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As a function of the magnetic flux threading the object, the Little-Parks oscillation in the critical temperature
of a large-radius, thin-walled superconducting ring or hollow cylinder has a period given by h /2e, due to the
binding of electrons into Cooper pairs. On the other hand, the single-electron Aharonov-Bohm oscillation in
the resistance or persistent current for a clean �i.e., ballistic� normal-state system, having the same topological
structure, has a period given by h /e. A basic question is whether the Little-Parks oscillation changes its
character, as the radius of the superconducting structure becomes smaller, and if it is even comparable to the
zero-temperature coherence length. We supplement a physical argument that the h /e oscillations should also be
exhibited with a microscopic analysis of this regime, formulated in terms of the Gor’kov approach to BCS
theory. We see that, as the radius of the ring is made smaller, an oscillation in the critical temperature of period
h /e emerges in addition to the usual Little-Parks h /2e-period oscillation. We argue that, in the clean limit,
there is a superconductor-normal transition at nonzero flux as the ring radius becomes sufficiently small and
that the transition can be either continuous or discontinuous, depending on the radius and the external flux. In
the dirty limit, we argue that the transition is rendered continuous, which results in continuous quantum phase
transitions tuned by flux and radius.
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I. INTRODUCTION

The Little-Parks critical-temperature oscillations with
magnetic flux of a large-radius thin-walled hollow cylindri-
cal superconductor display a period h /2e.1,2 This oscillation
period reflects the binding of electrons into Cooper pairs.3

Recent experiments by Liu et al.4 have probed the regime in
which the diameter of the hollow cylinder is comparable to
zero-temperature coherence of the superconductor. Their re-
sults confirmed the prediction by de Gennes5 of the destruc-
tion of superconductivity in small rings for a certain regime
of the external flux. Liu et al. raised interesting and funda-
mental issues of what would happen if the circumference of
the structure were to be smaller than the superconducting
coherence length, as well as whether or not the Ginzburg-
Landau approach would be valid in this regime. These issues
make a microscopic treatment desirable.

On the other hand, the single-electron Aharonov-Bohm
oscillations in the resistance or persistent current in a clean
metallic ring have period h /e.6 This leads to a related funda-
mental issue: As the radius of the ring becomes smaller, how
would the single-particle h /e period manifest itself in a
Little-Parks type of experiment? Furthermore, does disorder
affect the oscillation of critical temperature and the character
of the transition between superconducting and normal states?
And if so, how? These questions are not only of theoretical
interest but are also likely to be addressed experimentally in
view of recent progress in fabrication and experiments on
small superconducting rings.7,8

Recent work by Czajka et al.,9 involving the exact diago-
nalization of the Hubbard model for small numbers of sites

and the numerical solution of the Bogoliubov–de Gennes
�BdG� equation, shows that impurities can play an important
role if they are located such that pinned density waves are in
phase with one another: charge-density-wave �CDW� order
would then be enhanced and superconducting order reduced.
They also found that the mean-field results obtained via the
BdG equations were consistent with the exact diagonaliza-
tion results, even in the small systems they studied. Very
recently, a numerical study by Loder et al.,10 and analytical
work by Juricic et al.11 and by Barash12 on clean d-wave
superconducting loops have shown h /e-period oscillations in
the supercurrent.

Ginzburg-Landau �GL� theory is valid near the supercon-
ducting transition as it is an expansion in powers of the su-
perconducting order parameter. Therefore it may not be ap-
plicable at sufficiently low temperatures. Moreover, the GL
approach cannot give a complete account of multiconnected
geometries of small size as it is a description of the center-
of-mass wave function of the Cooper pairs. For small rings,
in addition to propagating around the circumference together,
electrons in Cooper pairs can split apart and rejoin, and this
process is not included in the GL description. In this paper,
we study the oscillations of the critical temperature of
s-wave superconducting rings theoretically via consideration
of the microscopic BCS theory of superconductivity13 and
analyzed using Gor’kov’s approach.14 Our central purpose is
to address the issues raised by Liu et al.4 and the ones men-
tioned above. Our focus is on the correction to the oscilla-
tions that is due to finiteness of the radius of the supercon-
ducting structure. We consider both the clean and dirty
regimes, and in the latter regime we shall ignore any ten-
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dency toward CDW ordering by assuming that the significant
configurations of the impurities are sufficiently random and
that any pinned density waves are not in phase with one
another. We shall see the emergence of an h /e oscillation in
the critical temperature as the radius becomes smaller. We
shall also see that the transition to the normal state can be
either discontinuous or continuous in the clean limit but is
always continuous in the dirty limit.

The origin of the h /2e oscillations lies in the fact that a
Cooper pair carries charge 2e, which when circumnavigating
the ring acquires a phase ei2e�/c�, where � is the magnetic
flux linking the ring. The period in flux is thus h /2e �with c
conveniently set to unity15�. The emergence of h /e oscilla-
tions for small rings is due to the additional process in which
electrons in a Cooper pair can, from time to time �so to
speak�, separate, propagate separately, and rejoin, with the
two trajectories having a nonzero winding number relative to
one another. This process, which can only occur for ring
sizes comparable to or smaller than the Cooper-pair size,
induces an oscillation with period h /e.

The organization of this Paper is as follows. In Sec. II we
discuss the critical-temperature oscillations in the clean limit
and in Sec. III we include the effect of disorder and discuss
the dirty limit. We make some concluding remarks in Sec.
IV. In Appendix A we derive the effective one-dimensional
�1D� Gor’kov equations by averaging over the cross section
�or thickness� of the ring. In Appendix B we provide supple-
mentary details of the calculations that lead to the results in
the main text. In Appendix C we provide two heuristic argu-
ments for the emergence of the h /e period �1� by examining
Cooper’s problem on a ring and �2� by using an instanton
approach. These two arguments lead to the physical picture
described above and complement the Gor’kov Green func-
tion approach adopted in the main text.

II. CLEAN LIMIT

A. Gor’kov equations

We consider a ring �to be more precise, a torus� of radius
R �and thickness d, namely, the diameter in the cross section,
which is smaller than both R and the Cooper-pair size �0�
with a magnetic-flux density B threading the ring parallel to
the ring axis �see Fig. 1�. We can describe this field by the

vector potential A� �r�= �B /2�ẑ�r�. On the ring itself �the cir-

cumference of which is L=2�R�, the vector potential A� is

given by �̂� /L, where �̂ is the azimuthal unit vector and � is
the total flux enclosed by the ring, i.e., �=�da ·B�r��.

The normal and anomalous Green functions obey the
Gor’kov equations3,14,16

�i��n −
1

2M
�− i� � −

eA�

c
�2

+ 	�G�r�,r��;�n�

+ 
�r��F†�r�,r��;�n� = ���r� − r��� , �1a�

�− i��n −
1

2M
�i� � −

eA�

c
�2

+ 	�F†�r�,r��;�n�

− 
��r��G�r�,r��;�n� = 0, �1b�

where M is the electron mass, e is the electron charge, r� and
r�� are three-dimensional coordinates in the ring, and the or-
der parameter 
 is defined self-consistently via


��r�� =
V

�
�
�n

F†�r�,r��;�n� , �2�

in which �n	2�T�n+1 /2� are Matsubara frequencies, �
	1 /kBT, T is the temperature, and V is the BCS pairing
strength.

We now invoke the narrowness of the ring to justify drop-
ping all dependences on r� and r�� except those associated
with the one-dimensional coordinates along the ring, x and
x�. Owing to the physical periodicity of the ring, all func-
tions of x and x� are periodic with period L �and the vector
potential is a constant along the circumference of the ring�.
The Gor’kov equations then become one dimensional:17

�3 �2 �1 0 1 2 3

��

��

��

(a)

�3 �2 �1 0 1 2 3
��

��

��

(b)

FIG. 2. Pairing of states �Ref. 3�. �a� Upper panel: the external
flux is �=0, the pairing is between n1+n2=0. �b� Lower panel:
�=h /2e, the pairing is between n1+n2=−1. The pairing configu-
ration changes from type �a� to type �b� at external flux �=h /4e
�see Ref. 3�.

