PHYSICAL REVIEW B 77, 233403 (2008)

All-electron four-component Dirac-Kohn-Sham procedure for large molecules and clusters
containing heavy elements
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In exploiting state-of-the-art density fitting algorithms, we show that relativistic four-component Dirac-
Kohn-Sham computations using G-spinor basis sets and Hermite Gaussian fitting functions can readily be
applied to large molecular systems, including large clusters of heavy atoms. The inherent accuracy of the fitting
procedure is discussed and the techniques to ensure high accuracy are mentioned. The power of the method,
with its reduced scaling with respect to size and a prefactor shrunk by several orders of magnitude, is illustrated
through some all-electron test calculations on gold clusters up to Auyg.

DOI: 10.1103/PhysRevB.77.233403

The predictive modeling of molecules, clusters, and nano-
scale materials containing heavy atoms represents a particu-
larly challenging task for theory and computational science
because both relativity and electronic correlation play crucial
roles in determining their electronic structure and properties.
The most rigorous way to introduce relativity in the model-
ing of molecular systems is to use the four-component for-
malism derived from the Dirac equation.! The full four-
component formalism is particularly appealing because it
affords a physical clarity that is absent in the two-component
reductions of the Dirac operator, especially with regard to the
problems involved in the change of representation and the
gauge dependencies of the electromagnetic interaction. It
also represents the most rigorous way of treating explicitly
and ab initio all interactions involving spin, which are today
of great technological importance and are receiving growing
theoretical attention.> The successful attack on numerous
other important scientific challenges depends heavily on the
availability of fast four-component all-electron methodolo-
gies concerning, for example the nuclear properties of both
light and heavy atoms, parity violation in molecules, electric
and magnetic properties of molecules in strong fields, and
the basic nature of chemical bonds involving both heavy and
superheavy elements (see, e.g., Refs. 3). However, only rela-
tively recently have significant developments taken place
making the four-component framework suitable for practical
applications.*-©

Four-component calculations have an intrinsically greater
computational cost than analogous nonrelativistic or less rig-
orous quasirelativistic approaches but this essentially in-
volves only a larger prefactor in the scaling with respect to a
number of particles or basis set sizes, not a more unfavorable
power law. Therefore, while computationally less demanding
schemes have been devised involving reduced Hamiltonians
(see, e.g., Ref. 7 and references therein) or, in a recent pro-
posal, a four-component scheme where the negative-energy
states are kept frozen at atomic contributions,® the applica-
bility of the four-component theory to large molecular sys-
tems is hindered mainly by the comparatively early stage of
development of the relevant algorithms and codes, and not
by any fundamental problem of principle.

Another crucial aspect of the theoretical chemistry of
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heavy atoms is that of electron correlation. For polyatomic
systems containing heavy elements, explicit electron correla-
tion methods rapidly exceed feasibility limits because of the
adverse scaling behavior and large number of electrons in-
volved, while linear scaling techniques® lose their computa-
tional advantages due to the compactness of the molecular
systems. A far more practicable approach is the density func-
tional theory (DFT),!? where all the exchange-correlation ef-
fects are expressed implicitly as a functional of the electron
density or, more generally, the charge-current density; inten-
sive research is under way in this area.'! The relativistic
four-component generalization of the Kohn-Sham method is
referred to as the Dirac-Kohn-Sham (DKS) model.'? Several
modern implementations of this theory are available,>®!3 in-
cluding in our own program BERTHA.'4~!7

In this Brief Report, we present a significant step forward
in the effective implementation of the four-component DKS
theory, based on the electron-density fitting approach that is
already widely used in the nonrelativistic context. In addition
to a reduction in the scaling law with respect to the number
of heavy atoms and the size of the basis set, we demonstrate
a dramatic reduction, by several orders of magnitude, in the
scaling prefactor that enables the fully relativistic study of
large polyatomic systems. The inherent accuracy of the fit-
ting procedure and the numerical techniques that are neces-
sary to ensure high accuracy are also discussed.

