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We have studied the dynamics of vortices interacting with unidirectional twin boundaries �TBs� in a super-
conductor using molecular-dynamics simulation based on the overdamped equation of vortex motion. Current-
voltage curves and critical currents have been calculated as a function of vortex density. We found that the
critical current as a function of vortex density reveals a staircase pattern and this pattern depends on the
pinning strength. This behavior corresponds to discontinuous change of vortex configurations, which reflects
vortex pinning characteristics of superconductors with TBs. We also discuss the effect of matching between
vortex lattice and TBs and reveal that its behavior is different from the one in the case of columnar pinning.
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I. INTRODUCTION

In type-II superconductors, magnetic flux penetrates into
samples in the form of vortex lines when an applied mag-
netic field is larger than the lower critical fields. The pinning
of these vortices is important in device applications of super-
conductors because immobilization of vortices at pinning
sites is essential for lossless transport. Therefore, consider-
able efforts have been made to create artificial pinning sites
that can immobilize vortices effectively and increase the
critical current �Jc�.1–8 With the development of various tech-
niques to introduce artificial pinning sites, control and ma-
nipulation of vortex motion have also been studied. Recently,
some groups have reported rectified motion of vortices in a
sample with asymmetric pinning potential.9,10 Furthermore,
vortex dynamics interacting with various pinning centers is
also an attractive subject in statistical physics. Vortices take
various phases such as vortex glass11 and Bose glass,12 and
these phase diagrams have been studied extensively.13–15

Correlated disorders, such as columnar defects and planar
defects, are expected to be effective pinning sites since they
can pin vortices in the shape of “lines.” The twin boundary
�TB� is one of the correlated disorders and possible candidate
for tangible pinning site in the orthorhombic compound
YBa2Cu3O7−x �YBCO�. Thus, their pinning properties have
been actively studied by both experimental and theoretical
methods, and various interesting phenomena have been
reported.16–25 It has been found that the TB acts as a barrier
for the vortices moving perpendicular to twin planes, while it
can be easy-flow channels for vortices moving parallel to a
twin plane.16,17,19,20 Recently, it has become possible to fab-
ricate high-density TBs in melt grown YBCO, and the pin-
ning enhancement has been reported in the fabricated
samples.26–28 However, vortex dynamics in superconductors
with high-density TBs are not clear. Although several nu-
merical studies about the dynamics of vortices interacting
with TBs have already been reported, the twin spacing Tw is
much larger than the vortex spacing d in these studies. In
superconductors with high-density TBs, the relation between
d and Tw may affect vortex dynamics significantly. Hence
numerical simulation in the case where d and Tw are compa-
rable is favorable.

In the superconductors with periodic columnar defects, it
is well known that the enhancement of pinning efficiency

occurs at the magnetic fields at which the number of vortices
is an integral multiple or fractional numbers of that of pin-
ning cites.29–31 This phenomenon comes from geometrical
commensuration between the configuration of vortices and
pinning sites and is called “matching effect.” In the super-
conductors with mosaiclike TBs, matchinglike effects have
also been reported when d is equal to 1 /2 Tw �Refs. 27 and
28� or 1 /3 Tw.25 Unlike columnar defects which trap only
one vortex, TB can trap multiple vortices in its plane. There-
fore, the matching effect between vortices and TBs is
thought to be different from the one in the case of columnar
defects.

Vortex dynamics interacting with TBs is analogous to
two-dimensional �2D� vortex dynamics in the presence of
one-dimensional �1D� pinning arrays. The physics of 2D vor-
tices in the presence of 1D periodic pinning potential has
been studied theoretically and experimentally since the
1970s,32–36 and the matching effect has already reported.
Theoretical studies have also revealed stable vortex
configurations.33–35 However, these studies considered only
the region where d is larger than the wavelength of potential
modulation �g. Therefore, vortex configurations in the region
where d��g are still unclear.

In this study, we perform molecular-dynamics simulation
of vortices interacting with unidirectional periodic TBs in the
region where the vortex lattice constant and twin spacing are
comparable. We analyze the change in vortex states and criti-
cal currents with varying vortex density. We have found a
stepwise change in Jc due to the abrupt change in vortex
configuration. We have also found that the stepwise change
depends on pinning strength. Furthermore, Jc steps can be
regarded as broad peaks coming from the effects of matching
between the vortex lattice and periodic arrays of TBs.

