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We study the two-impurity Anderson model on finite chains using numerical techniques. We discuss the
departure of magnetic correlations as a function of the interimpurity distance from a pure 2kF oscillation due
to open boundary conditions. We observe qualitatively different behaviors in the interimpurity spin correlations
and in transport properties at different values of the impurity couplings. We relate these different behaviors to
a change in the relative dominance between the Kondo effect and the Ruderman-Kittel-Kasuya-Yoshida
�RKKY� interaction. We also observe that when RKKY dominates, there is a definite relation between inter-
impurity magnetic correlations and transport properties. In this case, there is a recovery of 2kF periodicity
when the on-site Coulomb repulsion on the chain is increased at quarter filling. The present results could be
relevant for electronic nanodevices implementing a nonlocal control between two quantum dots that could be
located at variable distance along a wire.
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I. INTRODUCTION

It is well known that the main properties of the two-
impurity Anderson model �TIAM� �Ref. 1� are determined by
the competition between the Kondo effect2 generated by each
impurity and the Ruderman-Kittel-Kasuya-Yoshida �RKKY�
interaction between the impurities.3,4 Renewed interest in
this model comes from the observation of the Kondo effect
in electronic devices, where a nanoscopic relatively isolated
region, a quantum dot �QD�, can act as a single spin-1/2.5 In
particular, it has been observed in a nanoelectronic device
formed by two QDs coupled through an open conducting
region6 that transport through one of the QDs depends on the
occupancy and coupling of the other QD via the RKKY in-
teraction. The main issues involved in this and related
experiments7 are the possibility of tuning different regimes
dominated by the Kondo effect or by the RKKY interaction
and the dependence of transport properties on the sign of the
magnetic correlation between the impurities.

Analytical studies of the TIAM are usually concerned
with long-distance behaviors.1,3 However, it should be em-
phasized that the properties of mesoscopic devices are deter-
mined by finite size effects rather than by bulk physics. Fi-
nite size effects have been addressed in a study of a double
QD in an Aharonov-Bohm ring,8 and it was found that
RKKY dominates the transport properties. More closely re-
lated to the problems we consider in this work is a study of
two impurities coupled by a finite one-dimensional �1D�
wire,9 where it was shown that the RKKY interaction is al-
ways dominant due to the strong reduction of the Kondo
temperature by finite size effects. In another slave-boson
study10 it was concluded that the presence of different trans-
port regimes depends on the sign of the RKKY interaction.
In these two studies, however, the impurities are located at
the edges of the chain and, hence, the effects of the outer
sites in Fig. 1, or “leads,” were not considered.

The main motivation for the present study is then to un-
derstand finite size effects in the 1D TIAM, which can be
considered as a model of a device formed by two QDs

coupled through a conducting chain and connected to 1D
leads �Fig. 1�. Another motivation for this work is to under-
stand the effects of electronic correlations, which are present
in materials such as carbon nanotubes11 used in experimental
realizations of quasi-1D devices.12 Coulomb correlations in
the chain affect both the Kondo temperature and RKKY
interaction.9,13

In this work we show numerically that the spin-spin cor-
relation between the two impurities as a function of the in-
terimpurity distance R, S�R�, for a fixed length L of the
whole chain, departs from the predicted 2kF long-distance
behavior for the TIAM.3,4 We show how a regime where the
RKKY interaction dominates over the Kondo effect appears
as the impurity couplings are decreased. We also provide a
measure of the conductance G, which is more relevant for
applications to nanodevices. We show that this quantity, par-
ticularly in the regimes where RKKY dominates, follows an
oscillatory behavior with R at a fixed L related to that of
S�R�. We also show that an on-site Coulomb repulsion on the
chain, at quarter filling, restores the 2kF periodicity of S�R�
and G�R�. Finally, we provide indications that most of these
finite size effects found are due to the open boundary condi-
tions adopted for our system.