B
d

R

FIG. 1. �Color online� A ring with a magnetic flux threading
through it. The radius of the ring is R and the thickness in the cross
section is d.
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�+ i��n −
1

2M
�i��x +

e�

cL
�2

+ 	�G�x,x�;�n�

+ 
�x�F†�x,x�;�n� = ���x − x�� , �3a�

�− i��n −
1

2M
�i��x −

e�

cL
�2

+ 	�F†�x,x�;�n�

− 
��x�G�x,x�;�n� = 0. �3b�

We can expand G and F in Fourier series, as follows:

G�x1,x2;�n� =
1

L
�

n1,n2

gn1,n2
��n�ei�2�n1/L�x1+i�2�n2/L�x2, �4a�

F†�x1,x2;�n� =
1

L
�

n1,n2

fn1,n2

† ��n�ei�2�n1/L�x1+i�2�n2/L�x2, �4b�

where n1 and n2 are integers labeling single-particle states.
Due to the translational �to be more precise, rotational� in-
variance of the system, we assume that G�x ,x� has no depen-
dence on x. This sets constraints on the nonzero Fourier com-

ponents for G: n1+n2=0. Furthermore, we assume that

�x�=ei2�mx/L
0, and hence, F†�x ,x�
e−i2�mx/L
0

�. This sets
constraints on the nonzero Fourier components for F†: n1
+n2=−m. The meaning of this is that the pairing occurs be-
tween the single-particle states n1 and n2=−m−n1

3 �see Fig.
2�.

The Gor’kov equations can be expressed in terms of the
Fourier components of G and F† as follows:

�+ i��n −
�2

2MR2 �n1 + m − �2 + 	�gn1+m,−n1−m + 
0fn1,−n1−m
†

= � , �5a�

�− i��n −
�2

2MR2 �n1 + �2 + 	� fn1,−n1−m
† − 
0

�gn1+m,−n1−m = 0,

�5b�

where 	� / �−hc /e�=� / �hc / �e��. In the following we shall
set �=1, c=1, and kB=1, for the sake of convenience. How-
ever, we shall refer to the single-particle flux quantum hc /e
as h /e.15 These equations can be solved explicitly, yielding

gn1+m,−n1−m =
− i�n −��n1 + �2 + 	

�i�n −��n1 + m − �2 + 	�− i�n −��n1 + �2 + 	 + �
0�2
, �6a�

fn1,−n1−m
† =


0
�

�i�n −��n1 + m − �2 + 	�− i�n −��n1 + �2 + 	 + �
0�2
, �6b�

where, for the sake of convenience, we have introduced �
	1 /2MR2 �noting that we have set �=1 in �2 /2MR2�. The
self-consistency �Eq. �2� then becomes


0
� =

VT

L
�
�n

�
n1

fn1,−n1−m
† ��n� . �7�

We mainly discuss the case in which the chemical poten-
tial 	 is kept fixed, e.g., by contact with a particle reservoir,
or else we assume that the variation of 	 with temperature
and flux is sufficiently weak to be negligible near the super-
conducting transition.

B. Critical temperature

To solve for Tc��, we set 
0=0 in the self-consistency
equation, thus obtaining

1 =
VT

L
�
�n

�
n1�Z

�
1

�i�n −��n1 + m − �2 + 	�− i�n −��n1 + �2 + 	
.

�8�

It is important to note the underlying assumption that the

transition from superconducting to normal is associated with
a vanishing order parameter, and hence, is a continuous tran-
sition. The consistency of this assumption needs to be
checked once we obtain the solution. We shall see �below�
that for sufficiently small radii the assumption is not valid
and the transition is actually associated with nonvanishing
order parameter, and hence, is discontinuous.

Next, we make use of the root of the Poisson summation
formula �i.e., the Dirac comb and its Fourier series�,
�n1�Z��x−n1�=�k�Zei2�xk, to turn the summation over n1 in
Eq. �8� into one over the conjugate variable k:

�
n1

1

�i�n −��n1 + m − �2 + 	�− i�n −��n1 + �2 + 	

= �
k�Z

�
−�

�

dx

�
ei2�xk

�i�n −��x + m − �2 + 	�− i�n −��x + �2 + 	
.

�9�

Instead of placing a cutoff on the energy, we follow
Gor’kov14 and place the cutoff �which, in practice, is the
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Debye frequency �D� on the Matsubara frequency.

1. Large-radius limit

For sufficiently large R, we can ignore the correction
terms associated with finite radius �i.e., k�0� and thus we
obtain an equation relating the critical temperature at non-
zero flux to that at zero flux. In the limits that the Debye
frequency is much smaller than the chemical potential �i.e.,
�D /	�1� and that the chemical potential is much larger
than the level spacing �i.e., �2MR2	�1�, we obtain �see
Appendix B 2 for the derivation�

ln�Tc��
Tc

0 � = ��1

2
� − Re ��1

2
− i

xm��
2�Tc

� 2	

MR2� ,

�10�

where Tc
0	Tc�0� is the critical temperature at zero flux for

the same radius, xm��	−m /2 �with m being chosen to
minimize �2−m�2, i.e., the kinetic energy in the Ginzburg
Landau picture, and ��x� is the digamma function,

��x� 	 − � + �
k=0

� � 1

k + 1
−

1

k + x
� , �11�

where � is the Euler constant.18

The zero-flux, zero-temperature order parameter 
0 is re-
lated to the corresponding critical temperature Tc

0 in the
weak-coupling limit by 
0=�Tc

0, where �=� /e��1.76. We
call the length �0	vF /�
0 the Cooper-pair size �where vF is
the Fermi velocity� so as to distinguish it from the zero-
temperature Ginzburg-Landau coherence length ��0�. There
are two further relevant energy scales: the chemical potential
	 and the single-particle energy-level spacing �. The ratio
�	 /
0

2 can be estimated as

�	


0
2 � � �2

2MR2��MvF
2

2
�/��vF

��0
�2

= ���0

2R
�2

, �12�

which is set by on the ratio of the ring radius to the Cooper-
pair size. This motivates us to define a measure � of the ratio
of the radius to the Cooper-pair size via

� �
2�
�2

	
�	


0
2 . �13�

Then, defining t	Tc /Tc
0, we can rewrite the equation for the

critical temperature as

ln t = ��1

2
� − Re ��1

2
− i

xm���
2�t

� . �14�

An equation of this form was studied by Sarma,19 and by
Maki and Tsuneto,20 both in the context of the effect of a
magnetic exchange field on superconductivity. The corre-
spondence is that the role of the exchange field normalized to
the zero-temperature gap �i.e., 	H /�
0� is, in the present
setting, played by the combination of the normalized inverse
ring radius and the flux �i.e., xm�� /�. In Refs. 19 and 20 it
was found that, for large enough exchange field �here, small
enough ring radius�, Eq. �14� has multiple solutions, and that,

moreover, the correct interpretation is that the transition be-
tween the normal and superconducting states becomes dis-
continuous �beyond certain value of the exchange field�. By
contrast, for small enough exchange field �here, large enough
ring radius�, the transition is continuous. By borrowing the
results of Refs. 19 and 20, as summarized in Fig. 3, we have
that the threshold at which the transition changes character
between continuous and discontinuous occurs at �xm��� /�
�0.6 /� �i.e., point B in Fig. 3�. Furthermore, one has that
for extremely small rings such that �xm��� /��1 /�2� �i.e.,
point D�, the system never becomes superconducting.21 Of
course, these estimates would need to be modified if the
finiteness of the radius were to be taken into account but we
expect that the qualitative separation into discontinuous-
transition and continuous-transition regimes would still hold.

For large-radius rings �i.e., ��1�, we can expand the sec-
ond digamma function in Eq. �14� to second order and the
logarithm to first order, thus obtaining

− �1 − t� �
1

2
���1

2
�� xm���

2�t
�2

� − 8.41� xm���
2�t

�2

.

