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The noise of quantum dots in the ac Kondo regime is investigated by means of slave-boson mean-field
method and Floquet theorem. A nonadiabatical formula for the noise power is obtained in the Floquet-Green
formalism to take into account interaction effects. We show that, as a manifestation of many-particle correla-
tions, the singularities of photon-assisted noise for noninteracting dots cannot survive in the ac Kondo regime.
These peculiar features of the photon-assisted noise thus provide us an alternative probe to distinguish the
noninteracting resonant tunneling and the many-particle Kondo resonance.
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The noise of phase-coherent conductors has recently
drawn much attention1 in making a full description of the
charge transport. As a time varying field provides us a direct
access to modulate the phase of wave functions,2,3 consider-
able recent interest is focused on the photon-assisted noise to
reveal coherent effects that are absent in conductance
measurements.4–7 In particular, Lesovik and Levitov �LL�
�Ref. 4� demonstrated the sensitivity of the photon-assisted
noise to the phase of transport electrons subjected to both an
ac field and a dc bias. It is found that the commensurability
of the two energy scales, which are defined by the external
voltage bias V and the ac frequency �, can lead to singular
dependence of the noise power S as a function of V. This
phase-coherent phenomenon is also expected to remain dis-
tinct at weak ac field for mesoscopic conductors in the nona-
diabatic regimes.5 A more recent example of the photon-
assisted noise is the possibility to manipulate the relative
noise level via ac fields as shown by Camalet et al.6 How-
ever, these previous studies were based on the assumption
that the coherent conductors are free from the Coulomb
interaction.4–6

For realistic quantum dots, Coulomb interaction plays an
important role and the transport behavior is genuinely many
particle. Particularly, when the temperature is lower than the
characteristic Kondo temperature TK, the transport with
strong Coulomb interaction is dominated by the well-known
Kondo effect, i.e., the transport via many-particle Kondo
resonance.8–10 One can readily verify that the singular behav-
ior of the noise power which was predicted for noninteract-
ing dot by LL is most pronounced when the dot is in the
resonant tunneling. Because the Kondo resonance has a close
analogy to the noninteracting resonance in many aspects
such as the unitary limit in conductance measurements,11 it is
thus interesting to ask whether such a behavior can be ex-
pected in the many-particle Kondo resonance. As we will
show in the following, the two resonances, namely, the non-
interacting resonance and the Kondo resonance, show di-
verse behaviors in the photon-assisted noise, in contrast to
the conductance measurement.

In the ac Kondo regime, the coherence is influenced by
the interplay between the time-dependent field and the Cou-
lomb interactions. Comparing with the noninteracting cases,

a general formula of the photon-assisted noise in the ac
Kondo regime has been lacking. There have been some at-
tempts to study the conductance and local density of states
�LDOS� of quantum dots in the ac Kondo regime.12–20 It is
noteworthy that several studies14–16 have implied that the
Kondo resonance is actually not influenced by an ac gate
voltage when the energy scale of the ac parameters is much
lower than the Kondo temperature. However, a clear picture
on the robustness of the Kondo resonance against the weak
ac field is less illuminated.

In this Brief Report, a generic formula �Eq. �7�� for the
time-averaged zero-frequency noise power of an interacting
dot in ac field is developed. Remarkably, it is found that
singularities of the photon-assisted noise cannot survive in
the strongly correlated Kondo regime. This is in great con-
trast to the predictions of LL for noninteracting resonant
dots.4,5 Moreover, we show that the robustness of the Kondo
resonance discussed above is a direct manifestation of the
genuine many-particle correlations. As both the noninteract-
ing resonance and the Kondo resonance can reach the unitary
conductance, our results show that the photon-assisted noise
provides an alternative probe to distinguish the noninteracing
and Kondo resonances, which cannot be achieved by tradi-
tional conductance measurements.

Our results are based on the slave-boson technique21,22 in
the mean-field �SBMF� approximation.23,24 The strong-
coupling SBMF theory has been well known to be a reliable
and powerful method in describing the Kondo physics at low
temperatures.9 Here we will generalize this method with the
help of Floquet theorem2,3 to include a weak monochroic ac
field nonadiabatically. We believe that it can still yield reli-
able results since the energy scales of interest defined by the
ac and dc parameters are lower than the Kondo temperature.