II. MODEL AND METHOD

In our simulation, we consider a two-dimensional slice in
the x-y plane of an infinite three-dimensional sample. We use
periodic boundary conditions in the x-y plane and treat the
vortices as stiff rods that are perpendicular to the slab sur-
face: this implies that the applied magnetic field can be ex-
pressed as H=Hẑ using the unit vector in the z direction ẑ.
For simplicity, we assume TBs are dominant pinning centers
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and ignore all the other kinds of pinning centers. We assume
TB planes are perpendicular to the x axis and align at regular
intervals. The applied current is oriented in the direction of
the y axis so that the Lorentz force acts perpendicular to TBs.
Vortex motion is determined by solving the following over-
damped equation:20–23

�
d

dt
ri = Fvv + Ftb + Fth + FL. �1�

Here, � is the viscous coefficient which is set to unity, ri is
the location of ith vortex, Fvv is the repulsive force from
other vortices, Ftb is the pinning force from TBs, Fth is the
thermal noise, and FL is the Lorentz force. The form of Fvv
can be derived from the London theory as20,37

Fvv = �
j�i

Nv �0
2

8�2�3K1� �ri − r j�
�

� ri − r j

�ri − r j�
, �2�

where � is the penetration depth, �0 is the flux quantum, NV
is the number of vortices, and K1 is the modified Bessel
function. Since K1 decays quickly, we cut off this interaction
force at 6 � for computational efficiency. The TB is modeled
as an attractive channel with a width of 2Rtb, and Ftb is given
by

Ftb = − f tb�
k=1

Ntb

xik�1 − xik
2 ���1 − �xik��x̂ . �3�

Here, f tb is the pinning strength of TB, Ntb is the number of
the TBs, xik= �x̂ ·ri−Rk� /Rtb with Rk the x coordinate of kth
TB, and � is the Heaviside step function. We take Rtb
=0.15�, and twin spacing is equal to 1.2 �. The thermal
fluctuation is assumed to be a Gaussian white noise. The
Lorentz force FL is modeled as uniform force acting on all
vortices. Throughout this work we take the magnetic pen-
etration length � as a constant parameter, and all lengths are
measured in units of �, forces in units of f0=�0

2 /8�2�3,
energies in units of U0=�0

2 /8�2�2, vortex density in units of
B0=�0 /�2, and time in units of t0=�� / f0. Our system size
ranges from 12 ��12 � to 24 ��24 � to treat various
scales of vortex density. As shown in Sec. III, vortices form
various lattice configurations that are commensurate with the
periodic structure of TBs in several vortex density regions.
We chose vortex density carefully to avoid these lattices hav-
ing defects coming from the finite number of TBs.

We obtain the initial vortex position using simulated an-
nealing method. We start from a high temperature where kBT
equals 0.01U0 and then reduce the temperature to zero step
by step in increments of 0.0002U0. At each step, we keep the
temperature for 1.5�105 MD steps. After getting a static
configuration, we start to apply Lorentz force and calculate
the average vortex velocity in the x direction v̂x using Eq. �1�
at 0 K. Note that the third term of Eq. �1� is zero in this
calculation. Then we increase the applied Lorentz force lin-
early with time and calculate v̂x for each increment. At each
increment, we calculate 1.0�105 MD steps. Then, we dis-
card the values of first 5�104 MD steps and average those
of the remaining 5�104 MD steps. The average vortex ve-
locity and the Lorentz force are related to macroscopically

measured voltage and current respectively. We define the
critical depinning force fcr as the force when v̂x reaches the
value of 0.03 times of linear response in an unpinned ideal
sample �v̂x= fL�. This criterion was used in previous reports
and thought to be valid.31,38 The fcr represents the transition
point between vortex pinned state and moving state and is
related to the critical current density.

After reaching high Lorentz force where vortices form
moving vortex lattices, we decrease Lorentz force down to
zero and check the final vortex positions. In most of our
calculations, the final positions are close enough to their ini-
tial ones but differ substantially from initial ones in some
cases. In such cases, fcr changes greatly in the second calcu-
lation of V-I curve using the final positions as new initial
positions. The V-I curve converged after we repeated calcu-
lations several times, and we determined fcr from the con-
verged curves.