�15�

Hence, we see that the fractional reduction in the critical
temperature due to the flux is given by

�1 − t� � 8.41� xm���
2�t

�2

� 8.41� xm���
2�

�2

= 8.41� �
4�
�2

�2 − m�2. �16�

The integer m must be chosen such that �2−m�2 is mini-
mum so as to obtain the most stable solution; hence, we
recover the standard Little-Parks oscillation result for which

0 0.2 0.4 0.6 0.8 1
v

0

0.2

0.4

0.6

0.8

1

t

A

C

B

D E

FIG. 3. �Color online� Phase diagram: reduced critical tempera-
ture t� ,R�=Tc� ,R� /Tc�0,R� vs flux and radius v=��
−m /2���0 /R� in the clean limit, and in the limit that the finiteness
corrections are ignored �i.e., bulk limit�. In the case of the
exchange-field effect, discussed in Refs. 19 and 20, the horizontal
axis becomes v=	BH /
0, where 	B is Bohr magneton and H is the
exchange field. The curve ABC is the solution to Eq. �14� while
ABD is the curve representing the true equilibrium transition line.
From A to B, the transition is continuous, whereas from B to D the
transition is discontinuous, construction first made in Refs. 19 and
20 in the context of the exchange-field effect. The curve BE repre-
sents the metastability limit for “superheating,” whereas the curve
BC represents the metastability limit for supercooling �Ref. 20�.
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the period is h /2e. Equation �16� can be re-expressed as

�1 − t

8.41

4R

��0
= min

m�Z
�2 − m� . �17�

The left-hand side can be much smaller than unity if R is
much smaller than �0 but the value of the right-hand side
�r.h.s� can range from 0 to 1/2, depending on the value of
external flux. This means that there can exist a range of
fluxes for which no solution of t exists. This reflects the fact
that superconductivity is destroyed over certain ranges of
flux.5 To make a connection with the result by de Gennes,5

let us multiply Eq. �17� by 2� and take the cosine of both
sides. We recover the de Gennes result for the transition tem-
perature �for the case in which the length of the side arm in
Ref. 5 is set to zero�

cos�2�
R

��t�� � cos�2�
�

h/2e
� , �18�

where ��t��0.74��0 /�1− t is the temperature-dependent
Ginzburg-Landau coherence length in the clean limit. We
note that, however, the Ginzburg-Landau approach is, strictly
speaking, valid only near t�1. Furthermore, the existence of
discontinuous transitions is beyond the reach of the
Ginzburg-Landau approach.

2. Finite-radius correction

What is the correction to Tc that arises from the finiteness
of the radius? By taking into account this correction, we
arrive at the following equation obeyed by the critical tem-
perature �see Appendix B 3 for the derivation�:

ln t�� = ��1

2
� − Re ��1

2
−

ixm���
2�t�� �

− 4�
k=1

�

�cos�2�kn̄�e−2�k�/�fc�0,�,1�

− Re�ei2�kn̄e−2�k�t/�fc�xm��,�,t��cos 2�k� ,

�19�

where we recall that t��=Tc�� /Tc�0�, � is the BCS con-
stant �=� /e��1.76. We have defined n̄	�2MR2	, which
is related to the number of Cooper pairs, and the function fc
is defined via the hypergeometric function 2F1�a ,b ;c ;z�:18

fc�xm��,�,t 	 2F1�1

2
−

ixm���
2�t

,1,
3

2

−
ixm���

2�t
,e−4�k�t/����1 −

ixm���
�t

�
�20�

In Figs. 4 and 5 we show the flux dependence of the critical
temperature for two particular ring radii. For the larger radius
case, the value of t at �=h /2e is essentially the same as that
at �=h /e and 0. For the smaller radius case and for
cos�2�n̄�=1 �i.e., all the pair states are occupied at and be-
low Fermi level�, the amplitude at �=h /2e is reduced rela-
tively to that at �=h /e and 0. Thus, as the radius becomes

small, we clearly see the emergence of the single-particle
flux quantum period h /e. Also worth noticing is the occur-
rence of a second solution �with lower value� for the critical
temperature at sufficiently small radii, as shown in Fig. 5.
Compared to the higher Tc solutions for which our approxi-
mation of the Tc �Eq. �19� by keeping only the first two
correction terms yields rather precise values, the evaluation

�1 �0.5 0 0.5 1
Φ

0.985

0.99

0.995

1
t

(a)

�1 �0.5 0 0.5 1
Φ

0.8

0.9

1
t

(b)

FIG. 4. Critical temperature �normalized to its zero-flux value� t
vs flux =� / �h /e� for R=5�0 �upper� and R=1.5�0 �lower� in the
clean limit. The plots are made with cos�2�n̄�=1 and with only the
k=1 term in Eq. �19� retained.

�1 �0.5 0 0.5 1
Φ0

0.2

0.4

0.6

0.8

1
t

FIG. 5. �Color online� Reduced critical temperature t��
	Tc�� /Tc�0� �normalized to its zero-flux value� vs flux 
	� / �h /e� for R=1.25�0 with cos�2k�n̄�=1 in the clean limit. The
higher Tc branches �blue� are calculated by retaining only the first
two terms in Eq. �19�, whereas the lower Tc branches �red� are
calculated by retaining as many as ten such terms. The plot shows
multiple solutions to Eq. �19� and signifies the emergence of dis-
continuous transitions. The upper and lower branches of the solu-
tions are expected to merge at certain values of ; the appearance of
a gap between them is an artifact of our considering only a finite
number of values of .
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of Tc at these lower values of temperatures requires more
terms �e.g., four or more� to be included in order to maintain
the same accuracy.

For the case of large rings �i.e., ��1�, to determine the
leading corrections, it is adequate to retain only the k=1 term
and to set the correction 
ixm��� /�t to zero, when com-
pared to values of order unity, in the second fc function.
Thus, we arrive at the formula

ln t�� � ��1

2
� − Re ��1

2
− i

xm���
2�t

�
− 4 cos�2�n̄�e−2��/�f�0,�,1��1 − cos 2� .

�21�

The change in the reduced critical temperature t�� is then
approximately given by

1 − t�� � 8.41� �
4�
�2

�2 − m�2 + 4 cos�2�n̄�tanh−1�e−2��/��

��1 − cos 2�� , �22�

where we have used the fact that 2F1�1 /2,1 ,3 /2,y2�
=tanh−1�y� /y. Again, the integer m is to be chosen to mini-
mize �2−m�2. We see that, in addition to the parabolic de-
pendence on , there is a sinusoidal correction of period h /e.
This is the emergence of the single-particle flux dependence.
We also note that this correction is not universal in that it
depends sensitively on the value of 	 �and, moreover, the
form of cos�2�n̄� results from the simple quadratic single-
particle spectrum. It can happen that the correction due to
the finiteness of the radius actually increases the critical tem-
perature, i.e., when cos�2�n̄��0.

As we have argued using the results of Sarma,19 and Maki
and Tsuneto,20 the occurrence of multiple solutions in
Eq. �14� for Tc��, for certain ranges of �xm��� /�, leads
to a change from a continuous to a discontinuous
superconducting-to-normal phase transition. Even with the
corrections to Tc due to the finite-radius effect, as the radius
of the ring decreases �to a value comparable to the coherence
length�, we observe that Eq. �19� still possesses multiple so-
lutions for Tc�� for certain ranges of �xm��� /� �see Fig. 5�.
This implies that, somewhere in these ranges �of �xm��� /��,
there exists a change from continuous �at larger radius� to
discontinuous �at smaller radius� superconducting-to-normal
transition. This is shown schematically in Fig. 6. If the radius
is sufficiently large, the transition is always continuous. If
the radius is sufficiently small, the curve representing the
discontinuous transition in one “dome” can intersect with
that of the nearby dome �above the “void” region where no
solution for Tc of Eq. �19� exists. If this void region is large,
the curve of the discontinuous transition can go to t=0 at
certain value of  without intersecting that from the nearby
dome. However, calculations of Tc�� alone cannot deter-
mine the precise location of the change from continuous to
discontinuous; considerations of free energies are necessary
to settle this issue.

III. DISORDERED REGIME

How does disorder, in the form of potential scattering
from fixed impurities, alter the physical picture that we have
obtained so far? Does it affect the critical temperature? Does
it change the order of the superconducting-to-normal transi-
tion? We now address these issues, assuming that the con-
figuration of the impurities is sufficiently random that the
tendency toward CDW formation is not enhanced.