In the simplest DKS formulation, the exchange-
correlation potential of nonrelativistic Kohn-Sham theory
may be augmented by relativistic corrections. In order to
represent the four-component solutions of the DKS equation
in BERTHA, we adopt a Gaussian basis set expansion. In par-
ticular, the large (L) and small (S) components of the spinor
solutions are expanded as a linear combination of G-spinor
basis functions. Each G-spinor component (L or S) is a two-
component spinor function of spherical Gaussian type. This
choice of basis set has several theoretical advantages'®!
and, above all, it preserves all the computational advantages
that have made Gaussian-type functions the most widely
used expansion set in computational quantum chemistry. A
peculiar and important feature of our approach is that the
density elements Qg(r), which are the scalar products of
pairs of G-spinors labeled as w and v (T=L,S), are evaluated
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as finite linear combinations of scalar auxiliary Hermite
Gaussian-type functions (HGTFs) by analogy to the
McMurchie-Davidson expansion of the nonrelativistic
charge density.!® It is this formulation'# that enables the
highly efficient analytic computation of all the required mul-
ticenter G-spinor interaction integrals.

Normally, the construction of the Coulomb and exchange-
correlation matrices dominate the computational cost of a
conventional DFT calculation. A widely used device to ac-
celerate nonrelativistic DFT computations replaces the exact
electron density, obtained directly from the orbital ampli-
tudes, by an approximate fitted density constructed using a
suitable auxiliary basis set, {f;(r)}. The most successful
scheme to obtain an accurate and stable approximate density
in nonrelativistic quantum chemistry is the Coulomb fitting
method.’ In this scheme, the expansion coefficients of the
auxiliary functions are determined by minimizing the mean-
square error in the Coulomb energy. A great advantage of
this approach is that the fitting error in the Coulomb energy
is intrinsically non-negative so that it may be minimized
variationally. We have recently introduced an efficient Cou-
lomb fitting scheme in our DKS method!® using an auxiliary
set of HGTF fitting functions. We have shown that a single
set of functions may be used to fit both the large- and small-
component contributions to the density. The method results
in a symmetric, positive-definite linear system to be solved
in order to obtain the vector of fitting coefficients. The pro-
cedure involves only the calculation of two-center Coulomb
integrals over the fitting set, A; i=<fi|| f;), and three-center in-
tegrals between the fitting functions and density overlaps,

11l =(flle.). The formal scaling is reduced from O(N*) to
O(N ) in the evaluation of the Coulomb contribution in this
approach. In our implementation, we take further advantage
of a relativistic generalization of the J-matrix algorithm and
an additional simplification arising from the use of primitive
HGTFs that are grouped together in “shell” sets with increas-
ing angular momentum but sharing a common exponent.'¢
This permits the use of the efficient recurrence relations for
Hermite polynomials in the computation of the two-electron
repulsion integrals.

With the above strategy, the bottleneck of a four-
component DKS calculation has been moved entirely to the
computation of the exchange-correlation matrix contribution.
It is precisely this problem that we address in this Brief Re-
port, extending the density fitting technique to the calculation
of the relativistic exchange-correlation term. The idea of us-
ing the density resulting from the Coulomb fitting to com-
pute directly the exchange-correlation functional has been
proposed previously in the nonrelativistic framework?® and
some effective implementations have been reported
recently.?! The approximate DKS exchange-correlation ma-
trix elements are
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where 0 is the fitted density, D;w are the elements of the
density matrix, and the functional derivative of the

exchange-correlation energy E,. with respect to the density
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defines the exchange-correlation potential v, [@(r)]. Using
the electronic density obtained by the variational Coulomb

fitting scheme, one then has'®?!
d0(r) de;
oo =2 0= ZANLAE, @)
wv i nv

where {c;} are the fitting coefficients. Substituting Eq. (2)
into Eq. (1), we obtain a very simple expression for the
exchange-correlation matrix elements,

TT T T
KL EA will®,= Ez,lj,w, 3)

where z; are the elements of a vector z, which is the solution
of the linear system,

Az=w. 4)

The vector w is the projection of the “fitted” exchange-
correlation potential onto the auxiliary functions,

Wi =f vxc[é(r)]fi(r)dr- (5)

Once the vectors ¢ and z have been computed, the Coulomb
and exchange-correlation contributions to the DKS matrix
can be formed in a single step,

