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We address the current blocking by a p-n junction in a zigzag graphene ribbon by means of numerical and
analytic investigations. Ribbons with superimposed gate potentials perfectly block the current in the energy
range, where a single energy band is active in both the n and the p regions, if the number of carbon chains is
even. In the same conditions, an odd number of chains allows current transmission. We interpret this even-odd
valley-valve effect in terms of the underlying honeycomb topology and crystal structure symmetry.
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A few years ago, the experimental realization of
graphene1–3 has opened the path to countless investigations
rich of developments and novelties4–9 on a material of con-
siderable theoretical and technological interest. The peculiar
band structure of graphene makes possible the electrostatic
control of carrier type, electronlike or holelike, and carrier
density across the neutrality point. In graphene ribbons, local
gates allow the fabrication of bipolar junctions,10–14 as sche-
matically shown in Fig. 1�a�. The well-known two-valley
band structure of the zigzag graphene ribbon is thus shifted
in the region where the external potential is applied �Fig.
1�b��. Consider carrier injection, e.g., from the right side of
the junction at a positive energy E, where one single band is
active on both sides of the ribbon �red dashed line in Fig.
1�b��. The incoming current is supported by an electronlike
state in the K valley �point A in Fig. 1�b�� and can propagate
to the left, supported by a holelike state in the K� valley
�point A� in Fig. 1�b��. Transmission is thus possible only if
the superimposed gate potential acts as an intervalley scat-
tering source.15–17 In the one-mode energy region, it has been
observed16 that transmission is allowed �forbidden� if the
number of chains in the ribbon is odd �even�. This striking
valley-valve effect has been discussed in Refs. 15 and 16 and
linked to the coupling of states localized at opposite edges of
the ribbon.

In this Brief Report, we present numerical simulations of
charge transport in a zigzag graphene ribbon, which evidence
the even-odd effect and provide a theoretical interpretation
based on general symmetry arguments on the bipartite hon-
eycomb topology.

The dangling carbon orbitals on the honeycomb lattice
give rise to bonding and antibonding � electronic states that
cross the Fermi energy and play the key role in the transport
properties.4–6 For the numerical simulations, we adopt the
orthogonal nearest-neighbor tight-binding Hamiltonian

H = E0�
i

��i���i� + t�
�ij�

���i��� j� + �� j���i�� , �1�

where �i and � j denote the dangling pz orbitals centered on
the sites i and j of the lattice, �ij� denotes nearest-neighbor
sites with hopping parameter t	−3 eV, and the orbital en-
ergy E0 is taken as the reference energy �and set equal to
zero�. A superimposed potential is described by adding a
term of the type

V = �
i

Vi��i���i� , �2�

where Vi is the value of the potential on the site i. Within
the above tight-binding model, we exploit the Keldysh
formalism18,19 to numerically evaluate the differential con-
ductance for zigzag nanoribbons made up of Nz=50 and Nz
=51 carbon chains. The efficient bond current formalism for
the description and imaging of electron transport in graphene
honeycomb lattices is reported in Refs 20 and 21. We con-
sider the energy range �−5� ,5��, where �= �t�� / �Nz+1 /2�
is the energy separation21 between subsequent modes at the
K point, see Fig. 1�b�. Figure 2�a� shows the conductance for
vanishing gate voltage. As expected, in the energy interval
�−�3 /2�� , �3 /2���, the conductance is 2e2 /h, while it as-
sumes values �2n+1�2e2 /h as successive conductive chan-
nels become active at higher energies.

We now consider the effect of a smooth potential step of
the shape indicated in Fig. 2�b� and with height Vg
=� , �3 /2�� ,2�. In the case Nz=50 and Vg=� �Fig. 2�c��,
the junction is perfectly reflecting in the energy interval 0
�E�Vg=�. Furthermore, the conductance is unity in the
energy intervals of width �3 /2�� to the right of E=� and to

