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We study a spin S quantum Heisenberg model on the Fe lattice of the rare-earth oxypnictide superconduct-
ors. Using both large S and large N methods, we show that this model exhibits a sequence of two phase
transitions: from a high-temperature symmetric phase to a narrow region of intermediate “nematic” phase, and
then to a low-temperature spin ordered phase. Identifying phases by their broken symmetries, these phases
correspond precisely to the sequence of structural �tetragonal to monoclinic� and magnetic transitions that have
been recently revealed in neutron-scattering studies of LaFeAsO. The structural transition can thus be identified
with the existence of incipient �“fluctuating”� magnetic order.
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I. CONTEXT

Of course, the big issue of the day is whether the physics
of high-temperature superconductivity1–6 in the rare-earth
oxypnictides is related to that in the cuprates. In favor of this
association is the observation that both are “bad metals,”7

and so presumably not well described by Fermi-liquid theory
in their normal states. Preliminary evidence8,9 suggests that
the superconducting state in the oxypnictides, like that in the
cuprates, has gapless nodal quasiparticle excitations, and
hence, probably, an unconventional pairing symmetry. Fi-
nally, there is tantalizing evidence that competing ordered
states, and possibly an associated quantum critical point,
may play a role in both cases.5,10,11

In the case of the cuprates, superconductivity is produced
by doping a commensurate spin ordered, insulating parent
“Neel” state. Probably, Neel order does not coexist with su-
perconductivity; however, other ordered states, including
spin and charge stripe �unidirectional density wave� ordered
states,12,13 an Ising nematic state13–15 �about which, more
later� and a form of time-reversal symmetry-breaking
order16,17 �whose character is still being debated� seem to
coexist �in some cases, at least� with superconductivity, and
possibly to vanish at quantum critical points somewhere un-
der the superconducting dome.

The oxypnictides in question have chemical makeup
RO1−xFxFeAs, where R is a rare earth, and x is the dopant
concentration; the behavior �including the maximum super-
conducting Tc� depends systematically on the particular
choice of R. The situation with competing orders in the ox-
ypnictides is only beginning to be explored. Undoped RO-
FeAs is not cleanly insulating, but its resistivity is strikingly
large �e.g., ��7 m�-cm in SmOFeAs at room
temperature10,18� for a metal; it does, however, exhibit �in
neutron-scattering experiments on LaFeAsO11,19� commensu-
rate spin order below TSDW=135 K. Moreover, a closely as-
sociated structural transition, which we wish to identify as
the transition to an “electron nematic phase,”20 occurs at the
slightly higher temperature, TN=150 K.11 The evolution of
these orders as a function of doping, x, has not yet been
directly probed with neutrons. However, the sharp onset of

an anomalous drop in the resistivity occurs at T�=TN in the
undoped x=0 material. The onset temperature for the resis-
tance drop has been tracked in resistivity measurements for
different x, and found to extrapolate to 0 at a critical value of
x close to the point at which the superconducting Tc first
reaches its maximum value max�Tc�=55 K in
SmO1−xFxFeAs.10 Assuming that the association between T�

and TN persists, this means that there is an electron nematic
to isotropic quantum phase transition in the superconducting
dome in at least some members of both families of high-
temperature superconductors, a suggestive evidence both of
a common thread in the behavior of both materials, and of
the conjecture that nematic order is, in some way, a crucial
part of the physics.

II. INTRODUCTION

The purpose of this paper is to propose a unified perspec-
tive on the occurrence of both the magnetic and the structural
phase transitions in undoped LaFeAsO. To the extent that
this proposal is correct, it justifies the identification of the
observed structural transition with the occurrence of an elec-
tron nematic phase.

Following the lead of two insightful recent papers by
Yildirim21 and by Si and Abrahams,22 we will treat undoped
ROFeAs as if it were a magnetic �“Mott”� insulator,23 and
hence we consider a simple model of localized spins on the
iron sites interacting with neighboring spins by an antiferro-
magnetic superexchange interaction mediated through the in-
tervening As atoms �Eq. �3.1�, below�. Some microscopic
justification for this approach is contained in those two ear-
lier papers. In addition, the fact that the magnetic order11 in
ROFeAs is commensurate is, a priori, indicative of strong-
coupling physics. Moreover, although the bare susceptibility
computed24–27 from the LDA band structure is peaked at the
appropriate ordering vector, Q, the Fermi surface is not well
nested and this peak is neither pronounced nor sharp.