Tt K= 210 (et ). (6)

i

The elements of the vector w, involving integrals over the
exchange-correlation potential, are computed numerically by
a cubature scheme already in place.'> However, it is impor-
tant to note that the cost of this step tends to become negli-
gible compared to that of the conventional numerical integra-
tion step as the size of the system increases: the latter scales
as N2~Ng, where N is the number of G-spinor basis functions
and N, is the number of grid points. Using the fitted density,
the scahng reduces to Ny-N,, where Ny is the number of
auxiliary basis functions used to fit the density. Furthermore,
in the integration procedure, we can take advantage of our
particular choice of auxiliary functions; the use of primitive
HGTFs that are grouped together in sets sharing the same
exponent minimizes the number of expensive exponential
evaluations at each grid point. Further computational savings
arise from using the recurrence relations for Hermite poly-
nomials in the evaluation of the angular part of the auxiliary
fitting functions and their related derivatives. All of these
advantages are especially welcome because we have found
that it is particularly important to ensure high accuracy in the
numerical integration if the propagation of errors that arise in
the solution of the linear system [Eq. (4)] into the explicit
matrix representation of the exchange-correlation [Eq. (3)] is
to be avoided. The significant gains made in the efficiency of
numerical integration may be exploited without impairing
the computational advantages of the approach by adopting
integration grids that are sufficiently dense to ensure accu-
racy.

Before showing in detail the practical computational
power of the DKS approach outlined above, a brief discus-
sion of the accuracy of the general fitting procedure is in
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order. The variational approach employed in the fitting of the
density and in the optimization of the auxiliary basis sets for
atoms and small molecules usually yields a very accurate and
systematically improvable value of the Coulomb energy. It
is, however, not necessarily the case that the Coulomb-fitted
density produces a similarly accurate value of the exchange-
correlation energy or, by extension, the total energy. We find
that significant errors, of the order of several millihartree at
best, typically occur. The resolution of this problem, which
has been largely ignored in the extant literature, will be dis-
cussed in detail in a dedicated study?’ and we only briefly
summarize it here. In order to obtain an accurate total energy,
one should explicitly optimize the auxiliary basis set for both
the Coulomb and exchange-correlation energy functionals at
the same time, but this is generally troublesome and time
consuming. Simple recipes for extending the auxiliary basis
set starting from the Coulomb-optimized set have also been
proposed,?! but we have found that such procedures do not
always work in the relativistic context; it may even be the
case that augmenting the auxiliary basis makes the total en-
ergy less accurate. In the spirit of Ref. 23, we have found a
simple and particularly effective procedure, in which the
auxiliary fitting basis set is constructed dynamically from the
underlying G-spinor basis, reproducing accurately the total
energy of the unfitted density. In this approach, however, the
final auxiliary basis is generally larger than that of a standard
Coulomb fitting procedure, which inevitably increases the
computational cost. One should also always bear in mind
that general basis optimization may introduce a strong de-
pendence on the particular exchange-correlation functional
that is used. A more general approach that yields accurate
total energies without any optimization procedure has also
been investigated by us. This is based on the observation that
the electron density obtained by making the approximate
total-energy functional stationary with respect to variations
in the orbital spinor coefficients gives, in turn, a total energy
that is almost exactly coincident with that obtained without
density fitting. The total energy calculated using the con-
verged density in a simple “restart” procedure compensates
almost exactly for the use of a fitted density in the Coulomb
and exchange-correlation interactions. This is a very general
result that holds even when an auxiliary fitting basis set of
moderate size is used, which will be discussed in detail in a
future paper.??

As an illustrative example that further clarifies the issues
discussed above, we summarize the results of calculations on
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Au, performed with the BLYP exchange-correlation
functional®* and a G-spinor basis set of size 22s19p12d8f
(Ref. 25) for the large component; the corresponding small-
component basis was generated using the restricted kinetic
balance relation.'"* Two auxiliary sets of fitting functions
have been used: a standard Coulomb-optimized basis set,
denoted B20, consisting of 307 HGTFs per atom,'® and a
basis set obtained by the “dynamic” procedure mentioned
above, labeled B22-xc (444 HGTFs per atom). Calculations
were carried out at a range of Au-Au distances from 2.1 to
3 A. The standard B20 auxiliary basis fits the density of Au,
at its equilibrium distance with an error in the Coulomb en-
ergy of just 7 uhartree, but the error in the total energy is
three orders of magnitude larger at =5 mhartree. In both
cases, the error is essentially constant over the entire range of
Au-Au separations. With the B22-xc basis generated by our
procedure, the error in the total energy drops to about
20 whartree and is again nearly independent of internuclear
separation. Finally, using the “restart” procedure of perform-
ing an additional total-energy calculation with the final true
density reduces the B20 error to only 16 uhartree. The same
procedure with the B22-xc set makes the error vanish to
working accuracy. As just mentioned, all computed energy
curves are accurately parallel over the internuclear range in-
vestigated and this is reflected in the nearly invariant calcu-
lated spectroscopic properties, which also coincide precisely
with the values resulting from calculations without density
fitting. We have also tested the accuracy of our fitting
schemes in a system containing both heavy and light atoms
by computing the reduction energy of a water molecule from
the cluster Au(H,0)3. Here, the error due to the density fit-
ting is only about 3 meV while, again, practically exact re-
sults are obtained if we calculate total energies using the true
density obtained at self-consistent field (SCF) convergence.
Complete details of the calculations will be reported in
Ref. 22.