FIG. 1. �Color online� �a� Zigzag graphene nanoribbon with
superimposed gate potential Vg. �b� Energy bands in the gated and
neutral zones of the ribbon. � is the energy separation of the states
at the Dirac points. The dashed red line indicates the energy of the
injected electrons from the right side of the ribbon.
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the left of E=0. Then, at successive energy increases in �,
the conductance G approaches odd multiples of 2e2 /h. In
Fig. 2�d�, the value of Vg= �3 /2�� is considered, and the
extension of the zero conductance region is maximal. With
further increase in Vg, the region of zero conductance de-
creases �see Fig. 2�e� for Vg=2�� and eventually disappears
when Vg�3� because the multichannel regime is entered.
For the same superimposed potential values, the situation is
quite different for graphene ribbons with odd number of
chains. The results are shown in Figs. 2�f�–2�h� in the case
Nz=51. From the numerical results of Fig. 2, it is evident that
in the energy regions of infinite resistance for Nz even, the
current can flow for Nz odd.

In the following, we show that the above even-odd effect
is deeply connected to the symmetry of the crystal structure
and of the superimposed potential. To this aim, let us con-
sider the unit cell of the structure of Fig. 3, containing 2Nz
lattice points in the positions di �i=1,2 , . . . ,2Nz�. From the
2Nz orbitals in the primitive cell, we build the 2Nz Bloch
sums

�i�k,r� =
1


N
�
tm

eik·�tm+di��z�r − tm − di� , �3�

where tm= �ma ,0� are N lattice translation vectors, and k
= �k ,0� with k within the corresponding one-dimensional
Brillouin zone, −� /a�k� +� /a. The crystalline wave
functions can be expressed as linear combinations of Bloch
sums

	�k,r� = �
i=1

2Nz

Ai�k��i�k,r� . �4�

On the basis set ��i� �i=1,2 , . . . ,2Nz�, the nearest-neighbor
electronic Hamiltonian �Eq. �1�� is represented by a tridiago-
nal matrix of the type

H�k� =

0 2tc 0 0 . . .

2tc 0 t 0 . . .

0 t 0 2tc . . .

. . . . . . . . . . . . . . .
�

2Nz

with c�k� = cos�ka/2� , �5�

where the upper and lower diagonals have elements given
alternately by 2t cos�ka /2� and t. The Hamiltonian H�k� can
be represented by the finite chain model with 2Nz sites, as
shown in Fig. 4.

The eigenvalues and eigenvectors of H�k� give the energy
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FIG. 2. �a� Conductance versus energy of the injected electrons
for a graphene ribbon at Vg=0. �b� Spatial profile of the superim-
posed gate potential. �c�, �d�, and �e� Conductance for a ribbon with
Nz=50 chains and superimposed potential Vg=�, �3 /2��, and 2�,
respectively. �f�, �g�, and �h� Conductance for a ribbon with Nz

=51 chains and superimposed potential Vg=�, �3 /2��, and 2�,
respectively.

FIG. 3. �Color online� Structure of a graphene ribbon with
Nz=5 zigzag chains and 2Nz carbon atoms in the primitive cell.

FIG. 4. �Color online� Schematic representation of Hamiltonian
�5� for even Nz �with value Nz=4� and odd Nz �with Nz=5�. The thin
lines denote the off-diagonal matrix element t, while the thick lines
denote the off-diagonal matrix element 2t cos�ka /2�.

BRIEF REPORTS PHYSICAL REVIEW B 77, 233402 �2008�

233402-2



bands and the expansion coefficients of the crystalline wave
functions for clean periodic ribbons. From the structure of
the matrix H�k� and its symmetry properties, which are evi-
dent from Fig. 4, it is seen that the eigenvectors are even or
odd under mirror reflections with respect to the center of the
finite chain. Thus the expansion coefficients Ai�k� in Eq. �4�
satisfy the relation

Ai = �− 1�pA2Nz+1−i�i = 1,2, . . . ,2Nz� , �6�

where the parity p is even or odd. Accordingly, the energy
bands can be classified as even or odd. Although here we
have only considered nearest-neighbor interactions, it should
be noticed that the parity symmetry is preserved even in the
case of higher order neighbor interactions, since it is con-
trolled by the space mirror symmetry of the crystalline
Hamiltonian.