A. Expansion of anomalous green function; disorder average

For the most part, we shall consider impurities that pro-
duce scalar potential scattering; mutatis mutandis, the effects
of exchange and spin-orbit scattering can be straightfor-
wardly included. To begin with, we include potential scatter-
ing via the V�x� term in the Gor’kov equations,14 which now
read �here we restore the constants � and c�

�+ i��n −
1

2M
�i��x +

e�

cL
�2

− V�x� + 	�G�x,x�;�n�

+ 
�x�F†�x,x�;�n� = ���x − x�� , �23a�
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FIG. 6. �Color online� Schematic depiction of the reduced criti-
cal temperature t��	Tc�� /Tc�0� �normalized to its zero-flux
value� vs flux =� / �h /e� for small-radius rings in the clean limit.
As illustrated in Fig. 5 for sufficiently small radii, there are multiple
solutions for Tc, as exemplified there by the higher �blue� branches
and the lower �red� branches. Near =0 and �1 /2, the upper
branches are the equilibrium phase boundary and the transition to
normal state is continuous. Away from these regions, the globally
stable equilibrium phases must be sought by free-energy consider-
ation, and the corresponding phase boundaries are indicated sche-
matically by the solid lines and represent discontinuous transitions.
Upper panel: For all flux values, there exists a superconducting
state. Lower panel: For smaller radius, it can happen that there are
flux values for which no superconducting state exists.
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�− i��n −
1

2M
�i��x −

e�

cL
�2

− V�x� + 	�F†�x,x�;�n�

− 
��x�G�x,x�;�n� = 0, �23b�

where V�x� represents the potential from static impurities,
i.e.,

V�x� = �
a

u�x − xa� , �24�

and xa indicates the spatial location of ath impurity.
Following Gor’kov,14 we introduce a Green function

G0�x ,x� ;�n� that satisfies

�i��n −
1

2M
�i��x +

e�

cL
�2

− V�x� + 	�G0�x,x�;�n� = ���x

− x�� . �25�

We can then express F† exactly in terms of 
� and G0 as

F†�x1,x2;�n� =
1

�
� dxG0�x,x1;�n�
��x�G�x,x2;− �n� .

�26�

Because we are only concerned with solving for Tc, near the
transition, it is sufficient to keep G to zeroth order in 
 and
replace G in Eq. �26� by G0; thus we have

F†�x1,x2;�n� �
1

�
� dxG0�x,x1;�n�
��x�G0�x,x2;− �n� .

�27�

We now consider the self-consistency �Eq. �2� and average
over the quenched disorder associated with the locations of
the impurities:


��r� =
V

�
�
�n

� dxG0�x,r;�n�G0�x,r;− �n�
��x� , �28�

where ¯ indicates disorder averaging. We note that, as ex-
plained by Gor’kov,14 the Green function G0 oscillates on a
much smaller length scale than 
� and, hence, the disorder

average of 
� can be factorized. For convenience, we use G̃

to denote the disorder average of G0, i.e., G̃�x ,r ;�n�
	G0�x ,r ;�n�, the translational invariance of which is re-
stored, viz.,

G̃�x,r;�n� =
1

L
�
n1

G̃�n1;�n�ei�2�n1/L��x−r�. �29�

To calculate the disorder average of the product of two
Green functions, we introduce the kernel K,14 defined via

G0�x,r;�n�G0�x,r�;− �n�

	
1

L2 �
n1,n2�Z

K�n
�n1,n2�ei�2�n1/L��x−r�ei�2�n2/L��x−r��.

�30�

If we retain only the ladder diagrams �i.e., ignoring the
crossed diagrams22�, we arrive at the result

K��n1,n2� = G̃��n1�G̃−��n2��1 + nimp�
q

�u�q��2K��n1 − q,n2

+ q�� , �31�

where we have simplified the notation by dropping the sub-
script n on � and moving � from an argument to a subscript,
and nimp is the impurity concentration. Assuming that the
order parameter retains the form 
��r�=
0

�e−i2�mr/L, the self-
consistency equation can be reduced to

1 =
V

�L
�
�

�
n1,n2

�n1+n2,mK��n1,n2� . �32�

B. Critical temperature

We leave the detailed calculation of the kernel to Appen-
dix B 4 and simply quote here the resulting Eq. �B48� for the
critical temperature in the disordered regime, i.e., �0Tc�1:

ln t = ��1

2
� − ��1

2
+
�le�0xm

2 ��
tR2 � + �

k=1

�

4e−�kR/le cos�2�kn̄�

� �e−�2�k/���R/�0�t cos�2�k�fd�xm��,R,t��

− e−�2�k/���R/�0�fd�0,R,1�� , �33�

where le	vF�0 is the elastic mean-free path, �0 is the elastic-
scattering time, we recall that �=� /e�, and

fd�xm��,R,t��

	 2F1�1

2
+
�le�0xm

2

tR2 ,1,
3

2

+
�le�0xm

2

tR2 ,e−�4�k/���R/�0�t���1 +
2�le�0xm

2

tR2 � .

�34�

We remark that the argument in the second digamma func-
tion in Eq. �33� is real, in contrast with the clean case, for
which it is complex �see Eq. �10�. A consequence of this is
that there is no longer a doublet of solutions for Tc. More-
over, the resulting single solution is consistent with the as-
sumption that the order parameter becomes vanishingly
small as the temperature approaches its critical value from
the superconducting side. Therefore, the transition to the su-
perconducting state is continuous.

To explore the consequences of Eq. �33�, we first examine
the large-radius �i.e., bulk� limit and show that we recover
the de Gennes results for the case of rings. We then proceed
to compare how the finiteness of the radius affects the oscil-
lations of Tc��.

1. Large-radius limit

Ignoring correction due to the finiteness of the radius, we
obtain the following equation for Tc of the bulk supercon-
ductor, i.e.,
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ln�Tc��
Tc

0 � = ln t�� = ��1

2
� − ��1

2
+
�le�0xm

2 ��
t��R2 � ,

�35�

as we should. This is in agreement with the results of de
Gennes5 for rings and those obtained by Lopatin et al.23 for
hollow cylinders. To see that the de Gennes results are re-
covered, we note that the critical value of �le�0xm

2 �� /R2,
beyond which no superconducting solution for any T�0 ex-
ists, is given by � /4�.24 For a fixed radius, this defines the
critical flux �c, which defines the boundary between normal
and superconducting states. We then determine that the criti-
cal flux c	�c / �h /e� satisfies

2R��
��0le

= 2� min
m�Z

�2c − m� , �36�

which gives the critical flux for a given radius, or vice versa,
via

cos� R
��0le/2��� = cos�2��c

h/2e
� . �37�

When the flux dependence of the critical temperature is
weak, as in the large-radius limit, t	1−Tc /Tc

0 is close to
unity and �le�0xm

2 �� /R2�1 so one can expand the loga-
rithm in �1− t�, and the second digamma function around 1/2
in Eq. �35� to obtain

�1 − t� �
�2

2

�le�0

R2 � −
m

2
�2

. �38�

As we did for Eq. �18� in the clean limit, we can express this
equation as

cos�2�
R

��t�� � cos�2�
�

h/2e
� , �39�

where ��t��0.84���0le /�1− t is the temperature-dependent
Ginzburg-Landau coherence length in the dirty limit. Thus,
we recover the de Gennes results5 but via a microscopic
calculation. We note that, strictly speaking, the Ginzburg-
Landau approach is only valid near t�1 �see also discussion
at the end of Sec. II B 1�.

2. Finite-radius regime

Strictly speaking, the de Gennes results �Eq. �39� are
only valid in the large-radius limit, as is clearly seen from
our microscopic derivation. In the regime in which the radius
of the ring is comparable to the zero-temperature coherence
length or the Cooper-pair size, we should take into account
the effect of finite radius and use Eq. �33� instead of Eq. �35�.
In addition to the length scale defined by the Cooper-pair
size �0, the behavior of Tc also depends on another length
scale, viz., the mean-free path le. The correction terms �i.e.,
the terms in the summation� in Eq. �33� decay exponentially
with R / le so that the series converges rather rapidly, even for
R
 le or slightly smaller. In Fig. 7 we contrast the predic-
tions of Tc in the large-radius limit �Eq. �35� to those that
include the finiteness corrections �Eq. �33� for a small radius

�R
0.2�0 , le�. Figure 7 also shows that the Tc�� oscillation
has a component of period h /e, in addition to the usual
Little-Parks component of period h /2e. In Fig. 8 we plot the
critical temperature vs radius for various flux values. We see
that the deviation from the bulk result is more significant
near =1 /2, whereas the bulk result shows almost no devia-
tion in the range =0–0.25.

