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Graphene, a single sheet of graphite with honeycomb lattice structure, has massless carriers with tunable
density and polarity. We investigate the ground-state phase diagram of two graphene sheets �embedded in a
dielectric�, separated by distance d where the top layer has electrons and the bottom layer has holes, using
mean-field theory. We find that a uniform excitonic condensate occurs over a large range of carrier densities
and is weakly dependent on the relative orientation of the two sheets. We obtain the excitonic gap, quasiparticle
energy, and the density of states. We show that both the condensate phase stiffness and the mass of the excitons
with massless particles as constituents, vary as the square root of the carrier density, and predict that the
condensate will not undergo Wigner crystallization.

DOI: 10.1103/PhysRevB.77.233405 PACS number�s�: 73.21.�b, 03.75.Nt, 73.63.�b

I. INTRODUCTION

Over the past three years, graphene has emerged as the
unique candidate that provides a realization of two-
dimensional massless fermions whose carrier density and po-
larity are tunable by an external gate voltage.1 Subsequent
experimental and theoretical investigations have led to a
thorough re-examination of some of the properties of linearly
dispersing massless fermions.2,3 The truly two-dimensional
�2D� nature of graphene permits control and observation of
local carrier density and properties.4–6 In graphene bilayers,
the ability to change the carrier polarity of an individual
layer implies that the interlayer Coulomb interaction can be
tuned from repulsive to attractive. This raises the possibility
of formation of electron-hole bound states or indirect exci-
tons, albeit with massless fermions as its constituents. Prop-
erties of such bound states of massless particles are an open
question; the only other example, to our knowledge, is the
proposed color superconductivity in dense quark matter.7

Graphene bilayers provide an ideal and unique candidate for
straightforward experimental investigations of such phenom-
ena.

A uniform Bose-Einstein condensate of excitons in
electron-hole bilayers occurs when the interlayer distance is
comparable to the distance between the particles within each
layer.8,9 These excitons have mass mex=me+mh, where me
�mh� is the band mass of the electron �hole�. At high densi-
ties, dipolar repulsion between the excitons can lead to a
condensate ground state with broken translational symmetry:
a supersolid.10 Biased bilayer quantum Hall systems near
total filling factor �T=1 have shown uniform excitonic
condensation.11 In this case, the exciton mass is determined
solely by interlayer Coulomb interaction and is independent
of the bias voltage.12,13 These observations raise the ques-
tions: What is the mass of an exciton with massless constitu-
ents? Will such an excitonic condensate lead to a supersolid
if the dipolar repulsion between such excitons �with a non-
zero mass� is increased?

In this Brief Report, we investigate the excitonic conden-
sation in two graphene sheets embedded in a dielectric and
separated by a distance d�a �a=1.4 Å is the honeycomb
lattice size� so that the tunneling between the layers is neg-

ligible, but interlayer Coulomb interaction is not. The layers
have opposite polarity and equal density of carriers n2D. We
remind the reader that in graphene, in the continuum limit,
the length scale 1 /kF and the energy scale EF are both set by
the density of carriers n2D �kF=��n2D is the Fermi momen-
tum, EF=�vGkF is the Fermi energy, and vG�c /300 is the
speed of massless carriers�. Therefore, the ground-state
phase diagram depends only on one dimensionless parameter
kFd. This is markedly different from conventional bilayer
systems parameterized by �d /aB ,rs�, where aB is the band
Bohr radius and rs=1 /��aB

2n2D,9 as well as biased bilayer
quantum Hall systems, parameterized by �d / lB ,���, where lB
is the magnetic length and �� is the filling factor
imbalance.13–16

We use the mean-field theory to obtain the ground-state
phase diagram as a function of kFd. We find that �a� excitonic
condensation occurs at all densities as long as kFd�1, �b�
the condensate properties are weakly sensitive to the relative
orientation of the two sheets �stacking�, �c� the superfluid
phase stiffness �s and the exciton mass have a �n2D depen-
dence, and �d� the excitonic condensate does not undergo
Wigner crystallization in spite of dipolar repulsion between
excitons with a nonzero mass.