We finally turn to an illustration of the efficiency and
scaling of our DKS density fitting, which is the main moti-
vation of the present Brief Report. We performed DKS cal-
culations for several gold clusters of varying size up to Auyg,
both with the conventional DKS scheme and using the den-
sity fitting approach described here. Time-reversal symmetry
was not used in the calculations so that each of the Kramer
pair orbital spinors have been handled independently. This
means that clusters of doubled size could be treated at simi-
lar cost. A very fine integration grid has been employed for

TABLE I. DKS matrix size, CPU times (s) for the construction of the Coulomb (J) plus exchange-
correlation (K) matrices in the conventional (“conv”) and density fitting (“fit”) schemes, resulting speed ratio,
and DKS matrix diagonalization times (s) (“Diag”) for various gold clusters.

Cluster DKS size J+K)ony (J+K) g Speed-up Diag®
Au, 1560 1.86x 103 7.4 251 24.7
Auy 3120 1.71x 10* 44.1 388 184
Aug 6240 1.71 X103 296 578 1.50x 103
Auyg 12480 1.91x10%° 2.16x 103 884 1.21x 104

aUsing the standard LAPACK routine zhegv (Ref. 26).
PExtrapolated value.
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maximum accuracy, with 122 400 grid points for each gold
atom. The B20 auxiliary basis set has been used for density
fitting. All calculations were carried out on one processor of
a biprocessor node Intel(®) Xeon(®) CPU 3.00GHz node.
The timings measured for the evaluation of the Coulomb and
exchange-correlation matrix contributions are collected in
Table I. The reduction of the computational cost by the use
of the density fitting scheme is evident. The data show that
the time for the construction of the J+K matrix scales as
N33 for the conventional scheme and only as N>° using den-
sity fitting, where N is the number of atoms. It is very im-
portant to note, furthermore, that the scaling prefactor drops
from 125 s in the standard procedure to 0.8 s in the density
fitting scheme. This dramatic improvement can be enhanced
further by exploiting a number of additional features. With
the present implementation, the cost of the DKS matrix con-
struction becomes a fraction of the diagonalization step.
Therefore, because of the one-to-one mapping between the
large and small components of the G-spinor basis set, the
contraction of the primary basis would be particularly advan-
tageous, since the dimension of the matrix representation
could be dramatically reduced. Using the Poisson relation
between the electrostatic Coulomb potential and the elec-
tronic density further simplifies the three-index two-electron
repulsion integrals into overlap integrals.'”?” This approach
can be readily accommodated within the present scheme and
very effectively reduces its scaling behavior. Finally, the
scheme presented here lends itself to effective computational
parallelization, along lines that have already been reported
for the standard procedure.”

In this Brief Report we have demonstrated, using a work-
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ing implementation, that the computational burden associ-
ated with the four-component structure of the Dirac operator
can be greatly reduced by adopting computational strategies
based on density fitting. In particular, we have extended the
implementation of the density fitting approach both to the
Coulomb and exchange-correlation matrix construction of
the DKS method. While preserving high accuracy in the total
energy through computational simple devices, the method
exhibits highly advantageous scaling properties that may be
further improved by the exploitation of density localization,
as well as an extremely small scaling prefactor. In our cur-
rent preliminary implementation, heavy atom clusters of the
size of Aus, and beyond are already tractable with ease, pre-
serving the full accuracy and physical transparency of the
all-electron relativistic four-component formalism. This of-
fers exciting opportunities in both the applicability and the
development of relativistic quantum chemistry, bringing, in
particular, realistic cluster science, catalysis, and superheavy
element physics and chemistry within the reach of accurate
theoretical modeling. On the development front, the effi-
ciency of the density fitting techniques outlined in this paper
could be exploited, for example, in (i) four-component post-
SCF methods, requiring the evaluation of two-electron inte-
grals over spinors, (ii) the implementation of real-time
propagation theories and molecular property calculations,
which may benefit from the significant gains reported here in
four-component Hamiltonian matrix construction. It is worth
noting that a rigorous current-density-functional theory (in
either a spin-diagonalized or covariant representation) may
be readily accommodated in our present scheme using essen-
tially the same fitting techniques described here.
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