The deviation of the critical temperature of small-radius
rings from that of large-radius rings is, however, not univer-
sal as it depends on both the magnitude and sign of
cos�2�n̄�=cos�2��2MR2	�. We have seen that when the
sign of cos�2��2MR2	� is positive, the corrections from the
finiteness of the radius can cause a reduction in the critical
temperature near the flux value �=h /2e, compared to the
bulk case. This corresponds to the case in which, at zero flux,
all the electrons are paired up. However, when the sign of the
cosine is negative, the critical temperature at �=h /2e can
actually exceed its value at zero flux; this corresponds to the
case in which, at �=h /2e, all electrons are paired up, thus,
the system is more stable there than at �=0. If the cosine
term should happen to vanish accidentally, the oscillation at
period h /e would disappear.

When the radius is not small, the change in Tc��, relative
to Tc�0�, is small and we therefore need only retain terms in
Eq. �33� to order k=1, and also may replace t on the r.h.s. by
1, as we did to obtain Eq. �38�. Thus we obtain
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Φ0

0.2

0.4

0.6

0.8

1

1.2
t

(b)

FIG. 7. �Color online� Critical temperature �normalized to its
zero-flux value� for the disordered regime vs flux =� / �h /e� for
R=0.2�0 and the mean-free path le=0.2�0 �solid blue line�, and for
the same radius but le�R �dashed red line�. The plots are made
with cos�2�kn̄�=1 and �−1�k for the upper and lower panels, re-
spectively. Moreover, only the k=0, 1, and 2 terms in Eq. �33� have
been retained as the convergence is rather good.
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�1 − t� �
�2

2

�le�0

R2 � −
m

2
�2

+ 4e−�R/le cos�2�n̄�tanh−1�e−�2�/���R/�0���1

− cos 2�� . �40�

Hence, an oscillation of period h /e is clearly seen to emerge,
and whether the critical temperature reduces or increases
�e.g., at �=h /2e�, compared to the bulk Little-Parks value,
is seen to depend on the sign of the cosine term. For the case
where all electrons are paired up at zero flux, the critical
temperature is lower at �=h /2e than at �=0.

IV. CONCLUDING REMARKS

We have considered the oscillations in the critical tem-
perature of a superconducting ring of finite radius in the
presence of a threading magnetic flux. We have found that,
as the radius of the ring is �parametrically� reduced, an os-
cillation in the critical temperature of period of h /e emerges,
in addition to the usual Little-Parks dependence �the period
of which is h /2e�. Our results provide corrections, due to the

finiteness of the ring radius, to the results that de Gennes
obtained for a flux-threaded ring.5 We have argued that in the
clean limit there is a superconductor-normal transition, as the
ring radius becomes sufficiently small at nonzero flux, and
that the transition can be either continuous or discontinuous,
depending on the radius and/or flux. In the disordered re-
gime, we have argued that the transition is rendered continu-
ous, which results in a quantum critical point tuned by flux
and radius.

One may wonder how the system behaves as it goes from
clean to dirty limit. At which point does the existence of
multiple solutions in the critical temperature disappear? By
analyzing Eq. �B39�, we obtain that, ignoring the finiteness
corrections, double solutions disappear when the disorder is
such that le /�0�1.73.

One question we should also address is the thickness d of
the ring cross section. It causes an orbital pair-breaking ef-
fect. For the purpose of estimating this, we can use the result
from a wire with same thickness in a field perpendicular to
the wire axis �for the calculation, see, e.g., Ref. 2�. The frac-
tional decrease in critical temperature, when it is small, can
be estimated to be �not including the oscillation by flux�

1 − t�� �
�2�

24
2�0

le

le
2d2

R4 , �41�

which causes a quadratic decrease in the critical temperature
on top of the oscillations discussed in the present paper. If
we take the same values shown in Fig. 7, i.e., R� le�0.2�0,
for d�0.2R, the decrease is about 3.6% at =1 /2 and about
14.4% at =1. The largest decrease in the critical tempera-
ture shown in Fig. 7 is about 20%, and the h /e component is
not swamped by the pair-breaking effect and can still be
observed.

Although we have obtained the emergence of the h /e os-
cillation and its amplitude by the microscopic calculations,
the physics behind these effects can be illustrated via heuris-
tic arguments associated with the corresponding Cooper
problem on a ring together with a path-integral based instan-
ton tunneling approach. We briefly discuss these points in
Appendix C.

The nonuniversal factor cos�2�n̄�=cos�2��2MR2	� de-
termines whether the finiteness of the ring radius leads to a
decrease or an increase in the critical temperature near flux
�=h /2e. Although this factor is model dependent �i.e., de-
pendent on the form of the single-particle spectrum� for the
quadratic spectrum we consider here, �2MR2	 roughly
counts the number of electrons divided by four as there are
two spin species, and positive and negative �angular� mo-
menta. If we restrict ourselves to the case in which all elec-
trons are paired, then n̄=�2MR2	��Npair−1� /2, because for
	=0 two electrons can still occupy the n=0 state. When all
the levels at 	 and below are filled at zero flux,
cos�2��2MR2	��1. When there is one pair fewer or more
�or equivalently, when all pairs are occupied at �=h /2e�,
cos�2��2MR2	��−1. This seems to result in an even-odd
effect not from the number of electrons25 but from the num-
ber of Cooper pairs. However, whether this even-odd effect
holds in general requires further investigation.
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FIG. 8. �Color online� Phase boundaries between normal state
�to the left of the curves� and the superconducting state in the tem-
perature �t� ,R�=Tc� ,R� /Tc�=0,R�, normalized to its zero-flux
value vs radius �R, in unit of �0� plane. Upper panel: 
=� / �h /e�=0,0.1,0.2,0.25 �from the top down�. The solid blue
boundaries take into account the finite-radius corrections, whereas
the dashed red boundaries are solutions to the bulk equation �Eq.
�35�. Lower panel: =� / �h /e�=0.5,0.40,0.30,0.25 �from the top
down�. In all plots, we have chosen le=0.2�0 and cos�2�kn̄�=1, and
have kept terms up to k=2 in Eq. �33�. Note the significant devia-
tions associated with the finite-radius corrections near =0.5.
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Notes added in proof. We would like to point out that the
issue of flux-dependent supercurrents for s-wave rings was
also studied by Zhu and Wang in Ref. 28. In addition to Refs.
10–12, there is a very recent work on the same issue in
d-wave superconductors in Ref. 29.

Throughout our paper, we have essentially assumed that
the switching of pairing configuration �see Fig. 2� occurs at
flux values being an odd integer multiple of h /4e near
superconducting-normal transition. This is consistent with
our numerical results that by allowing the switching to be
varied, the largest possible critical temperature is obtained
when the above assumption is obeyed. In a very recent paper
by Vakaryuk in Ref. 30, the author concludes that the switch-
ing can be flux dependent at zero temperature. If the two
results are to be consistent, we are led to the conclusion that
the switching is also temperature dependent. However, this
requires further investigation.
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APPENDIX A: AVERAGED GOR’KOV EQUATIONS OVER
RADIAL DIRECTION

Consider a ring on a plane with inner and outer radii a and
A, respectively. Assume that the thickness �A−a� is much
smaller than the mean radius �A+a� /2 and the zero-
temperature coherence length ��0�. We reduce the two-
dimensional Gor’kov equations into effective one-
dimensional equations by defining the averaged Green
function,

G̃��,��� 	
2

A2 − a2�
a

A

d���
a

A

d����G��,�,��,��;�� ,

�A1�

and similarly for F̃†. Under this averaging, the two-
dimensional delta function becomes one-dimensional,

2

A2 − a2�
a

A

d���
a

A

d������r� − r��� = ��� − ��� . �A2�

In the Laplacian operator, there is a term 1
�

�
���

�
��G�� ,���.