However, it is important to acknowledge from the start
that a model of localized spins cannot be taken as a realistic
representation of the electronic structure of ROFeAs. The
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most obvious point is that ROFeAs is not an insulator! At
best, it is our hope that the magnetic and structural properties
of this material can be qualitatively understood on the basis
of the present model. Even there, we will show that the small
magnitude of the ordered moment, m=0.35�B, at low tem-
perature is inconsistent with the predictions of the present
model. Indeed, as pointed out by Si and Abrahams, it is not
even clear whether we should be considering a spin S=2 or
S=1 model, in this context. Still, the model is sufficiently
simple that its behavior can be cleanly derived. As we shall
see, it inevitably exhibits two ordered phases �see Fig. 2� of
precisely the character of those seen in experiment. More-
over, numerous spectroscopic and a few thermodynamic pre-
dictions �see remarks in Sec. VI� can be made on the basis of
this model that are sufficiently robust, which we may hope
they transcend the deficiencies of the model.

III. THE MODEL

In the tetragonal phase, the iron sites form square planar
arrays, such that the sites of adjacent planes lie above one
another. Because the superexchange is mediated through off
plane but plaquette centered As atoms, the first- and second-
neighbor antiferromagnetic exchange couplings, J1 and J2,
are expected to be of roughly the same magnitude. However,
the coupling between spins on neighboring planes, Jz, while
still antiferromagnetic, is expected to be much smaller than
the in-plane couplings. �See Fig. 1� Estimates from previous
work21,28,29 are J1�0.5J2�400–700 K. Jz is several orders
of magnitude smaller than J2. The resulting minimal Hamil-
tonian is

H = �
n,R,�1

�J1S�R,n · S�R+�1,n − K�S�R,n · S�R+�1,n�2�

+ J2 �
n,R,�2

S�R,n · S�R+�2,n + Jz�
n,R

S�R,n · S�R,n+1, �3.1�

where SR,n is a spin S operator on site R in plane n and, �1
and �2 are, respectively, the first and second-nearest-

neighbor lattice vectors in square plane. We set the lattice
spacing between nearest neighboring iron sites to be 1. The
biquadratic interaction term, K, is small for well localized
spins, but even if we were to omit this term in the bare
Hamiltonian, it would rise from quantum or thermal fluctua-
tion through the so-called “order out of disorder”
mechanism28,30–33 in the long-wavelength limit. Note that
this Hamiltonian has the C4 lattice rotational symmetry of
the high-temperature tetragonal phase.

In the broken-symmetry “nematic” phase, the spin nem-
atic order parameter

N � 	�
�1

Fd��1�S�R,n · S�R+�1,n
 �3.2�

is nonzero, where Fd is a “d-wave” form factor, Fd��x̂�=
−Fd��ŷ�=1. Since a structural distortion of appropriate sym-
metry is linearly coupled to the spin nematic order param-
eter, the magnitude of the structural distortion u will be pro-
portional to N in the presence of weak electron-lattice
coupling. It is a central conclusion of our work that the struc-
tural distortion is a response to a purely electronic pattern of
symmetry breaking, so we will typically take u=0, although
in some places, we will consider the effects of a small per-
turbation

H� = JN �
n,R,�1

�Fd��1�S�R,n · S�R+�1,n� �3.3�

where JN�u.
There is a subtlety of the crystal structure that is not ap-

parent in the model presented in Eq. �3.1�: Because of the
presence of a glide plane, the spins on the Fe sites are all
equivalent, so in the model, there appears to be only one
atom per unit cell. Thus, the distortion that produces a non-
zero u looks to be an orthorhombic distortion, in which the
elementary square plaquette become slightly rectangular.
However, because of the three dimensional placement of the
As atoms out of the Fe plane, there are actually two Fe sites
per unit cell, and consequently the correct classification of
the low-symmetry phase is monoclinic. Because it simplifies
the discussion, we will henceforth ignore this subtlety, and
phrase our discussion on an idealized crystal structure with a
single Fe atom per unit cell, as is appropriate to the magnetic
Hamiltonian in Eq. �3.1�.