The system of interest is a single level quantum dot at-
tached to the left �L� and right �R� leads, which is depicted in
the inset of Fig. 1. The energy level is modulated by an
oscillating gate voltage. For a large Coulomb interaction on
the dot, the system can be represented by the infinite-U �U is
the Coulomb strength� Anderson model by introducing the
slave-boson field b and a pseudofermion operator f� �Refs.
21 and 23� as
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H = �
�,q,�

��q + eV�
dc�cq��

† cq�� + �
�,q,�

�V�b†cq��
† f� + H.c.�

+ �
�

��dot + eVac cos �t�f�
† f� + ��t���

�

f�
† f� + b†b − 1� ,

�1�

where the last term with the Lagrange multiplier � represents
the constraint to prevent double occupancy in the limit of
U→� at any time throughout the evolution of the system,
i.e., ��f�

†�t�f��t�+b†�t�b�t�=1. cq��
† �cq��� is the creation

�annihilation� operator for electrons in the � ��=L,R� lead
with the quantum number q and spin index �. V� is the
hopping matrix element between the dot and � lead. In the
following, we treat the dot-lead coupling in the wide-band
limit; i.e., the coupling strength 	����=2
�q�V��2���−�q� is
energy independent for ����D, where D represents the band-
width. �dot is the energy level of the dot. Vac is the ac ampli-
tude with the frequency �. VL,R

dc = 
1
2V for symmetric cou-

pling, where V is the dc bias across the quantum dot.
In the lowest order of mean-field approximation, we re-

place the slave-boson operator by its expectation value, i.e.,
	b�t�
=b�t�,23 and neglect the fluctuations of the slave opera-
tor around its expectation value. From the constraint condi-
tion and the equation of motion of the slave-boson operator,
we have a set of self-consistent equations for the mean val-
ues of b�t� and ��t� as

b��t�b�t� + �
�

	f�
†�t�f��t�
 = 1,

− i�
�

�t
b�t� = ��t�b�t� + �

q��

V�	cq��
† �t�f��t�
 . �2�

In order to solve the above equations self-consistently,
one needs information on the double-time Green’s functions
G�;q��

� �t , t��= i	cq��
† �t��f��t�
 and G�;�

� �t , t��= i	f�
†�t��f��t�
.

For the sake of convenience, we take �=e=kB=1 and drop

the spin index � from Green’s function G�;� of the quantum
dot since the spin degeneracy is conserved.

As Hamiltonian �1� is invariant under the discrete
time translation by one period of the driving, i.e., H�t�
=H�t+2
 /��, it is more convenient to work within an en-
larged Hilbert space to include the Floquet basis of time
periodic functions �k
=exp�−ik�t�.2 The periodicity of the
driving field allows us to write b�t�=�kbke

−ik�t and
��t�=�k�ke

−ik�t. With the help of Floquet theorem, the set of
equations in Eq. �2� can be closed as nonlinear integral equa-
tions by eliminating the degrees of freedom of the lead and
Fourier transform the double-time functions in the Floquet
space,

B · B† − 2i� d�

2

G���� = 1,

B� · B† + � · B · B† − 2i� d�

2

G������ − Hdot

F � = 0, �3�

where the elements of the matrices in Eq. �3� are given by
Bk,k�=bk−k�, Bk,k�

� = �k−k���bk−k�, and �k,k�=�k−k�, with k
and k� as the indices for the Floquet basis. The matrix
element of the Floquet-Green function is �G�����k,k�
= 		k�G��t ,���k�

. Here G��t ,�� is the Fourier transform of
the double-time Green’s function G��t , t�� and the inner
product is defined as 		�k�k�

 : = �

2
�0
2
/�eik�te−ik��t. Hdot

F is
the Floquet Hamiltonian of the quantum dot, which is de-
fined as Hdot

F =�dot+eVaccos��t�+��t�− i� �
�t . One can see that

the Lagrange multiplier ��t� acts as a dynamical field which
contributes to the time evolution of the system. As we will
show later, this time-dependent Lagrange field which arises
from the zero or single occupancy constraint plays an impor-
tant role in the ac Kondo regime.

From the Keldysh formalism for the double-time Green’s
function, the lesser Floquet-Green function G� that appears
in Eq. �3� can be written in matrix form as

G���� = Gr���E����Ga��� , �4�

where the retarded �r� and advanced �a� Floquet-Green’s
functions Gr/a in Eq. �4� can be found from the resolvent
Gr���= �Ga����†=1 / ��−Hdot

F −Er����. The Floquet self-energy
due to the coupling to the leads is Er���=��E�

r ���
=− i

2��B ·�� ·B†, where �������k,k�=	���+k���k,k�. The
lesser Floquet self-energy can be proved as E����=��E�

�

= i��B ·����� ·F�
���� ·B†, where �F�

��k,k����= f���+k���k,k�
and f� is the Fermi distribution function in the � lead. In the
absence of ac field, the matrices in Eq. �3� are trivially diag-
onal in the Floquet space. Equation �3� can then recover the
self-consistent equations for stationary cases.25,26