When performing the above average, we get for this term

2

A2 − a2�
a

A

d���
a

A

d����
1

�

�

��
�

�

��
G��,�,��,��;��

=
2

A2 − a2�
a

A

d������ �

��
G�

�=a

�=A

, �A3�

which, under the condition of no current flowing radially
through the ring boundary, gives zero identically. Similarly,
if we regard the anomalous Green function as playing the
role of the Ginzburg-Landau order parameter in the theory of
superconductivity, no flow of supercurrent radially gives the
average to be zero for F†. Furthermore, under the limit that
the average of the product of two functions can be approxi-
mated by the product of two averaged functions, we obtain a
set of reduced one-dimensional Gor’kov equations with the
coordinate variables being azimuthal angles � and ��, and the
radii being set to the fixed value of the average radius. After
appropriately renormalizing the Green functions by the in-
verse of the average radius �thus making the dimension con-
sistent�, we arrive at Eq. �3a� and �3b�. We remark that even
if the ring has the geometry of a torus, the same averaged 1D
equations will result provided that the cross section is rela-
tively small, compared with the ring area and the coherence
length.

APPENDIX B: CRITICAL TEMPERATURE EQUATIONS:
SUPPLEMENTARY DETAILS

In this appendix, we supplement the details leading to the
critical-temperature equations in both clean limit and the dis-
ordered regime.

1. Clean limit

Continuing from Eq. �9�, we make a shift in x: x→x
−m /2, under which the integral becomes

�
k�Z

�
−�

�

dx
e−i�mkei2�xk

�i�n − 1
2MR2 �x − x0�2 + 	�− i�n − 1

2MR2 �x + x0�2 + 	 , �B1�

where x0	−m /2. The integral over x can be performed
using contour integration. For example, for k�0 and �n

�0, we can close the contour in the upper plane, and evalu-

ate the residues at x=x0+�2MR2�	+ i�n� and x=−x0

−�2MR2�	− i�n�. We end up with �noting the cancellation
of the factor e−i�mk�
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�ei2�k+i2�k�2MR2�	+i�n�

� 2
MR2 �	 + i�n���n +

ix0
2

MR2 − ix0� 2
MR2 �	 + i�n�

+
�e−i2�k−i2�k�2MR2�	−i�n�

� 2
MR2 �	 − i�n���n −

ix0
2

MR2 + ix0� 2
MR2 �	 − i�n�

. �B2�

Including the contributions from the three other cases, we
arrive at the self-consistency equation:

1 =
�V�T
2�R

Re �
�n�0

�D

�� 4�

� 2
MR2 �	 + i�n���n +

ix0
2

MR2 − ix0� 2
MR2 �	 + i�n�

+ �
k=1

�
8�ei2�k�2MR2�	+i�n� cos 2�k

� 2
MR2 �	 + i�n���n +

ix0
2

MR2 − ix0� 2
MR2 �	 + i�n�� ,

�B3�

where we have put the Debye frequency �D as the upper
cutoff in the Matsubara sum. This equation can be rewritten
as

1 =�2M

	
�V�T Re �

�n�0

�D

�� 1

�1 + i
�n

	 ��n +
ix0

2

MR2 − ix0� 2
MR2 �	 + i�n�

+ �
k=1

�
2ei2�k�2MR2�	+i�n� cos 2�k

�1 + i
�n

	 ��n +
ix0

2

MR2 − ix0� 2
MR2 �	 + i�n�� .

�B4�

Furthermore, for typical temperatures we have �	+ i�n

��	�1+ i�n /2	�. The second term causes the contribution
of the k�0 terms to be exponentially small for large R, i.e.,
there is a factor,

e−2�kR�2M	�n/2	. �B5�

2. Large-radius limit

For sufficiently large R, we can ignore the k�0 correction
terms, in which case, we have

1 =�2M

	
�V�T Re �

�n�0

�D

�� 1

�1 + i
�n

	 ��n +
ix0

2

MR2 − ix0� 2
MR2 �	 + i�n�� .

�B6�

The third term in the denominator is usually much larger
than the second term, as the chemical potential 	 is much
larger than the level spacing 1 /2MR2, i.e., �2MR2	�1. For

typical values of �D and 	, we have �D /	�1. Hence, we
have

1 ��2M

	
�V�T Re �

�n�0

�D 1

�n − ix0� 2	
MR2

�B7�

=�2M

	

�V�
2�

Re �
n=0

�D/2�T
1

�n + 1
2� −

ix0

2�T
� 2	

MR2

. �B8�

The solution for T to this equation gives the critical tempera-
ture Tc. Denoting by Tc

0 the critical temperature in the ab-
sence of flux �so that x0=0�, we have the corresponding
equation

1 ��2M

	

�V�
2� �

n=0

�D/2�Tc
0

1

n + 1
2

. �B9�

Taking the difference of Eqs. �B7� and �B9�, we have

0 = Re �
n=0

�D/2�Tc��
1

�n + 1
2� −

ix0

2�Tc��
� 2	

MR2

− �
n=0

�D/2�Tc
0

1

n + 1
2

.

�B10�

If we extend both upper limits to infinity, we should com-
pensate by the difference �assuming �D /T�1�, i.e.,

�
��D/2�Tc��+1

��D/2�Tc
0�+1

1

n + 1
2

� ln�Tc��
Tc

0 � . �B11�

Therefore, we arrive at

0 = Re �
n=0

� � 1

�n + 1
2� −

ix0

2�Tc��
� 2	

MR2

−
1

n + 1
2
� + ln�Tc��

Tc
0 � .

�B12�

In terms of the digamma function ��x� in Eq. �11�, we have
an implicit formula for Tc��:

ln
Tc��

Tc
0 = ��1

2
� − Re ��1

2
−

ix0

2�Tc��
� 2	

MR2� .

�B13�

Using the quantities 	�vF
2 /2M, �0=vF /�
0, and ��R /�0,

and defining t��	Tc�� /Tc
0, we can rewrite Eq. �B13� as

ln t�� = ��1

2
� − Re ��1

2
−

ix0�

2�t��� . �B14�

3. Finiteness correction

What is the correction to Tc�� due to the finiteness of the
radius? To address this question we need to take into account
the k�0 corrections to Eq. �B4�. If we take �D /	�1 and
�	+ i�n��	�1+ i�n /2	�, the self-consistency �Eq. �B4�
can be approximated as
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1 ��2M

	

�V�
2�

Re �
n=0

�D/2�T
1

�n + 1
2� −

ix0�Tc
0

2�T

�1 + �
k=1

�

2ei2�k�2MR2�	+i�n� cos 2�k� �B15�

��2M

	

�V�
2�

Re �
n=0

�D/2�T
1

�n + 1
2� −

ix0�Tc
0

2�T

�1 + �
k=1

�

2ei2�k�2MR2	−4k�n+1/2����T�/��Tc
0� cos 2�k� . �B16�

Taking the difference between this equation and the version corresponding to =0, and using the trick for converting the
cutoff at the Debye frequency in a logarithm �see Eqs. �B11�–�B13�, we arrive at

ln t�� = ��1

2
� − Re ��1

2
−

ix0�

2�t
� − 4�

k=1

� �cos�2�k�2MR2	�e−2�k�/�HF�1

2
,1,

3

2
,e−4�k�/��

− Re�ei2�k�2MR2	e−2�k�t/�HF�1

2
−

ix0�

2�t��
,1,

3

2
−

ix0�

2�t
,e−4�k�t/��cos 2�k/�1 −

ix0�

�t
��� , �B17�

where the  dependence of t on r.h.s. is suppressed. We have
extended the upper limit of the sum over n to infinity for the
exponentially decaying terms �which introduces a negligible
small error� and we have used the formula

�
n=0

�
e−b�n+1/2�

n + 1
2 + a

= 2e−b/2HF�1

2
+ a,1,

3

2
+ a,e−b�/�1 + 2a� ,

�B18�

where HF�a ,b ,c ,z is the hypergeometric function

2F1�a ,b ;c ;z�.

4. Disordered regime

In this subsection, we calculate G̃��n� and K�, and obtain
the r.h.s. of the self-consistency �Eq. �31�. For simplicity, we
assume that the potential u�r� is short ranged so that its Fou-
rier transform u�q� can be treated as a constant, essentially
independent of momentum transfer q.