The paper is organized as follows. In Sec. II we define the
Hamiltonian model, and we describe the method employed
in the calculations. In Sec. III we present results for S�R� and
G�R�, first for noninteracting leads and then in the presence
of correlations on the chain. We conclude in Sec. IV by pro-
viding a summary of the results and by suggesting possible
connections with other theoretical approaches, as well as
with experiments.
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FIG. 1. �Color online� Picture of model �1�, L=12, R=3.
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II. MODEL AND METHODS

The 1D two-impurity Anderson model with Hubbard re-
pulsion on the chain is defined by the Hamiltonian

H0 = − t0 �
i,i+1��,�

�ci+1�
† ci� + H.c.� + U�

i��

ni↑ni↓

− t� �
�=�1,�

�cr1+��
† cr1� + cr2+��

† cr2� + H.c.�

+ U� �
i=r1,r2

ni↑ni↓ + �� �
i=r1,r2

�ni↑ + ni↓� , �1�

where the notation is standard. The Anderson impurities or
QDs, with parameters U� ,��, are symmetrically located with
respect to the center of the chain, i.e., at sites r1,2= �L�R
+1� /2, with R odd �see Fig. 1�. The QDs are connected to
the rest of the system � with a hopping t�. The subsystem �
comprises the leads �i�r1, i�r2� and the region between
both impurities �r1� i�r2�, and it is described by a Hubbard
Hamiltonian with couplings t0 and U. t0=1 is adopted as the
unit of energy.

Model �1� will be studied on finite clusters using density
matrix-renormalization group �DMRG� �Ref. 14�. Open
boundary conditions �OBC� were adopted throughout. We
would like to emphasize that OBC are the realistic boundary
conditions for the devices that motivate the present work.
There has been a previous study of a related model using
DMRG, but the two impurities were fixed at the chain
edges15, that is, leads were not included in that model.

We provide a measure of the response of the system to the
application of a small bias voltage 	V=VR−VL �VR=−VL�,
where VL �VR� are on-site potentials applied to the ten sites at
the edge of the left �right� lead. Although these 1D leads
have to be connected to massive two- or three-dimensional
metallic or semiconducting contacts, we believe that as a first
step it is necessary to consider the system formed only by the
two QDs connected to the 1D leads. The current JL�t� �JR�t��
on the bond connecting the left �right� QD to the left �right�
lead is computed with the time-dependent DMRG.16 In the
case of a single QD and noninteracting leads, this numerical
setup has been shown17–20 to reproduce the results for
equivalent systems, which were treated analytically.21 In the
following, we employed the “static” algorithm,17 which al-
though less precise than the “adaptive” algorithm18 still gives
qualitatively correct results, as we have explicitly checked in
some cases,22,23 but is much faster than the adaptive scheme,
thus, allowing to explore different couplings and densities,
and a wide range of R and L. All of the results reported
below correspond to 	V=0.01. We compute J�t�= �JL�t�
+JR�t�� /2, which follows with time very approximately a
sinusoidal function, and we adopt as a measure of the re-
sponse or “conductance,” G, the average of the sinusoidal
fitting to J�t� /	V over a half period. This qualitative behav-
ior is mostly independent of various criteria that have been
proposed to quantify G.19 We want to emphasize that our
main purpose in this study is to obtain relative values of G as
a function of the interimpurity distance R. In this sense, the
application of the bias potential on only ten sites at the edges
of the system instead of applying to the whole leads is then a

necessary condition to treat all distances R on an equal foot.
We adopted U�=8 and ��=−4 �symmetric point� in order

to ensure a strong magnetic character of the impurities,
which we checked in all cases. In the following we will
consider two values of t�, �2 /2 and 1. The Kondo effect for
the single impurity Anderson model for t�=1 was studied
using the same method as in the present work in Ref. 22.
Most of our calculations reported below were obtained for
L=120. The truncation error in DMRG calculations for this
cluster was kept below 10−6. In all cases we worked in the
subspace of total Sz=0. Thus, taking into account the isot-
ropy of the Hamiltonian �1�, we computed the spin-spin cor-
relations between sites i� j as Sij =3�Si

zSj
z�. In particular, the

spin-spin correlation between impurities is S�R�
=3�Sr1+R

z Sr1

z �.

III. RESULTS AND DISCUSSION

Let us start by discussing results at half filling, n=1. In
Fig. 2�a�, it can be seen that for t�=�2 /2 and t�=1, S�R�
presents a four-site period, which corresponds to a kF oscil-
lation. To be more precise there is a kF modulation on top of
the antiferromagnetic �AF� 2kF oscillation. This 2kF compo-
nent can be fitted for R odd by the law −1.102 /x0.59

�t�=�2 /2� and −1.021 /x1.38 �t�=1�. The kF component de-
cays much slower, as x−0.22 �t�=�2 /2� and x−0.68 �t�=1�. At
this point we could advance the hypothesis that the departure
of the present results from the pure 2kF oscillation is due to
the OBC used in DMRG calculations. That is, 2kF oscilla-
tions starting from the chain edges would modulate the mag-
netic correlations from each of the impurities, and hence, as
a function of R, this would enhance the kF component of
S�R�. The large intensity of S�R� and its survival at long
distances for t�=�2 /2 suggest that we are in the regime
where the RKKY interaction dominates over the Kondo ef-
fect. On the other hand, the smaller amplitude and rapid sup-
pression of S�R� with R for t�=1 indicate the presence of a
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FIG. 2. �Color online� �a� Spin-spin correlations between the
impurities and �b� conductance as a function of the interimpurity
distance R at n=1 for t�=�2 /2 �circles� and t�=1 �squares�, on the
L=120 chain except otherwise stated. In �a�, dashed lines show fits
to 2kF oscillations.