The plan of this Brief Report is as follows: In Sec. II, we
present the mean-field Hamiltonian17 and briefly sketch the
outline of our calculations. In Sec. III, we show the results
for the excitonic gap �k, the quasiparticle energy Ek, and the
quasiparticle density of states D�E�. We discuss the density
dependence of the superfluid stiffness �s and the mass of the
excitons. In Sec. IV, we show that these results are equiva-
lent to the absence of Wigner crystallization and mention the
implications of our results to experiments.

II. MEAN-FIELD MODEL

We consider two graphene sheets embedded in a dielectric
and separated by distance d with chemical potentials in the
two layers that are adjusted so that the top layer �denoted by
pseudospin �= +1� has electrons and the bottom layer �de-
noted by pseudospin �=−1� has holes with the same density.
We consider two stackings: the Bernal stacking that occurs
naturally in graphite and the hexagonal stacking in which
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each sublattice �A and B� in one layer is on top of the corre-
sponding sublattice in the other layer. Since the Hamiltonian
in the continuum description is SU�4� symmetric in the spin
and valley indices, we ignore those indices for simplicity. In
the continuum limit, the single-particle Hamiltonian for car-
riers in layer � is18

Ĥ0 = 	k
�
�vGk�ck
�
† ck
�, �1�

where k is the momentum measured from the K point and

=� denote the conduction and valance bands that result
from diagonalizing the Hamiltonian in the sublattice basis.
ck
�

† �ck
�� is creation �annihilation� operator for an electron
in band 
 in layer � with momentum k. We point out that for
the hexagonal stacking, ck
�

† = �ckA�
† +
e−i�kckB�

† � /�2 is inde-
pendent of the layer index �. For the Bernal stacking, the
creation operators in the two layers are related by complex
conjugation, ck
�

† = �ckA�
† +
e−i��kckB�

† � /�2, where �k
=tan−1�ky /kx�. The interaction Hamiltonian consists of intra-
layer Coulomb repulsion VA�q�=2�e2 /
q and interlayer
Coulomb attraction VE�q�=−VA�q�exp�−qd�. �
 is the dielec-
tric constant.� Using standard mean-field techniques,17 we
obtain the following mean-field Hamiltonian:

Ĥ = �
k

�ek
†h−k��
k − � �k

�k
� − 
k + �

	� ek

h−k
† 	 . �2�

Here, ek
† =ck++

† creates an electron in the conduction band
�
=+� in the top layer ��= +1� and h−k

† =ck−− creates a hole
in the valance band �
=−� in the bottom layer ��=−1�. The
term 
k contains single-particle energy, capacitive Hartree
self-energy and the intralayer exchange self-energy. The off-
diagonal term �k is proportional to the excitonic condensate
order parameter 
h−kek�. The eigenvalues of the mean-field
Hamiltonian are given by �Ek= ���
k−��2+�k

2. We con-
sider mean-field states with a real �k=�k

� and spatially uni-
form density. It is straightforward to diagonalize the Hamil-
tonian and obtain the mean-field equations9


k = �vGk +
e2n2D

C
−

1

2
�

k�
VA�k − k���1 −

�k�

Ek�
	 , �3�

�k = −
1

2
�

k�
VE�k − k��f��k,k��

�k�

Ek�
, �4�

where �k=
k−�, C=
 /2�d is the capacitance per unit area,
and �k,k�=�k−�k�. The form factor for the two stackings is

f��k,k�� = 
 1 + cos �k,k� Hexagonal

cos �k,k��1 + cos �k,k�� Bernal
� . �5�

We point out that the self-energy in Eq. �3� takes into ac-
count both intrinsic and extrinsic contributions that cancel
the cos �k,k� dependent terms in the form factor and make the
results independent of the ultraviolet cutoff.19,20 Therefore,
the intralayer self-energy in Eq. �3� is the same as that for a
conventional system.19,20 The chemical potential � is deter-
mined by the carrier density that takes into account the four-
fold spin and valley degeneracy

n2D = 4�
k
�1 −

�k

Ek
	 . �6�

It is straightforward to derive similar equations for a conven-
tional electron-hole system.9 They are obtained by changing
the single-particle dispersion to a quadratic and replacing the
form factor f��k,k�� by a constant f =2. We solve Eqs. �3�,
�4�, and �6� iteratively to obtain self-consistent results.

