polarization in the present
BC-SRR �see discussions following Eqs. �10� and �11��.

We next consider the mode pair �2
L ,�2

H. Since our previ-
ous study reveals that the single-ring �2 mode exhibits only
the px polarization,26 it is not surprising to see that the mode
�2

L still carries the px polarization, as recorded in Table I.
Equivalently speaking, the �2

L mode is now an electric mode.
However, for the �2

H mode, the px polarization disappears
and a new polarization my is induced, implying that the �2

H

mode is a pure magnetic mode. The appearance of this po-
larization is quite unexpected, since both a single-ring SRR
�Ref. 26� and a coplanar double-ring SRR �Ref. 27� do not
carry the my polarization, and in fact, the corresponding
single-ring mode is a purely electric mode without magnetic
moments at all.26

TABLE I. Characteristics of electric/magnetic polarizations of low-lying modes for a BC-SRR and a
single-ring SRR.

System Mode px py mz mx my

Single �1 No Yes Yes No No

Double �1
L No Disappear Enhanced New No

�1
H No Enhanced Disappear No No

Single �2 Yes No No No No

Double �2
L Enhanced No No No No

�2
H Disappear No No No New
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FIG. 4. �Color online� Amplitudes of the induced moments of
the BC-SRR as functions of � /�0, calculated by the extended
mode-expansion theory with different types of plane waves with E
field and wave propagation directions as shown in the figure.
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B. Finite-difference-time-domain results on split-ring
resonator arrays

We now perform FDTD simulations on realistic ring
structures to verify the theoretical predictions recorded in
Table I. The geometrical parameters of the BC-SRR that we
adopted in FDTD simulations are that R=4 mm, 2a
=0.2 mm, t=0.05 mm, and d=3 mm. A gap of a width 

=	 /40 is opened at �=0 for the upper ring and at �=	 for
the lower ring. To probe the eigenresonances of the structure,
we follow the calculation scheme as described in Refs. 26
and 27 to compute the EM wave transmissions through slabs
consisting of periodic arrays of such BC-SRRs. We adopted
four types of input EM waves with exactly the same configu-
rations as specified in Figs. 4�a�–4�d� to illuminate these
slabs and depicted the transmission spectra in Fig. 5�a�–5�d�,
correspondingly. For configurations �a� and �c�, the slab is
constructed by repeating the unit resonance structure with
lattice constants b=16 mm in the x-y plane. Similarly, we
repeat the unit cell with lattice constants b=16 mm in the y-z
or x-z plane to form a slab for configuration �b� or �d�. Com-
paring the transmission spectra shown in Fig. 5 with the
dipole moment spectra depicted in Fig. 4, we find a one-by-
one correspondence between the transmission dips and the
moment peaks. We then label the modes in Fig. 5 identified
through comparing with Fig. 4.

For the first mode pair ��1
L and �1

H�, we find that the
FDTD transmission spectra agree quite well with the mo-
ment spectra calculated under different configurations. For
example, theoretical analyses indicate that the first mode �1

L

carries two magnetic-dipole moments mz and mx, and there-
fore, EM waves with configurations �a�, �b�, and �d� can
excite such a resonance since B fields are along x, z, and z
directions in these cases. Indeed, FDTD transmission spectra

depicted in Figs. 5�a�, 5�b�, and 5�d� show clearly that there
is a dip at the same frequency �=0.394�0, which is easily
identified as �1

L. Similar arguments hold for the second mode
�1

H.
Things are quite different for the second mode pair ��2

L

and �2
H�. Theoretical analysis based on the mode-expansion

theory suggests that the lower-frequency mode �2
L should be

an electric mode carrying an enhanced px polarization and
the higher-frequency mode �2

H a magnetic mode carrying my
polarization �see Table I�. Therefore, EM waves with con-
figurations �c� and �d� should excite the electric mode since
the E fields are along the x direction in these two cases; but
only the EM wave with configuration �c� can excite the mag-

netic mode because of B� � ŷ. Such resonance properties are
also consistent with the dipole moment spectra depicted in
Figs. 4�c� and 4�d�. However, when we compare the FDTD
transmission spectra �Figs. 5�c� and 5�d�� with the corre-
sponding dipole moment spectra �Figs. 4�c� and 4�d��, we
find that the lower-frequency mode should be identified as a
magnetic mode, but the higher-frequency mode should be
identified as an electric mode, as already labeled in the spec-
tra. Clearly, this is inconsistent with our theoretical analysis,
but the question is: what causes such a contradiction.