S. COSTAMAGNA AND J. A. RIERA PHYSICAL REVIEW B 77, 235103 �2008�

235103-2



strong screening of the magnetic moment of the impurities
implying a dominance of the Kondo effect.

The conductance �Fig. 2�b�� presents an oscillation with R
that follows that of S�R�. There is a set of minimum values of
G�R� for R=4m+3 �m integer� that corresponds to the stron-
ger AF spin-spin correlations between impurities and a set of
maximum values of G�R�, which occur at R=4m+1, corre-
sponding to the weaker AF S�R�. The expected difference in
amplitude of G�R� between both values of t� considered,
since the current is proportional to t�, can also be observed.
The most important feature in these results is that, for the
case of t�=�2 /2, there is a factor of 2 or larger between the
conductances for R=4m+1 with respect to the one for R
=4m+3. We believe that this large difference can be detected
experimentally in appropriate devices. In our calculation, the
maximum of G�R� could not possibly reach the expected
unitary limit as a consequence of applying the bias potential
to only few sites on the leads as discussed in Sec. II.

Although half filling is perhaps more realistic for actual
devices, it is interesting to study also the case of quarter
filling, n=0.5. In this case it is possible to study transport
properties in the presence of electron correlations on �. In
Fig. 3�a�, for t�=�2 /2, it can be seen that for the noninter-
acting chain �U=0� S�R� presents an oscillation with period
8, which again corresponds to an overall kF oscillation. As in
Fig. 2�a�, results for L=80 show an oscillation in S�R�
slightly larger in amplitude to that for L=120. A systematic
study of the effect of L is presented at the end of this work.
Similarly to what happened at n=1, the conductance, shown
in Fig. 3�b�, has the same dependence on R as the spin-spin
correlations. At n=0.5, the minimum �maximum� of G oc-
curs at R=8m+5 �R=8m+3�, which coincides with the val-
ues of R at which S�R� has the strongest �weakest� AF val-
ues.

Let us turn on the interaction on �. It can be seen in Fig.
3�a� that there is a rapid suppression of the kF modulation in
S�R� with increasing U, leaving behind a well-defined 2kF
oscillation, which is already apparent at U=2. For U
2 the
spin-spin correlations at R=4m+3 become slightly positive,

that is, they become ferromagnetic �FM�. Consequently, as it
can be observed in Fig. 3�b�, there is a similar change in the
dependence of the conductance on R, with the minima
�maxima� of G located at the same values as the AF �FM�
correlations in Fig. 3�a�. Notice that for U
2 the ratio be-
tween the maximum and the minimum values of G becomes
equal to 8 or larger. Again this very large ratio should be
detectable experimentally if a device with the geometry of
Fig. 1 and working at quarter filling could be fabricated.

In Fig. 4�a�, we show the spin-spin correlations between
impurities at n=0.5 for t�=1. At this filling, there is an ad-
ditional important difference with the corresponding results
for t�=�2 /2 depicted in Fig. 3�a�, which is that the 2kF pe-
riodicity is now clearly dominant. This behavior of S�R� sup-
ports the idea that these two values of t� belong to different
regimes. On the other hand, the behavior of the conductance
with R shown in Fig. 4�b�, in the noninteracting case U=0, is
similar to the one for t�=�2 /2, shown in Fig. 3�b�, with a
large kF component. However, in the presence of interactions
on the chain, the amplitude of G�R� is suppressed by increas-
ing U�0 for t�=1, while it seems enhanced by U for t�
=�2 /2. This suppression of G�R� would be expected in a
Luttinger liquid, since it is proportional to K�, which de-
creases with increasing U.24,22 For t�=1, it can be also ob-
served in Fig. 4�b� that only for the largest value of the
interaction considered, U=4, a 2kF periodicity becomes
dominant. Finally, the relation between the location of the
maximum and minimum values of G�R� with the ones of
S�R� observed in Fig. 3�b� is absent for small U, but it is
recovered for U=4.