III. RESULTS

In Fig. 1, we show fcr and free vortex rate �FVR� as a
function of vortex density for strong pinning case �f tb= f0�. In
this case, maximum pinning force of TB fp is estimated as
0.38 f0 from Eq. �3�. The value of FVR represents the ratio
of depinned vortices to all vortices below fcr. From Fig. 1,
we can see steplike changes of fcr and FVR. We found that
this behavior corresponds to drastic change of vortex con-
figurations. Figures 2�a� and 2�b� show vortex positions
�black circles� and TBs �shaded line regions� at 0.69B0 and
1.04B0, respectively. In this manner, all vortices are pinned
by TBs and form an ordered lattice along the TBs up to �B0.
Thus FVR equals zero, and fcr equals fp. In the region from
1.3B0 to 3.3B0, vortices again form an ordered lattice but one
vortex line appears along the y axis between neighboring
TBs, as shown in Figs. 2�c� and 2�d�. In these configurations,
half of vortices are pinned, i.e., FVR equals 1/2, so that fcr
equals 1 /2fp. Similarly, in the region from 4.2B0 to 6.7B0,
vortices form an ordered lattice with two vortex lines appear-
ing between neighboring TBs, as shown in Figs. 2�e� and
2�f�. Here, FVR equals 2/3, so that fcr equals 1 /3fp. Mean-

FIG. 1. Critical depinning force �fcr� and FVR as a function of
vortex density curve for f tb= f0. Both of them change in staircase
pattern. Steps indicated by upward arrow correspond to broad
matching peaks.
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while, around 1.2B0, fcr are lower than 1 /2fp, even though
FVR are 1/2. In this region vortices have some spatial order,
but their configurations do not fit in the periodic structure of
TBs as seen in the case of 1.11B0 shown in Fig. 3�a�. In
consequence, pinning efficiency decreases and fcr becomes

lower than 1 /2 fp. In the same way, around 3.5B0 vortices
do not form an ordered lattice that fits in the periodic struc-
ture of TBs as seen in Fig. 3�b�, and fcr becomes lower than
1 /3fp.

In Fig. 4, we plot fcr and FVR as a function of vortex
density for weak pinning case �f tb=0.4f0�. In this case, fp
equals 0.15f0. The most significant feature seen in Fig. 4 is
that additional steps appear around 1.4B0 and 3.5B0 com-
pared with the case of f tb= f0. Furthermore, additional ter-
races appear around 1.1B0 and 1.8B0. In the step region
around 1.4B0, vortices form an ordered triangle lattice whose
height is equal to two thirds of twin spacing �Fig. 5�b� for
1.35B0	, that is, FVR is 2/3 and fcr equals 1 /3fp. In contrast,
in dip regions next to the step ones around 1.4B0, vortices do
not form an ordered lattice that fits in the periodic structure
of TBs and fcr becomes lower than 1 /3fp �see Figs. 5�a� and
5�c� for 1.19B0 and 1.56 B0	. A similar situation occurs
around 3.5B0 �see Figs. 6�a�–6�c� for 3.06B0, 3.47B0, and
3.70B0	. In this case a triangle lattice appears whose base
length is equal to half of twin spacing. In the terrace region,
other types of vortex lattices appear whose base length is
equal to twin spacing for 1.1B0 and two-third of twin spacing
for 1.8B0.

In Fig. 7, we show the average vortex velocity v̂x versus
the Lorentz force fL at 1.09B0, 1.51B0, and 3.47B0 in strong
pinning case. At 1.51B0 and 3.47B0, v̂x− fL curves show
single jump. This single jump means that all the vortices start
to move simultaneously at this point. Meanwhile, at 1.09B0,
we observe multiple jumps. The curves show first small jump
at fL=0.1f0, which means vortices start to flow and final
jump at fL=0.32f0. In both the region from fL=0.1f0 to
0.32f0 and that of fL�0.32f0, v̂x varies linearly with fL, but
the v̂x− fL slope in the former is much smaller than the slope
in the latter �v̂x
 fL�. In the former region, a portion of vor-
tices flow while the other portions remain pinned, and this
type of flow corresponds to the “plastic flow.” In our simu-
lation, in both strong and weak pinning cases, the multiple
jumps and plastic flow are observed only in some dip re-
gions, and the v̂x− fL curves in other cases always have
single jump. The value of fcr corresponds to the position of
first jump of these curves.