The one-particle self-energy can be obtained from sum-
ming one-particle-irreducible diagrams �and ignoring the
crossed diagrams� and thus we obtain

���� = �
n1

nimp�u�2

i� − 1
2MR2 �n1 − �2 + 	

� −
i

2����
sgn��� ,

�B19�

the real part of the self-energy has been ignored and we shall
call ���� the frequency-dependent scattering time. Under the
condition that the Debye frequency is much smaller than the
chemical potential, i.e., �D /	�1, and hence for the range of
�s that are relevant to superconductivity �i.e., �����D�, we
obtain

1

2����
�

1

2�0
�1 + �

k�0
2 cos�2�k�

�cos�2�k�2MR2	e−2�k�MR2/2	���� , �B20�

where

1

2�0
	

2�nimp�u�2

�2	/MR2
. �B21�

This form of ���� is an approximant because it is calculated

with G0 rather than G̃. To improve the approximation we

then use the exact disordered Green function G̃ to calculate
the same self-energy diagrams again �see, e.g., Ref. 26�, thus
obtaining a self-consistency condition for ���� �that can be
solved iteratively�:

1

2����
=

1

2�0
�1 + �

k�0
2 cos�2�k�

�cos�2�k�2MR2	e−2�k�MR2/2	����1+1/2��������� .

�B22�

As the k�0 terms are exponentially small, we can approxi-
mate ���� on the right-hand side by �0 to arrive at

1

2����
�

1

2�0
�1 + �

k�0
2 cos�2�k�

�cos�2�k�2MR2	e−2�k�MR2/2	����1+1/2�0����� .

�B23�

Returning to the kernel K, we rewrite Eq. �31�, following
Gor’kov,14 as

K��n1,n2� = G��n1�G−��n2��1 + L��n1 + n2� , �B24�

where we have conveniently dropped the



sign in G̃, and

L��n1 + n2� 	 nimp�
q

�u�q��2K��n1 − q,n2 + q� ,

�B25�

and the argument n1+n2 in L reflects the conservation of
total �azimuthal� momentum of the two incoming �and out-
going� electrons in the ladder diagrams after disorder aver-
aging. For the purpose of evaluating self-consistency �Eq.
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�32�, our goal is to obtain K� for n2=−n1+m. By eliminating
K from Eqs. �B24� and �B25�, we have an equation for L�:

L��m� = nimp�
n1�

�u�2G��n1��G−��− n1� + m��1 + L��m� ,

�B26�

which gives

L��m� =
A��m�

1 − A��m�
, �B27�

where

A��m� 	 nimp�
n1�

�u�2G��n1��G−��− n1� + m� . �B28�

The self-consistency �Eq. �32� then becomes

1 =
V

�L
�
�

1

nimp�u�2
A��m�

1 − A��m�
=

V

�L

4��0

�2	/MR2�
�

A��m�
1 − A��m�

,

�B29�

where we have used Eq. �B21� in the second equality. As
with the evaluation of Eq. �B1� in the clean limit �see Ap-
pendix B�, we obtain A� as

A� = A�
0 + A�

k�0 =
1

2�
Re� 1

���� − iX0
�

+ �
k�0

e−2�k�MR2/2	����

�
cos�2�k�2MR2	�Re� ei2�k

���� − iX0
� ,

�B30�

where X0	�−m /2�� 2	
MR2 , �	�1+2����� / �2�����, and � is

a shorthand for ����.
To illustrate the corrections arising from the finiteness of

the radius, we rewrite A� as

A� =
�1 + 2������1 + a�� − 2�b�X0

�1 + 2�����2 + �2�X0�2 , �B31�

where a���1� and b���1� are

a� 	 �
k�0

2e−2�k�MR2/2	���� cos�2�k�2MR2	�cos�2�k� ,

�B32a�

b� 	 �
k�0

2e−2�k�MR2/2	���� cos�2�k�2MR2	�sin�2�k� .

�B32b�

As the correction to 1 /���� is exponentially small �see Eq.
�B23�, in the exponentials, � can be approximated by

�0 	 1 +
1

2�0���
. �B33�

On the other hand, for 1 /����, not in the exponentials, we
shall approximate it by retaining the leading correction �see
Eqs. �B23� via

1

2����
�

1

2�0
�1 + a�� . �B34�

The quotient A� / �1−A�� then becomes

A�
1 − A�

=
1 + �a� −

2�b�X0

1+2���� 
2���� + 1

1+2���� �2�X0�2 − �a� −
2�b�X0

1+2���� 

�
1 + �a� −

2�b�X0

1+2���� 
2���� + 1

1+2���� �2�X0�2
. �B35�

We remark that, from this equation, one can obtain the equa-
tion for the critical temperature for arbitrary mean-free path
le.

a. Large-radius limit and arbitrary disorder

To illustrate the remark made above, we consider large-
radius limit in which we ignore corrections due to the finite
radius. In this limit Eq. �B35� becomes

A�
1 − A�

=
1

2�0��� + 1
1+2�0��� �2�0X0�2

. �B36�

Substituting this into Eq. �B29� we have

1 =�2M

	

�V�
2�

Re �
n=0

�D/2�Tc �n + 1
2� + 1

4��0Tc

�n + 1
2���n + 1

2� + 1
4��0Tc

 + � X0

2�Tc
�2 .

�B37�

In the clean limit �0Tc�1, we see that this reduces to Eq.
�B8�, which we obtained in the absence of disorder. How-
ever, here �0 is arbitrary. Subtracting Eq. �B37� from the
corresponding equation at =0 �i.e., X0=0� and using the
trick to get logarithm of the ratio of the critical temperatures,
as we did in Eqs. �B11�–�B13�, we have

ln�Tc��
Tc

0 � = �
n=0

� � �n + 1
2� + 1

4��0Tc

�n + 1
2���n + 1

2� + 1
4��0Tc

 + � X0

2�Tc
�2

−
1

n + 1
2
� . �B38�

By making the partial fractions of the first term in the sum-
mation and by using the definition of the digamma function
�Eq. �11�, we arrive at

ln�Tc��
Tc

0 � = ��1

2
� −

1
��2 − �2

��− � + ��2 − �2

2
��1 + � + ��2 − �2

2
�

+
� + ��2 − �2

2
��1 + � − ��2 − �2

2
�� ,

�B39�

where, for convenience, we have defined �	1 /4��0Tc��
and �	X0 /�Tc��. This is the equation for the critical tem-
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perature at arbitrary disorder for large radii of rings.

b. Finite-radius corrections and strong disordered regime

Now we return to the corrections due to the finiteness of
the radius. In the strong disordered limit �i.e., �0��1�, Eq.
�B35� becomes

A�
1 − A�

�
1

2����� + 2�X0
2

+
a� − 2�b�X0

2����� + 2�X0
2

. �B40�

This is further approximated, using Eq. �B34� as

A�
1 − A�

�
1

2�0���� + 2�0X0
2

+
2a� − 2�0b�X0

2�0���� + 2�0X0
2

,

�B41�

where we have used Eq. �B34�. The first term on the r.h.s.
represents the bulk term and is the Little-Parks term in the
dirty limit. The second term takes into account the finite
radius and contains flux dependence in period h /e. The equa-

tion for the critical temperature will then contain the di-
gamma function and hypergeometric function with real argu-
ments, in contrast with the clean limit. This makes the
transition to normal state continuous, as the solution for the
critical temperature is unique and the assumption of vanish-
ing order parameter used in the linearized self-consistency
condition is valid. Therefore, there can be quantum phase
transitions tuned by flux and/or radius.

As �0�X0��1 in the strong-disorder limit, the ratio
A� / �1−A�� becomes �by ignoring the b term�

A�
1 − A�

�
1

2�0���� + 2�0X0
2

+
2a�

2�0���� + 2�0X0
2

.