We are interested in the photon-assisted noise in the ac
Kondo regime. The noise can be characterized by the current
fluctuation as

SL�t,t�� =
1

2
	�ĴL�t�,�ĴL�t���
 , �5�

with the operator �ĴL�t�= ĴL�t�− 	ĴL�t�
 representing the fluc-

tuations of the current from the left lead, ĴL�t�, from its ex-

FIG. 1. �Color online� The derivative of noise with respect to
bias dS /dV for quantum dots in the ac Kondo regime �solid line�
and noninteracting situations �dashed line�. The inset shows the
schematic plot of the quantum dot driven by an oscillating gate
voltage.
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pectation value 	ĴL�t�
. The current operator ĴL�t� can be
found from the evolution of the charge numbers of the left
lead as

ĴL�t� =
ie

�
�
q�

�VLckL�
† �t�f��t�b†�t� − H.c.� . �6�

By inserting Eq. �6� into Eq. �5� and replacing the slave-
boson operator with its mean-field value, one can arrive at
the time-averaged zero-frequency noise spectrum power as

S�0� =
�

2

�

0

2
/�

dt2� dt�SL�t,t��

=
2e2

h
� d��EL

�G� + G�EL
�� − �GrEL

� + G�EL
a� · �GrEL

�

+ G�EL
a� + G� · �EL

r GrEL
� + EL

r G�EL
a + EL

�GaEL
a�

+ �EL
r GrEL

� + EL
r G�EL

a + EL
�GaEL

a� · G��− �EL
r G�

+ EL
�Ga� · �EL

r G� + EL
�Ga� + H.c.�0,0, �7�

where G� and EL
� are the greater Floquet-Green function of

the dot and the corresponding greater self-energy due to the
coupling to the L lead. The Keldysh formalism for G� has
the same structure as Eq. �4� with the replacement of
�→� and the greater Floquet self-energy E����=��E�

����,
with E�

����=−iB ·����� ·F�
���� ·B†, where F�

�=1−F�
�.

Equation �7� expresses the time-averaged zero-frequency
noise within the compact Floquet-Green formalism. It goes
beyond the adiabatic limit and is valid for arbitrary ac pa-
rameters. Different from the formula presented in Ref. 6,
which is valid for a noninteracting conductor and only the
retarded Floquet-Green function is needed, Eq. �7� can be
applied to the situations with interaction effects provided that
the Hamiltonian can be written in the quadratic form and the
Wick theorem is applicable.26 As a matter of fact, not only
the retarded and advanced Floquet-Green functions but also
the lesser and greater Floquet-Green functions which can de-
scribe the nonequilibrium distribution in the conductor ap-
pear in the formula presented above.

Limited by the validation of SBMF theory, the parameters
of the ac and dc fields are restricted to be lower than the
relevant energy scale defined by the Kondo temperature TK.
For the sake of convenience, we have set 	=	L+	R=1 as
the energy unit. The device parameters are given by
�dot=−3.5 and D=60 at zero temperature, so that the Kondo
temperature TK is TK�10−3. The ac frequency and amplitude
of the time oscillating gate are chosen as Vac=�=0.5TK. For
equilibrium Kondo dot, the LDOS displays a narrow peak,
i.e., the Kondo resonance, with the width of TK at the Fermi
level of the leads. If the quantum dot is driven out of equi-
librium, the peak and width of the LDOS will be renormal-
ized due to the many-particle correlation.

For the parameters given above, the Kondo dot at station-
ary operates in the unitary limit and the transport behavior
resembles greatly that of the noninteracting dot with the level
shifted to resonance. For better understanding of the role of
the many-particle correlation, both results of dS /dV for non-
interacting dot and Kondo dot are obtained from Eq. �7� and

presented in Fig. 1 for comparison. The parameters of the
noninteracting dot are chosen to make its LDOS identical to
the Kondo resonance at equilibrium. The behavior of dS /dV
of a noninteracting dot is displayed as the dashed line in Fig.
1. A steep rise is observed at �=V, consistent with the pre-
dictions by LL.4 The distinct step in dS /dV shows the ex-
treme sensitivity of noise properties to the modification of
phase by the weak ac field. The behavior of dS /dV in ac
Kondo regime is displayed as the solid line in Fig. 1. No
steps are found in dS /dV, in great contrast to the noninter-
acting dot. Moreover, our numerical results show that the
difference in the noise between Kondo dots with or without
the weak ac field can be neglected. The disappearance of the
noise singular behavior in Kondo resonance has also been
observed when different ac parameters which are within the
validity of the SBMF method in the numerical calculation
are chosen. The disappearance of singularities of noise in the
ac Kondo regime indicates that the phase-coherent transport
is merely slightly modified by the ac field. In other words,
the ac field is effectively screened to influence the phase of
Kondo resonance. This differs drastically to that of noninter-
acting resonance situations.