FIG. 2. The static vortex positions below fcr �black circles� and
TBs arrangement �shaded regions� at �a� 0.69B0, �b� 1.04B0, �c�
2.43B0, �d� 3.24B0, �e� 5.00B0, and �f� 6.66B0.

FIG. 3. The static vortex positions below fcr and TBs arrange-
ment at �a� 1.11B0 and �b� 3.65B0.

FIG. 4. Critical depinning force �fcr� and FVR as a function of
vortex density curve for f tb=0.4 f0. Steps indicated by upward-
arrow correspond to broad matching peaks.
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IV. DISCUSSION

Here, we analyze these results from the viewpoint of
matching effect. For thin-film superconductors with periodic
arrays of columnar defects, some groups reported that match-
ing effects appear as sharp peaks in the fcr vs vortex density
curve.29–31 In the present study, fcr go up and down with
increasing the vortex density, and fcr steps appear. At the
steps indicated by arrows in Figs. 1 and 4, the pinning effi-
ciency has increased due to the commensuration between the
vortex lattice and the arrangement of TBs. Therefore, we can
regard such steps as matching peaks, though their “broad”
width is different from the “sharp” matching peaks reported
in the columnar pinning case. This difference can be ex-
plained from the capacity of the pinning center to trap vorti-
ces. In general, one columnar pinning can trap only one vor-
tex. Hence vortex lattices fitting in periodic pinning arrays
are formed only at specific vortex densities. Meanwhile, one
TB can trap multiple vortices in its plane so that vortices can
form commensurate lattice flexibly as seen in the configura-
tion change from Fig. 2�c� to Fig. 2�d�. As a result, the width
of matching peak in the TB case is wider than that of the
columnar pinning case. It should be noted that similar broad
matching effect has been reported in the superconductor with
quasiperiodic pinning arrays.1–5 In this case, the broad
matching peaks come from the proliferation of matching
peaks associated with the different kinds of local structures
found in quasiperiodic pinning arrays. Anyway, these broad
matching peaks could be useful for practical applications de-
manding high Jc’s over a wide range of magnetic fields.

Let us now consider the different vortex configurations
between strong and weak pinning cases. This difference can
be understood from the relation between pinning energy and
vortex-vortex interaction energy. In general, vortices tend to
form a regular triangle lattice due to the repulsive interacting
force. In the strong pinning case, stabilization caused by pin-
ning has larger effect than that caused by lattice formation.
Therefore, vortices can form structures, which deviate from

regular triangle lattice but have large number of pinned vor-
tices, as shown in Fig. 2. On the other hand, in the weak
pinning case, stabilization caused by pinning has smaller ef-
fect than that caused by lattice formation. Thus vortices tend
to form structures, which are close to regular triangle lattice,
as shown in Figs. 5�b� and 6�b�. These configuration changes
lead to the appearance of the additional matching peaks. It
should be noted that other possible matching lattices do not
appear. For example, the vortex lattice shown in Fig. 8,
whose height is equal to three fifth of twin spacing, is suit-
able configuration around 1.7B0 from the viewpoint of lattice
constant. In this structure, however, FVR becomes 4/5 and
stabilization by pinning becomes smaller than the one in the
structure shown in Fig. 5�c� where FVR nearly equals 2/3.
Such decrease in the pinning energy suppresses the appear-
ance of the vortex lattice where FVR is large. Of course, this
mechanism for the appearance of lattice structure depends on
the pinning strength, and the matching lattice shown in Fig. 8
can appear in weaker pinning cases.

Finally, we compare our results with previous works on
similar vortex systems. The 2D vortex configuration and
matching effect in the presence of trigonometric potential has
been discussed theoretically.33–35 In these studies, triangular
matching configurations are given by

Bn1,n2
=

�3

2

�0

�g
2 �n1

2 + n2
2 + n1n2�−1, �4�

where �g is the wavelength of potential modulation. In Ref.
35, the authors predicted the presence of locked phase where
vortices form triangle lattices fitting in periodic pinning
structure and a transition from the locked phase to “unlocked
phase” where vortices form lattices not fitting in periodic
pinning structure and having 1D periodic sequence of do-
main walls. However, they analyzed only the vortex configu-
rations that satisfy d	�g. On the other hand, we have also
analyzed vortex configurations in the region where d��g
and observed commensurate lattices and incommensurate

FIG. 5. The vortex positions
and TBs arrangements at �a�
1.19B0, �b� 1.35B0, and �c�
1.56B0.