We will consider this model in the limit J2	J1 /2
Jz,
K	0. We shall derive T=0 properties of this model to low-
est order in a spin-wave �1 /S� expansion. To treat the finite

temperature properties of the model, we consider S� to be an
N dimensional unit vector �SO�N� spin� and obtain a system-
atic solution to the problem in the large N limit. It is gener-
ally found that the spin-wave theory is accurate34 at T=0,
even in the limit S=1 /2, so it should be quite reliable in the
present case. Similarly, the physical N=3 typically is well
approximated by large N.

IV. ZERO TEMPERATURE (LARGE S)

We can compute the properties of the system described in
Eq. �3.1� using the standard �Holstein–Primakov� spin-wave
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FIG. 1. �Color online� Schematic graph for the proposed model
with nearest-neighbor coupling J1, next-nearest-neighbor coupling
J2 and interlayer coupling Jz. The orientation of the spins in the
low-temperature phase are drawn according to Ref. 11. Note that we
use coordinate system with axis x, y, and z in the current study,
which is 45° rotated along the c=z direction from the realistic crys-
tal axis a, b, and c.
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theory. We compute the classical expression and the leading
corrections to order 1 /S.

Since at T=0, the small interplane coupling Jz does not
qualitatively effect the magnetic properties of the system, we
will simplify expressions for various quantities by evaluating
them in the limit Jz→0. For J1	2J2
K	0, the classical
�S→�� ground state is the Neel state with ordering wave
vector Q= �� ,��. For J2	J1 /2
K	0, the regime of inter-
est in the present study, the classical ground state is the
“striped” phase with ordering vector Q= �� ,0�, as shown in
Fig. 1, or �0,��. Note that, in addition to breaking spin-
rotational symmetry and time-reversal symmetry, this state
�even in the absence of any spin-orbit coupling� spontane-
ously breaks the lattice symmetry. Specifically, we compute
the antiferromagnetic and the nematic order parameters,

m = eiQ·R	S�R,n
 = S − 
 + . . .

N = 	�
�1

Fd��1�S�R,n · S�R+�̂1,n
 = − 4�S2 − �S + . . .� �4.1�

where 
 and � are dimensionless functions of J2 /J1 that we
compute below. Here, we have taken the ordering vector Q
to be �� ,0� as in shown Fig. 1, which means that the nearest-
neighbor bonds along the x direction are satisfied, but the
y-directed bonds are ferromagnetic, and “frustrated.”

The spin-wave spectrum to leading order in S is given by

�k
2 = 4S2��Jy cos ky + 2J2 + Jx − Jy�2 − �Jx

+ 2J2 cos ky�2 cos2 kx� , �4.2�

where Jy �J1−2JN−2KS2 and Jx�J1+2JN+2KS2. As ex-
pected, the spectrum is gapless at k= �0,0� and k=Q
= �� ,0�. These are the Goldstone modes, which have an an-
isotropic linear dispersion,

�k � 2S��2J2 + Jx���2J2 + Jx�qx
2 + �2J2 − Jy�qy

2� , �4.3�

in which q is the small deviation from the gapless points.
The spectrum is also almost gapless at k=Q�= �0,�� and k
=Q�= �� ,��, where the gap,

� = 4S��Jx − Jy��2J2 − Jy� �4.4�

is determined by the small terms in the Hamiltonian. The
ordered state can be thought of as two interpenetrating Neel
states, which at the classical level do not lock to each other.
It is the small terms, K and JN, that lock them together in a
collinear state, and gap what would otherwise be two inde-
pendent sets of Goldstone modes. Notice that this gap also
vanishes at the critical coupling J2→J1 /2. This is somewhat
surprising, as the striped to Neel transition might otherwise
be expected to be first order. �It is an open question, which
we will not address at present, whether there is an interest-
ing, unconventional35 quantum critical point, here, or possi-
bly some additional intermediate zero-temperature phases
stabilized by quantum fluctuations.�

At the same level of approximation, we can compute the
leading-order quantum corrections to the sublattice magneti-
zation and nematic order parameters, 
 and � in Eq. �4.1�. To

simplify matters, we compute both quantities in the limit K
and JN→0, since these small couplings make only negligible
differences in the results. Then