III. RESULTS

Figure 1 shows the excitonic gap �k and the quasiparticle
energy Ek for the Bernal �green dashed� and the hexagonal
�red solid� stacking. The excitonic gap �k is maximum at the
Fermi momentum kF where the quasiparticle energy Ek is
minimum. Since the electron-hole Coulomb interaction is al-
ways attractive, the excitonic condensate order parameter is
nonzero down to the bottom of the Fermi sea �k=0�0. Our
results predict that the hexagonal-stacked system will have a
larger excitonic gap than the Bernal-stacked system. The
quasiparticle energy Ek becomes linear at large k�kF, since
the constituent particles of the exciton have a linear disper-
sion. The speed of these quasiparticles is increased due to
intralayer exchange self-energy,20–22 although the increase is
modest, �10%. Corresponding results for a conventional
electron-hole system �blue dotted� are also shown in Fig. 1.

Figure 2 shows the dependence of the maximum excitonic
gap �m on kFd. We find that �m is weakly dependent on the
stacking and decays rapidly when kFd�1. This result im-
plies that the excitonic condensation is a robust phenomenon
that will not require precise alignment of the two graphene
sheets when they are being embedded in a dielectric. With
typical graphene carrier densities n2D�1012 /cm2 and d
�100 Å or kFd�1, the excitonic gap is appreciable, �m
�30 meV.
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FIG. 1. �Color online� The excitonic gap �k and the quasiparti-
cle energy Ek in graphene bilayer for Bernal �green/light gray
dashed� and hexagonal �red/gray solid� stacking with kFd=1. The
quasiparticle spectrum Ek becomes linear with a renormalized ve-
locity ṽG�vG for large k�kF. The dotted blue curves show corre-
sponding results for an electron-hole system at rs=2.7 and kFd=1
when plotted using relevant �atomic� unit for energy.9
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A direct probe of the excitonic gap is the quasiparticle
density of states. For graphene with no interactions, the den-
sity of states is linear, D0�E�=2E /��2vG

2 . In the excitonic
condensate phase, for intermediate energies �m�E�Ek=0
there are two rings in the phase space consistent with that
energy: one with k�kF and the other with k�kF. Therefore,
the quasiparticle density of states is given by D�E�=D��E�
+D��E�, where D� �D�� denotes the density of states from
respective rings. Figure 3 shows D��E� �green dashed� and
D��E� �red solid�; they are both zero for E��m and diverge
at �m as is expected. Note that D��E�=0 for E�Ek=0, since
there are no states for k�kF with energies higher than Ek=0.
The asymmetry in D� and D� for E��m is due to the linear
dispersion of carriers and the nonzero electron-hole pairing
that extends to the bottom of the Fermi sea �k=0�0.23 The

inset shows corresponding results a conventional system,
where the density of states without interactions is constant,
D0�E�=m /��2.

Superfluidity of a uniform Bose-Einstein condensate is
characterized by a nonzero phase stiffness �s that quantifies
the energy of a condensate with a linearly winding phase
E�Q�=�sQ

2A /2, where A is the area of the sample and the
phase of the condensate varies as ��x�=Qx. For graphene,
since EF is the sole energy scale �at zero temperature�, it
follows from dimensional analysis that phase stiffness must
scale linearly with the Fermi energy �s=g�kFd�EF, where
g�x� is a dimensionless function that satisfies g�O�1� �Ref.
24� when 0�x�1 and g→0 for x�1. Hence, the phase
stiffness is given by �s=g�kFd��vG

��n2D. The condensate
energy E�Q� can also be expressed in the particle picture, as
the kinetic energy of excitons that have condensed in a state
with center-of-mass momentum �Q. Thus, E�Q�
=N�2Q2 /2mex, where mex �N� is the mass �number� of con-
densed excitons.25 Equating the two expressions for energy
implies mex=n2D�2 /�s��n2D. Thus, we predict that the
phase stiffness �s and the exciton mass will both vary as the
square root of the carrier density. We emphasize that these
results are unique to graphene and, as we will show in Sec.
IV, are equivalent to the absence of excitonic Wigner crys-
tallization in graphene bilayers.10,26

IV. DISCUSSION

In this Brief Report, we have investigated the properties
of excitonic condensates in graphene bilayers. Our calcula-
tions predict that excitonic condensation will occur at all
carrier densities as long as kFd�1 and that the strength of
the condensate, as measured by the excitonic gap �m, is rela-
tively insensitive to the stacking.