The electronic structure and the parity of zigzag graphene
ribbons with Nz=50 chains and Nz=51 chains are reported in
Figs. 5�a� and 5�b�, respectively. The flat parts of the bands
near E=0 correspond to states localized at the edges for k
= 
� /a and penetrating into the bulk as k approaches the
Dirac points at k= 
2� /3a.22,23

We address now the possibility of intervalley-coupling by
a superimposed potential on an otherwise clean and transla-
tionally invariant zigzag graphene ribbon. Since the gate po-
tential is expressed as a diagonal perturbation on a given
number of sites of the ribbon in real space, �see Eq. �2��, in

order to evaluate the matrix elements of intervalley scatter-
ing among band states belonging to different valleys, it is
convenient to introduce the site projection operators

Pmj = ��z�r − tm − d j����z�r − tm − d j�� , �7�

which project the ribbon wave functions onto the jth site
belonging to the unit cell specified by the mth translation
vector. In particular, on the basis functions �3� we have the
relation

��i�k��Pmj��i��q�� =
1

N
ei�q−k�·�tm+dj��ij�i�j . �8�

The gate potential �2� can be expressed as

V = �
mj

VmjPmj , �9�

where Vmj represents the superimposed potential on the indi-
cated site. The matrix element of the perturbation potential
between any two eigenfunctions 	a�k� and 	b�q� of the
form �4� is

�	a�k��V�	b�q�� =
1

N
�
mj

VmjAj
��k�Bj�q�ei�q−k�·�tm+dj�.

�10�

If we consider a gate potential that only varies along the
longitudinal x direction and assumes the same values on all
of the sites of a vertical column of the ribbon, we have in
expression �10� Vmj =Vm. Then Eq. �10� can be recast in the
form

�	a�k��V�	b�q�� = S
1

N�
m

Vmei�q−k�·tm, �11�

where the structurelike factor S is given by

S = �
j=1

2Nz

Aj
��k�Bj�q�ei�q−k�·dj . �12�

Notice that the sum in S only involves the sites of the primi-
tive cell and the expansion coefficients Ai�k� and Bj�q� of the
wave functions 	a�k� and 	b�q�, respectively. The structure
factor is different for even or odd ribbons, and this is at the
origin of the observed even-odd effect in charge transport. In
fact, by exploiting Eq. �6�, expression �12� can be recast in
the form

S = �
j=1

Nz

Aj
��k�Bj�q��ei�q−k�·dj + �− 1�pa+pbei�q−k�·d2Nz+1−j� ,

�13�

where pa and pb are the parities of the wave functions 	a
and 	b, respectively.

We apply now the above relation to the case that one
wave function is even and the other is odd; in this case, in
expression �13� it holds �−1�pa+pb =−1. If the number Nz of
zigzag chains is even, we have that the x components of the
vectors d j and d2Nz+1−j are equal �see Fig. 3�, thus, each term
in the parenthesis of Eq. �13� vanishes. This does not hold in
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FIG. 5. �Color online� Band structure of a zigzag graphene rib-
bon composed of Nz=50 �a� and Nz=51 �b� chains. Solid black lines
and dashed green lines indicate, respectively, odd and even parity of
the corresponding wave functions. The energy unit � is the energy
separation between adjacent bands at the Dirac point, as indicated
by dots.

BRIEF REPORTS PHYSICAL REVIEW B 77, 233402 �2008�

233402-3



the case of odd number of chains. These results entail perfect
reflection in the case of a ribbon with even number of chains,
while transmission is possible for an odd number of chains.
In the case 	a and 	b have the same parity, �−1�pa+pb =1 and
in general S�0 independently of the number of chains Nz.

The above considerations demonstrate that the parity of
the number of chains of the ribbon in stepwise superimposed
gate potentials are responsible for the observed even-odd ef-
fect in charge transport in p-n junctions when a single trans-
mission mode is active throughout the whole ribbon. The
field-effect blocking of currents in the analyzed geometrical
arrangement and energy range in graphene nanoribbons

opens applicative perspectives15,16 for quantum logic gates
besides the more traditional ones based on semiconductor
quantum wires24,25 and electronic spin manipulation.26 The
numerical results and the analytic interpretation presented in
this Brief Report can be extended to other graphene architec-
tures and other materials27 with honeycomb lattice structure,
in view of a deeper understanding and better control of the
valley degrees of freedom in this class of two-dimensional
electronic devices.

This work has been supported by Scuola Normale Supe-
riore, and by National Enterprise for Nanoscience and Nano-
technology �NEST�.
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