FIG. 6. The vortex positions
and TB arrangements at �a�
3.06B0, �b� 3.47B0, and �c�
3.70 B0.
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lattices, which correspond to locked phase and unlocked
phase, respectively. As discussed above, the transitions be-
tween the commensurate and incommensurate lattices lead to
the appearance of broad matching peaks. In addition, even in
the case of d	�g��0.6B0�, we observe a behavior a little
different from the ones in Ref. 35. Although we observe the
matching triangular lattice at B1,0 ,B1,1 as reported in Ref. 35
�we do not perform calculation in lower vortex density re-
gion where B
B1,1�, the unlocked phase does not appear
while it does in Ref. 35. This is because in our calculation
the stabilization by pinning is larger than that by lattice for-
mation even in the weak pinning case, while pinning strength
is set to be smaller than the lattice stiffness in Ref. 35.

The matching effect has also been observed experimen-
tally in the superconductor whose thickness has 1D periodic
modulation.32 In this study, the authors have reported broad
matching effect around �0 / �2�g�2, �0 /�g

2, �0 / ��g /2�2, and
�0 / ��g /3�2. The positions of these peaks correspond to
0.15B0, 0.60B0, 2.40B0, and 5.42B0 in our results. Addition-
ally, they have reported disappearance of matching effect at
low temperature. They explained this phenomenon by weak-
ening of vortex interaction coming from the decrease in the
penetration depth. This phenomenon is consistent with the
suppression of matching peaks in our results. In our calcula-
tion, we observe matching peaks around 2.4B0 and 5.4B0,
while we do not observe any peaks up to �B0 for the reasons
mentioned above. What has to be noticed is that the peaks
seen around 1.4B0 and 3.5B0 in the weak pinning case of our
calculation have not been observed in Ref. 32. As discussed
above, the appearance of these peaks are caused by the for-
mation of vortex lattices which fit in underlying periodic
pinning arrays. Thus, the appearance of these peaks is sensi-
tive to lattice formation and could be easily disturbed by
little deviation of the pinning arrangements in real samples
from ideally periodic one or lattice disorder coming from
thermal fluctuation. Moreover, there is a possibility that the
difference of the ratio of pinning potential width to �g causes
the difference of matching peaks. This is because the value
of FVR, which is strongly related to the value of fcr, depends

on this ratio. For example, FVR is always zero when this
ratio equals 1. Furthermore, the vortex structure would also
vary with this ratio. However, since this ratio has not been
given in Ref. 32, we cannot tell whether the difference of this
ratio is also responsible for the discrepancy between the fea-
ture of matching peaks between their and our results.

V. CONCLUSIONS

We have investigated dynamics of vortices interacting
with unidirectional TBs using molecular-dynamics simula-
tion. First we have found that the critical depinning force
�fcr� as a function of vortex density shows a steplike pattern
which depends on the pinning strength. This behavior corre-
sponds to drastic change of vortex configurations, which re-
flects the pinning characteristic of TBs. Next we have found
broad fcr peaks coming from the matching effects and also
found that the appearance of some of these peaks are sup-
pressed in the strong pinning case.

In our calculation, we ignore several effects such as point
defects and fluctuation of vortex lines for simplicity. How-
ever, our results provide us with basic understanding of the
pinning property of TB and may be helpful in interpreting
experimental results. The results of our study are consistent
with the experimental results in the superconducting films
whose thickness is periodically modulated in one direction.32

We can expect that our results are useful for other types of
planar pinning systems such as laminar structure in
Bi2Sr2CaCu2O8�y sample.39 Furthermore, our study is cor-
related with other types of many particle problems, e.g., col-
loidal particles on periodic 1D substrates.40
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FIG. 7. Average vortex velocity v̂x versus Lorentz force fL

curves at 1.09B0, 1.51B0, and 3.47B0 in strong pinning case.
FIG. 8. Schematic sketch of regular triangle lattice whose height

is equal to 3/5 of twin spacing.
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