We find such discrepancies are induced by the mutual
interactions between different resonance units in the slab
models adopted in our FDTD simulations, whereas, the the-
oretical analysis in Sec. IVA is based on a single BC-SRR.
To understand the role of mutual interactions, we varied the
lattice constant b of the SRR array and then calculated the
transmission spectra through such SRR arrays, with the input

wave configuration fixed as E� � x̂ ,k� � ẑ �i.e., those of Fig. 4�c�
and Fig. 5�c��. The FDTD calculated transmission spectra for
SRR arrays with different periodicities were compared in
Fig. 6. Comparison between different spectra shows that the
transmission dips, and in turn, the resonance mode positions,
do strongly depend on the lattice constant �and in turn, the
mutual-SRR interactions�. We show in Fig. 7 the two reso-
nance frequencies as functions of the lattice constant, with
the resonance frequencies of a single resonator calculated by
the mode-expansion theory depicted as dotted and dashed
lines as references. When the lattice constant increases lead-
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ing to a weakened mutual-resonator interaction, the electric
��2

L� mode shifts downward significantly while the magnetic
��2

H� mode remains almost unchanged. There is a critical
value of lattice constant at which the two modes merge to-
gether. However, when the lattice constant increases further,
we find it difficult to clearly identify the electric mode since
its strength is too weak. Nevertheless, these facts indicate
that the mutual SRR interactions must be responsible for the
reversal of the two resonance modes.

C. Finite-difference-time-domain results on a single broadside
coupled split-ring resonator

To further clarify the role of the mutual-SRR interactions,
we employ the FDTD simulations to directly study the re-
sponses of a single resonant unit. Under monochromic exter-
nal plane waves with different frequencies and polarizations,
we calculated the electric currents induced at a particular
point on the surface of the top ring of the SRR using the

formula J� =n� �H� and identified the resonance modes of the
BC-SRR by the condition that J reaches a maximum. The
calculated results were shown in Fig. 8�b�. Compared with
the spectrum of Min��m� calculated by the mode-expansion
theory and reproduced in Fig. 8�a�, we can clearly identify
three modes, �1

L ,�1
H, and �2

H, whose positions are in excel-
lent agreements with the theoretical values. However, the
mode �2

L is too weak to be detectable from Fig. 8�b�. This is
also consistent with the FDTD simulations on SRR arrays
with very large lattice constants, as explained in Sec. IVB.
The physics is that the nearby magnetic mode �2

H is too
strong; the tail of this mode extends to the regime of the
electric mode �2

L and overwhelms it. To search for the miss-
ing electric mode �2

L, we further calculated a new quantity

J�T=J�1+J�2, which is a sum of the currents induced on the two

rings �at the same � position�. Clearly, the total current J�T
should exhibit a maximum at an electric resonance but not at
a magnetic resonance, so that examining this quantity helps
us isolate the missing electric mode from the strong back-
ground of the magnetic resonance. Indeed, as shown in Fig.

8�c�, we find that the amplitude of the total current JT does
exhibit a peak around the frequency of 0.9�0, whose position
agree excellently with the theoretical value as compared with
Fig. 8�a�.

Now that we have identified the frequencies of all the
resonance modes; we computed the current distributions in-
side the systems at these frequencies. To visualize the four
modes clearly, we depicted the instantaneous magnetic-field
distributions along the line normal to the ring plane in Figs.
9�a�–9�d� for the four modes. It is quite easy to identify that
the first and the fourth modes are magnetic ones since there
are strong magnetic field localized inside the structure. On
the other hand, the second and the third modes are electric
ones. These features are consistent with the theoretical analy-
sis as recorded in Table I and resolved the puzzle of the
mode sequence reversal that we found in FDTD calculations
for SRR arrays �see Sec. IVB�. This fact confirmed our ar-
guments that the mutual SRR interactions do play crucial
roles to lead to a reordering of the sequence of two resonance
modes. To gain a more comprehensive understanding of the
EM characteristics of these modes, we also showed in Figs.
9�e�–9�h� the in-plane current distributions on the upper ring
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of the BC-SRR at those four resonance frequencies. The in-
plane current distributions of the present resonator are basi-
cally the same as those of the single-ring SRR mode.26 For
example, for the third and fourth mode, the current distribu-
tions are intrinsically the same, both resembling the pattern
for the �2 mode of the singe-ring SRR.26 With the knowl-
edge of the entire current distributions for every mode, we
achieve a complete picture to understand the EM character-
istics of all these resonance modes, which will be helpful for
further applications of such resonance units in more compli-
cated situations.