 =
1

2
�
 d2k

�2��2

2�J1 cos ky + 2J2�
�k/S

− 1� , �4.5�

and

� = 2
 −
 d2k

�2��2

J1�cos2 kx + cos2 ky�
�k/S

−
 d2k

�2��2

2J2 cos ky�1 + cos2 kx�
�k/S

. �4.6�

These integrals are readily evaluated numerically. For in-
stances, for J2 /J1=2.0, 
=0.20, �=0.30, and for J2 /J1=1.0,

=0.22, �=0.21. Both 
 and � diverge as J2→J1 /2, but
only logarithmically, 
 ,���2��−1 ln�J1 / �2J2−J1��. Thus,
except extraordinarily close to the quantum critical point,
quantum fluctuations do not significantly reduce the ordered
moment.

The dynamic structure can also be readily computed. The
transverse piece has the form

S��k,�� = A�k���� − �k� , �4.7�

where A�k�=4�S2�Jx�1−cos kx−Jy�1−cos ky�+2J2�1
−cos kx cos ky�� /�k�. Note that interesting behavior is ob-
served near k=Q� and k=Q�: A�Q��
=2�S��2J2−Jy� / �Jx−Jy�, which is large; however, A�Q��
=2�S��Jx−Jy� / �2J2−Jy�, which is small. The longitudinal
structure factor has the form of a two spin-wave continuum,
and can also be computed explicitly.36

V. FINITE T (LARGE N) SOLUTION

To study the phase diagram at finite temperature, and in
particular to gain insight into the regime of fluctuating mag-
netic order above the spin ordering transition temperature, it
is sufficient to treat the problem classically, as the effects of
quantum fluctuations simply produce small renormalizations
of the effective parameters, as above. Since we are interested
in the region J2	J1 /2, we break the system up into two
interpenetrating square lattices on which J2 is the nearest-
neighbor coupling. On each sublattice, we define the stag-
gered magnetization �� n,
 for plane n and sublattice 
=1 or
2. To make our calculations analytically tractable, we take
the continuum limit and for convenience we write the model
with respect to the real crystal axis, i.e., x ,y are equivalent to
a ,b crystal directions, respectively, in the following model.
So

Hc =
 d2r�
n,


�1

2
J̃2���� n,
�r��2 − J̃z�� n,
�r� · �� n+1,
�r��

− K̃�
n

��� n,1�r� · �� n,2�r��2 + J̃1�
n

�� n,1�r��x�y�� n,2�r� ,

�5.1�

where we have used the same symbols with a tilde for the
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couplings as in Eq. �3.1�, although the present quantities
should include renormalizations due to both quantum effects

and high energy thermal fluctuations. J̃i�JiS
2 , �i=1,2� and

J̃z�JzS
2. Specially, as we pointed out before, the K̃ term can

be shown28 to rise through fluctuations in the following form

K̃�0.13J̃1
2S2 /4J̃2, which is about 0.03J̃2 for S=1 and J2

=2J1, given approximately in Ref. 21 and 29.
We generalize the order parameter to N components, take

the large N limit, and solve the problem. Note that the tran-
sition temperatures are obtained for the physical N=3. The
self-consistency equations can be derived using the same
method employed in Ref. 37. Define the nematic order �

= K̃	�� n,1�r� ·�� n,2�r�
 / �NT� and �n,
�r� ,
=1,2 are the La-
grangian multiplies for �� n,
�r�. The saddle point of above
Lagrangian is determined by the following self-consistent
equations where we take �n,
�r�=� ,
=1,2:

� =
K̃

�2��3 · 

−�

�

dkx

−�

�

dky

0

2�

dkzG12�k�� �5.2�

1 =
NT

�2��3 · 

−�

�

dkx

−�

�

dky

0

2�

dkzG11�k�� �5.3�

where ��O�1� is momentum cutoff, and

G�k��−1 = � A�k�� − B�k��

− B�k�� A�k��
� , �5.4�

where A�k��= J̃2k2−2J̃z cos kz+2N�T, B�k��=2NT�+ J̃1kxky

with k� = �k ,kz� and k2=kx
2+ky

2. From these self-consistent
equations, we can determine the transitions temperatures. For

K̃ , J̃z� J̃2, the nematic transition temperature TN is deter-
mined by the following equation