�B42�

From this we can obtain an equation for the critical tempera-
ture Tc in the presence of flux �, as we have done in the
clean limit �see Appendix B 3�. By inserting Eq. �B42� into
the self-consistency �Eq. �B29�, we obtain

1 =�2M

	

V

2� �
n=0

�D/2iTc 1 + �k�0
2e−2�k�MR2/2	�1/2�0+2�Tc�n+1/2� cos�2�k�2MR2	�cos 2�k

n + 1
2 +

�0X0
2

�Tc

. �B43�

Subtracting from this the corresponding =0 equation, i.e.,

1 =�2M

	

V

2� �
n=0

�D/2�Tc
0

1 + �k�0
2e−2�k�MR2/2	�1/2�0+2�Tc

0�n+1/2� cos�2�k�2MR2	�

n + 1
2

, �B44�

we obtain the following implicit equation for the critical temperature:

0 = �
n=0

� � 1

n + 1
2

−
1

n + 1
2 +

�0X0
2

�Tc

� − �
n=�D/2�Tc

0+1

�D/2�Tc 1

n
+ �

k�0
2e−2�k�MR2/2	�1/2�0� cos�2�k�2MR2	�

��
n=0

� � e−2�k�MR2/2	�2�Tc
0��n+1/2�

n + 1
2

−
e−2�k�MR2/2	�2�Tc��n+1/2� cos 2�k

n + 1
2 +

�0X0
2

�Tc

� , �B45�

where we have used the fact that when n��D /2�Tc
0 or higher, 1 / �n+ 1

2 +x��1 /n, the sum of the series being approximated
is a logarithm, and we have extended the upper limit of n for the correction terms to infinity. By using formula �B18� for the
hypergeometric function, we finally arrive at

ln�Tc

Tc
0� = ��1

2
� − ��1

2
+
�0X0

2

�Tc
� + �

k�0
4e−2�k�MR2/2	�1/2�0� cos�2�k�2MR2	�� �e−2�k�MR2/2	�Tc cos 2�kHF�1

2
+
�0X0

2

�Tc
,1,

3

2

+
�0X0

2

�Tc
,e−2�k�MR2/2	�2�Tc����1 +

2�0X0
2

�Tc
� − e−2�k�MR2/2	��Tc

0�HF�1

2
,1,

3

2
,e−2�k�MR2/2	�2�Tc

0��� , �B46�

where we recall that X0	�−m /2�� 2	
MR2 . If we use 	=MvF

2 /2, le=vF�0, and �0=vF /�
0 �with 
0=�Tc
0�, we have
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ln t = ��1

2
� − ��1

2
+
�le�0

tR2 � −
m

2
�2� + �

k�0
4e−�kR/le cos�2�k�2MR2	�� �e−�2�k/���R/�0�t cos 2�kHF�1

2
+
�le�0

tR2 �
−

m

2
�2

,1,
3

2
+
�le�0

tR2 � −
m

2
�2

,e−�4�k/���R/�0�t�� �1 +
2�le�0

tR2 � −
m

2
�2�−1

− e−�2�k/���R/�0�HF�1

2
,1,

3

2
,e−�4�k/���R/�0��� .

�B47�

We can rewrite this equation using the relations 	=MvF
2 /2, 
0=vF /��0, and le=vF�0, and thus arrive at

ln t = ��1

2
� − ��1

2
+
�le�0

tR2 � −
m

2
�2� + �

k=1

�

4e−�kR/le cos�2�k�2MR2	�

��e−�2�k/���R/�0�t cos 2�k
HF� 1

2 +
�le�0

tR2 � − m
2 �2

,1, 3
2 +

�le�0

tR2 � − m
2 �2

,e−�4�k/���R/�0�t
1 +

2�le�0

tR2 � − m
2 �2

− e−�2�k/���R/�0�HF�1

2
,1,

3

2
,e−�4�k/���R/�0��� . �B48�

c. Finite-radius and arbitrary disorder

It is also possible to include corrections from the finite-
ness of the radius and derive the equation for the critical
temperature, as we did in the previous section. The results
will contain the r.h.s. of Eq. �B39� as the zeroth order, as well
as corrections due to the finiteness of the radius in terms of
hypergeometric functions. However, the formulas are too
cumbersome and we do not list them here.

APPENDIX C: HEURISTIC ARGUMENT TO THE
EMERGENCE OF h Õe PERIOD OSCILLATIONS

1. Cooper problem on a ring

Let us consider Cooper’s problem on a ring with a flux �
threading through it. The orbital wave function can be writ-
ten in the same form as in Eq. �4a� and �4b�. Assuming that
��x ,x�
ei2�mx/L, and that the electron-electron interaction is
factorizable, i.e., Vn,n�= UnUn�

� , we can write down the
time-independent Schrödinger equation in terms of the wave-
function amplitude an as

2!n��an + �
�n���nF

Vn,n�an� = Ean, �C1�

where

2!n�� =
1

2MR2 ��n + �2 + �m + n − �2 , �C2�

and hence we arrive at

1

 
= �

n

1

E − 2!n��
. �C3�

The integer m has to be chosen to minimize the ground-state
energy. Thus, we see that the solution is periodic in  with
period 1 �or in � with period h /e, namely the single-particle

flux quantum� and that the Little-Parks period h /2e is exact
only in the large-R limit, in which case the summation over n
can be replaced by an integral, and hence, the period of  is
1/2. This illustrates the role of the single-particle oscillation.
However, the amplitudes of the single-particle and Little-
Parks oscillations have to be evaluated within a microscopic
theory, as has been done in the main text.

2. Flux oscillation: an instanton approach

The instanton picture provides us another heuristic view
of the emergence of h /e-period oscillations. The argument
presented here is intended just to give some intuition. We
refer to Rajaraman27 for a pedagogical review of instanton
techniques. A single instanton tunneling from 0 through a
potential to 2� �which is identified as 0� on a circle gives an
amplitude

lim
�→�

�2��e−H��0��1,0� = e−S0JK��1/2e−��/2, �C4�

where S0 is the classical Euclidean action �in the absence of
any flux threading through the circle�, J is a Jacobian factor,
K is a constant independent of � as �→�, and � is the
harmonic-oscillator frequency near the bottom of the trap-
ping potential. Now, if there is a flux � threading the ring,
the amplitude will also acquire an additional phase factor
ei2�, where 	� /�0 and �0=h /e if the particle carries
charge e. For a charge 2e particle, the phase factor would be
ei4�.

We consider a ring size that is large enough that the elec-
trons in a Cooper pair generally traverse the ring together
and rarely split so as to wind separately around the ring. The
ground-state energy will give a qualitative estimate of the
critical temperature of the associated superconductor. The
total contribution of the amplitude for the instanton associ-
ated with the Cooper pair is then
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lim
�→�

�2��e−H��0� = �1/2e−��/2 �
n1,n2

1

n1 ! n2!

��JK�e−S0�n1+n2ei4��n1−n2�, �C5�

which gives

lim
�→�

�2��e−H��0� = �1/2e−��/2 exp�2JK�e−S0 cos 4��


 lim
�→�

�2��E0��E0�0�e−E0�. �C6�

This gives a ground-state energy of E0= �
2

−2JKe−S0 cos 4�, which reveals the period h /2e, the
Little-Parks period in critical temperature. The fact that this
gives a dependence on flux being sinusoidal rather than qua-
dratic results from the lack of accounting of the other many-
body electrons and the existence of a condensate.

Now, occasionally �in the sense of contributing Feynman
paths�, the electrons in a Cooper pair separate and circum-
navigate the ring �relative to one another� before reassociat-
ing. The contribution of such processes to the ground-state
energy can be estimated via the instantons and anti-

instantons of such events associated with them. A single in-
stanton involving one electron going from 0 to 2� has the
amplitude

lim
�→�

�2��e−H��0��1,0� = − e−S0;eJeKe��e
1/2e−�e�/2ei2�, �C7�

where the subscript e indicates a single electron rather than a
Cooper pair and the additional minus sign comes from the
exchange of the two electrons. Summing all the instanton
and anti-instanton processes, we arrive at the contribution to
the ground-state energy from the two electrons

E0;e = �e + 4JeKee
−S0;e cos 2� , �C8�

which results in the emergence of a h /e contribution to the
period of oscillation to critical temperature. We remark that it
is owing to the separation of the length scales, and hence,
time scales that we can separate the Cooper-pair and single-
electron contributions. The amplitudes of the two oscillations
are related to the respective actions and, for large radius, the
amplitude corresponding to single-particle oscillation is ex-
pected to be small, due to the binding resulting from the
attractive interparticle interaction.
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