V. METAMATERIALS WITH THREE-DIMENSIONAL
MAGNETIC RESPONSES

Metamaterials that possess magnetic responses along all
three dimensions drew much attention recently.16–23 As many
resonant structures are inherently anisotropic, a standard
method to design 3D magnetic materials is to rotate the unit-
cell element and combine it with the original one to form an

isotropic unit cell.16–23 Here, we provide an alternative ap-
proach. We demonstrate that a layered structure, composed
by planar arrays of BC-SRRs, can exhibit magnetic re-
sponses along all three dimensions at the same frequency.
Since the structure is basically a multilayer system, it is very
easy to fabricate, particularly in higher frequency regime
where the complex 3D structures are relatively difficult to
fabricate. As shown in Fig. 10, the unit cell of the designed
metamaterial contains two BC-SRRs, with one rotated by
90° with respect to the other one. To understand the reso-
nance properties of the designed system, we employed
FDTD simulations to calculate the transmissions of EM
plane waves with magnetic fields polarized along different
directions and with different propagation directions. The
transmission spectra in different cases are compared in Fig.
10�b�. It is clearly shown that for B field along all three
directions, a common resonance is excited at the frequency
��0.386�0, implying that the system exhibits strong re-
sponses to external magnetic fields along all three directions
at this frequency. To identify the nature of such a resonance,
we depicted the instantaneous magnetic-field distributions
along the line normal to the ring plane in Fig. 11�a�. The fact
that strong magnetic fields are localized inside the structure
is the direct signature of a magnetic resonance. We also cal-
culated the electric currents flowing on the upper ring of the
unit cell and illustrated the current distributions in Figs.
11�b� and 11�c� for two different probing EM waves speci-

fied in the figure. Clearly, the EM wave with E� � ŷ, B� � x̂, and
k� � ẑ induces mx and mz moments of BC-SRR on the right-

hand side in the unit cell, while the EM wave with E� � x̂, B� � ŷ,
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and k� � ẑ induces my and mz moments of BC-SRR on the
left-hand side, and therefore, the structure as a whole exhib-
its magnetic responses for all three directions at the same
frequency.

VI. CONCLUSIONS

To summarize, we have successfully extended the previ-
ously established mode-expansion theory to the situations
where the wire forming the ring possesses a flat rectangular
cross section. Applications of the theory to a single-ring flat-
wire SRR shows that the obtained results are in good agree-
ments with brute-force FDTD simulations on realistic sys-
tems, which justified some basic assumptions adopted in
deriving the theory. We then employed the theory to study
the EM characteristics of a BC-SRR with two split rings
placed on different planes separated by a small vertical dis-
tance and showed that such a resonator could provide mag-
netic responses along all three directions under different con-
ditions. We performed brute-force FDTD simulations on
realistic metallic ring structures, including both the SRR ar-
rays and a single resonator, to successfully verify all predic-
tions based on the theory. The FDTD results revealed that the
mutual SRR interactions in a periodic SRR array may change
significantly the resonance properties of the SRR, by even
leading to a reordering of the mode sequence. Finally, we

employ FDTD simulations to successfully design a realistic
layered metamaterial that exhibits magnetic responses along
all three directions at the same frequency.
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APPENDIX A: DERIVATIONS OF CIRCUIT
PARAMETERS

We consider first the inductive effects for a flat-wire
single-ring SRR. Following Ref. 18, the inductive field
within the QSA is found as

E� L�r�� = − i�
�0

4	
� �

l=0

�

�
m=−l

l
4	

2l + 1
Ylm�
,��Y

lm
* �
�,���

�
r�

l

r�
l+1 j��r���dr��. �A1�

Putting Eq. �A1� into Eq. �2�, we find that the averaged field
contains two terms,

EL��� = ELs��� + ELm��� �A2�

where ELs��� is concerned with the self-inductive effect
within each single surface while ELm��� is concerned with
the mutual inductive effect between the currents flowing on
the two surfaces.