The physical origin of this screen effect can be best un-
derstood by looking at the mean-field Hamiltonian in Eq. �1�
and comparing it with that of the ac-driven non-interacting
dot. One can see that besides the external ac gate voltage
with frequency � which modulates the electron level, the
slave boson b�t�, and Lagrange multiplier ��t� fields which
arise due to the many-particle effect act as dynamic poten-
tials and influence the dynamics of the quantum dot in the ac
Kondo regime. Both b�t� and ��t� must be determined self-
consistently by the constraint equations defined in Eq. �3�.
For the weak ac fields, our numerical results show that the
oscillating part of the slave-boson mean field b�t� is not
strong enough to modulate the dynamics of the dot. The
dominant contribution of b�t� to the renormalization is the dc
part b0. However, in order to fulfill the constraint of zero or
single occupancy, the oscillating part of ��t� follows the evo-
lution of the external ac gate voltage with a phase shift of 
,
i.e., �1=−Vac /2, while �n for �n��1 can be neglected. The
interplay between the ac gate voltage and the dynamical
Lagrange field cancels each other and guarantees the con-
straint of zero or single occupancy at each instance of time.
In this way, the external ac field is effective screened by the
Lagrange field. The Kondo resonance then feels effectively
no ac field and resembles much the stationary situation.
Therefore both the robustness of LDOS against ac fields dis-
cussed previously14–16 and noise properties obtained here are
distinct manifestations of the many-particle correlations.

Our results have shown that the distinct singular behavior
of noise depends on the origin of the resonance tunneling is
the noninteracting or many-particle Kondo effect. The two
resonances can be experimentally realized by tuning the en-
ergy level and the shape of semiconductor quantum dots by
the gate voltages at low temperature. Therefore, the photon-
assisted noise measurements provide an alternative probe to
reveal the electron interactions. We wish this can be experi-
mentally verified since the typical Kondo temperature ranges
from 1 mK to 1 K and corresponds to frequency varying
between 20 MHz and 20 GHz.19 Both the ac Kondo effect
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and the time-averaged noise power measurements in this en-
ergy scale are in the reach of present technologies.7,27,28 Very
recently, a measurement of the noise of a tunnel junction
under ac field was reported.29

Of course, we do not conclude that the noise properties in
the ac Kondo regime will show the screen effect in the whole
ac parameter space. The phenomena discussed above are be-
lieved to hold when the Kondo temperature TK defines the
largest energy scale. For cases where the parameters such as
T, V, Vac, or � are much larger than TK, the SBMF method is
not reliable and one has to rely on other techniques such as
the renormalization-group techniques. Actually, if the ac in-
tensities or frequencies are large enough, the decoherence or
ionization effects will destroy the coherent many-particle
Kondo resonance.14,28

In conclusion, we have investigated the noise properties
of quantum dots in the ac Kondo regime by means of SBMF
method and Floquet theorem. A compact expression for the
noise is obtained in the Floquet-Green formalism. This ex-
pression is general to include the arbitrary ac field nonadia-
batically and the Coulomb effects in the Kondo regime. Our
results show that contrary to the noninteracting dot, the sin-
gular behavior of photon-assisted noise cannot survive in the
many-particle Kondo regime. These remarkable diverse
noise behaviors provide us an alternative means to distin-
guish the noninteracting resonance and the Kondo resonance
through quantum dots.

In this Brief Report, the Coulomb effect on photon-

assisted noise is considered in two extremes, i.e., the nonin-
teracting �U=0� and the strongly correlated �U=�� limits,
which are within the validity of our techniques. Our results
have shown that the step behavior of the photon-assisted
noise in noninteracting regime cannot survive in the strong
Coulomb interaction limit. These results may indicate that
the photon-assisted noise crosses over from singular to
smooth curve upon increasing the Coulomb strength from
zero to the large limit. This conclusion is qualitatively in
agreement with a recent study30 where the step structure of
the ac noise of Luttinger liquid in carbon nanotube is found
to be smoothed out by the Coulomb interaction. However, a
quantitative description of the evolution of photon-assisted
noise with increasing Coulomb interaction is still far from
adequate due to the complexity of Coulomb effect. For full
understanding of the Coulomb effects on the photon-assisted
noise behavior, more effects are needed in the future to in-
vestigate the role of Coulomb interaction on photon-assisted
noise behavior in various transport regimes, such as the Cou-
lomb blockade regime, which are beyond the validity of the
approximations used above.
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