The mean-field results presented in this paper are obtained
at zero temperature T=0. �Finite temperature analysis gives a
critical temperature TMF /EF�0.2 or TMF�20 meV. This is
an artifact of the mean-field approximation.� In two dimen-
sions, the critical temperature Tc for Bose-Einstein conden-
sation is zero but the superfluid properties survive for T
�TKT, where TKT is the Kosterlitz-Thouless transition tem-
perature. Therefore, our results will be valid at nonzero tem-
perature T�TKT.27 A weak disorder will suppress the exci-
tonic condensate order parameter and reduce the excitonic
gap, an effect equivalent to increasing the value of kFd.
Therefore, we have ignored the effects of a weak disorder
potential.

In our analysis, we have only considered excitonic con-
densation with uniform density. In conventional �quantum
Hall electron-hole� bilayers, varying d and rs ��� leads to
excitonic condensates with lattice structure.10,26,28 The origin
of the lattice structure is Wigner crystallization of carriers in
an isolated layer at large rs �small ��. Graphene does not
undergo Wigner crystallization as its carrier density is
changed.29 Therefore, we expect that the excitonic conden-
sate in graphene bilayers remains uniform. Now we show
that this result is equivalent to our predictions for density
dependence of �s and mex. The quantum kinetic energy of an
exciton, associated with localizing it within a distance 1 /kF,
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FIG. 2. �Color online� The dependence of the graphene bilayer
excitonic gap �m=Max��k� on interlayer distance d for Bernal
�green/light gray dashed� and hexagonal �red/gray solid� stacking.
This gap can be tuned by changing n2D for a given sample. Corre-
sponding result for a conventional system at rs=2.7 is shown in
dotted blue/dark gray.
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FIG. 3. �Color online� Quasiparticle density of states contribu-
tions D��E� �green/light gray dashed� associated with states with
k�kF and D��E� �red solid� associated with states k�kF. These
results are for hexagonal-stacked graphene bilayers with kFd=1.
Both diverge at E=�m, as expected. The total density of states D
=D�+D� can be probed by differential conductance for tunneling
from a metal into the condensate. The inset shows corresponding
results for an electron-hole system at rs=2.7 and kFd=1. All results
are expressed in their respective units.
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is K=�2kF
2 /2mex. The potential energy due to the dipolar

repulsion between them is P=e2d2kF
3 /
. Hence, their ratio is

given by P /K=e2d2kFmex /
�2. Wigner crystallization occurs
when the ratio P /K�1. This ratio will solely be a function
of kFd—no matter what the value of d is—if and only if
mex�kF=��n2D. Therefore, results in Sec. IV show that the
excitonic condensate in graphene will not undergo Wigner
crystallization in spite of the dipolar repulsion between ex-
citons with a quadratic dispersion. This result, too, is unique
to graphene and is markedly different from the behavior of
dipolar excitonic condensates in conventional bilayers. It is
interesting that the mass of these effective bosons has the
same density dependence and order of magnitude as the cy-
clotron mass of fermionic carriers in graphene.1

The onset of excitonic condensation can be detected by a
divergent interlayer drag.30 A uniform in-plane magnetic

field B� between the two graphene sheets is expected to in-
duce a �counterflow� supercurrent Jd in such a condensate,31

Jd=2�se
2dB� /�2. The phase stiffness �s and its density de-

pendence can be directly obtained from experimental mea-
surements of the counterflow supercurrent. The verification
�or falsification� of our predictions, including the density de-
pendence of �s and mex, will deepen our understanding of
properties and condensation of excitons with massless fermi-
ons as constituent particles. Recently, we have also become
aware of related works.27,32
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