Consider first the term ELs���. Straightforward calcula-
tions show that

ELs��� = − i�
�0

32	a2 �
m=−�

�

�
l=�m�

�
�l − m�!
�l + m�!

�Pl
m�0��2eim�

�� e−im�� cos�� − ���I����d��

��
R−a

R+a

d��
R−a

R+a ��
l

��
l+1��d��, �A3�

where I���=�j��r��dS� = j��� ·4at� is the total current flowing
across the flat wire at a position defined by the angle �,
Pl

m�x� is the usual associated Legendre function, and ������
takes the larger �smaller� value of � ,��. Expand the current
as a Fourier series, I����=�m�Im�e

im��� and note that
�eim���e−im�� cos��−���d��=	�ei���m−m�+1�+e−i���m
−m�−1��, we can carry out the integration and get

ELs��� = −
i��0

8 �
m

Ameim��Im+1ei� + Im−1e−i��

= −
i��0

8 �
m

eim��Am−1 + Am+1�Im, �A4�
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Am = �
l=�m

�
�l − m�!
�l + m�!

�Pl
m�0��2�l, �A5�

with

�l =
1

4a2� �
R−a

R+a

��d�
��

l

��
l+1d��. �A6�

Expand ELs��� as a Fourier series ELs���

= �
m=−�

+�

ELs
m exp�im��, we find that

ELs
m = − i�LmIm/2, �A7�

where

Lm =
�0

4
�Am−1 + Am+1� �A8�

is part of the inductive parameter for the mth Fourier com-
ponent. The inductive parameter defined in Eq. �A8� takes
exactly the same form as that for the circular cross-section
case,18 except the dimensionless parameter �l is given by Eq.
�A6� and is no longer of the form of �1−a /R�l in the circular
cross-section case.18

We next consider the term ELm���. Again, expand ELm���

as a Fourier series ELm���= �
m=−�

+�

ELm
m exp�im��; we find after

some straightforward calculations that

ELm
m = − i�Lm� Im/2, �A9�

where

Lm� =
�0

4
�Am−1� + Am+1� � , �A10�

with

Am� =
1

4a2 �
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�Pl
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m�
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l

r�
l+1d��. �A11�

Here, r=��2+ t2 /4, r�=���2+ t2 /4, �=tan−1�t /2R��1 �see
Fig. 1�a��, and r��r�� takes the larger �smaller� value of r ,r�.
Collecting Eqs. �A2�, �A7�, and �A9�, we finally arrive at

EL
m = − i��Lm + Lm� �Im/2. �A12�

We then consider the capacitance parameters for a flat-
wire single-ring SRR. According to Ref. 18, we find the ca-
pacitive field to be

E� C�r�� = e��

1
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Following exactly the same procedures as in the inductance

case, we derived the relationship between the averaged ca-
pacitive field EC��� and the total current I���. In Fourier
component form, the relationship is

EC
m = −

1
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�A15�

describes the self-capacitance effects within each single cur-
rent sheet and

1
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describes the mutual capacitance effects between two current
sheets. In the limit of t /R→0, we find easily that sin �
0,
r
�, and r�
��. Comparing Eq. �A15� with Eq. �A16�
shows that 1 / Cm� 
 1 / Cm as t /R→0. Similarly, we find
Lm� 
Lm in the same limit.

We finally consider the circuit parameters for a BC-SRR.
Following the same procedures presented above, we find the
mutual inductance and capacitance parameters of a double
ring system should be

L̃m =
�0

4
�Ãm−1 + Ãm+1� , �A17�

with
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and
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where r=��2+d2 /4, r�=���2+d2 /4, and �=tan−1�d /2R�
�see the geometry shown in Fig. 3�a��.
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