These clearly different behaviors of S�R� and G�R� for the
two types of impurities considered have to be traced to
the essential competition between the Kondo effect and
RKKY interactions. For the noninteracting case, the Kondo
temperature may be estimated as2 TK= t��U� / �2t0�
�exp�−
t0U� / �8t�2�� �in units of kB=1�, which gives TK
=0.0026 for t�=�2 /2 and TK=0.086 for t�=1. That is, if for
the case of t�=�2 /2 it is reasonable to assume that RKKY
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FIG. 3. �Color online� �a� Spin-spin correlations between the
impurities and �b� conductance as a function of the interimpurity
distance R for t�=�2 /2 at n=0.5, parametrized with U, on the L
=120 chain except otherwise stated.
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dominates over the Kondo effect, since TK for t�=1 is 	33
times larger, while the effective RKKY interaction4 K
 t�2

would be only a factor of 2 larger, then it is plausible that the
case of t�=1 belongs to the regime where the Kondo effect
dominates over the RKKY interaction. Particularly for the
case of t�=�2 /2, where RKKY can be assumed as dominant,
it is instructive to estimate K as the difference in ground
state energy between the singlet and triplet states. For this
case one gets that 	ST oscillates with R with maximum val-
ues of K
	ST	0.04 �n=1�. This value is larger than the
above estimated TK for this impurity. At n=0.5 the oscilla-
tion of 	ST with R has period 8 as it can be observed in Fig.
4�b�. Although these estimates are instructive and consistent
with our numerical results, one should bear in mind that the
above expression for TK is valid in the bulk limit, while the
results for 	ST were obtained for the L=120 chain. The
strong suppression of TK due to the finite size of the system
found in Ref. 9 may not appear in our system due to the
presence of the leads, which may provide room for the
Kondo cloud to develop. We would also like to notice that in
all cases we examined, the ground state is a singlet, which is
consistent with the result that S�R� is always AF or at most
weakly FM.

Finally in Fig. 5 we show the dependence of S�R� at a
fixed interimpurity distance R=5 on the length L. The period
of SL�R=5� is 4 �n=1� and 8 �n=0.5� for the two types of
impurities considered, which correspond to the wave vector
kF. It is interesting to examine here the dependence of these
results on the boundary conditions �BC� of the system. Peri-
odic boundary conditions �PBC� and antiperiodic boundary

conditions �APBC� have, separately, a period of 8 as with
OBC. However, if for each L we adopt the BC with mini-
mum energy, then a doubling of the wave vector of the os-
cillation is obtained. By using exact diagonalization we ob-
tained that the energy is minimum for PBC for L=4m �m
integer� and for APBC when L=4m+2. The minimum of
energy for L=4m+1 and L=4m+3 falls alternatively on
PBC or APBC depending on R. The resulting SL�R=5� is
shown in Fig. 5�b�. This result is then another example of the
effects caused by OBC.25 The inset of Fig. 5 shows a slow
dependence of SL�R� on L for various R. Since, particularly
for t�=�2 /2, G�R� follows the oscillation of S�R�, it is quite
likely then that an oscillation of the conductance could be
experimentally observed in a real device for a fixed interdot
distance as the length of the 1D leads is varied.

IV. CONCLUSION

In conclusion, we have shown for the two-impurity
Anderson model on finite chains the presence of different
behaviors of the interimpurity magnetic correlations S�R� for
the two values of the coupling between the impurities and
the chain, t�. We suggested that these different behaviors
indicate that the relative dominance between the Kondo ef-
fect and the RKKY interaction can be tuned by the single
parameter t�. In the case when RKKY dominates, we found
important oscillations in the conductance with interimpurity
distance, G�R�, following that of the spin-spin correlations. It
would be tempting to relate these different behaviors of S�R�
and G�R� to the presence of an unstable fixed point sug-
gested by numerical renormalization group calculations.3 Al-
though certainly such a fixed point could not strictly appear
in a finite-size calculation, some traces of its presence, for
example, an admixture of the singlet and triplet states, could
be detected. However, we found that the ground state of our
model is always a singlet consistently with dominating AF
interimpurity correlations. It would be interesting to explore
other parameters of our model to find such a critical point.26

Finally, we have observed that the kF modulation of the
2kF oscillation of S�R� and G�R� observed for noninteracting
leads is suppressed by an on-site electron repulsion on the
chain. We hope that some of the present results could be
found in a 1D realization of the device developed in Ref. 6,
which we believe could be built on a carbon nanotube with
the QDs defined with an appropriate array of gates.12
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