4�J̃2

NTN
= ln

J̃2/�NTN�

�� K̃

4�J̃2
�2

+ � J̃z

NTN�2
+ K̃

4�J̃2

�5.5�

The spin-density wave transition temperature TSDW takes

place when �=�SDW+ J̃z / �NT�. It is determined by the fol-
lowing equations

�SDW

K̃
=

1

8�J̃2

ln
2�SDW +

J̃z

NTSDW
+ 2��SDW

2 +
�SDWJ̃z

NTSDW

J̃z/�NTSDW�
,

�SDW

K̃
+

1

NTSDW
=

1

4�J̃2

ln
J̃2

J̃z

. �5.6�

By solving these equations, we find that the above model has
two second-order phase transitions. The nematic transition
temperature TN is always larger than the SDW transition
temperature TSDW. In Fig. 2, we show the transition tempera-

tures TN and TSDW as the function of J̃z for a fixed K̃

=0.0075J̃2. TN is largely insensitive to J̃z so long as it is
small. In Fig. 3, we plot the difference �TN−TSDW� /TSDW as

the function of J̃z. If we compare the experimental result in

LaFeAsO where �TN−TSDW� /TSDW�11%, our results sug-

gest J̃z�10−4J̃2. From the suggested value J̃z�10−4J2, we

derive that TN�0.61J̃2 and TSDW�0.55J̃2, as shown in Fig.

2. In this parameter region, by increasing J̃z, which can be
achieved by applying external pressure along z axis, the dif-
ference between TN and TSDW can be reduced.

VI. FINAL REMARKS

The localized spin model we have solved produces results
that have enough in common with the observed ordered
phases of ROFeAs that, we believe, it is clear that it captures
some of the correct physics, as was first proposed by
Yildirim21 and Si and Abrahams.22 Both the stripelike pattern
of magnetic order and the existence of a monoclinic �nem-
atic� lattice distortion are found to be inevitable conse-
quences of the magnetic interactions. By analyzing the
model carefully, we have reached some additional conclu-
sions.

�1� Most importantly, we find that there is inevitably a
narrow range of temperatures above the magnetic ordering

)10( 3�

FIG. 2. �Color online� TN and TSDW as the function of J̃z for

J̃2=2J̃1, N=3, and S=1.

)10( 3�

FIG. 3.
TN−TSDW

TSDW
as the function of J̃z for J̃2=2J̃1, N=3, and S

=1.
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temperature, in which nematic order persists. The tendency
toward nematic order lifts the frustration and permits cou-
pling, even ignoring fluctuations, between the staggered
magnetic order on the two sublattices. Thus, the magnetic
order is certainly enhanced by a monoclinic lattice distortion,
as emphasized by Yildirim. However, we have shown that
the symmetry reduction can be purely magnetic in origin
�with a resulting lattice distortion occurring as a secondary
consequence of this ordering�, and that indeed the symmetry
reduction occurs when there is only intermediate scale mag-
netic order.33 In this sense, the nematic phase in RLnFeAs is
a consequence of fluctuating magnetic stripe order. This ob-
servation can be tested by studying the evolution of the fluc-
tuating magnetic order in the temperature interval between
TSDW and TN using inelastic neutron scattering. Another ob-
servation is that applying external pressure along the z axis
reduces the difference between the two transition tempera-
tures TN and TSDW can also be tested by future experiments.

�2� In contrast to a speculation of Si and Abrahams, we
find that the frustration inherent in the model is not sufficient
to account for the experimentally observed small magnitude
of the ordered moment. Rather, this reflects an intrinsic
shortcoming of the strong-coupling model. Presumably, as
the electrons giving rise to the spin become increasingly
weakly localized, the maximum possible magnitude of the
ordered moment decreases. Similarly, for reasonable values
of J2�500 K and J1�250 K, the transition temperatures
TN�300 K and TSDW�275 K, we compute are a factor of
2 larger than that measured in the material. However, since
the magnetic moment experimentally measured is around
0.35�B and the theoretical result in this paper is calculated
for a S=1 spin system, this difference is naturally expected.
we believe it reflects a shortcoming of the model as we have
discussed earlier.

�3� The validity of the strong-coupling approach can be
directly tested by looking for additional collective modes
that the model predicts. In particular, in addition to the Gold-
stone modes associated with the broken spin rotationally
symmetry �which are presumably weakly gapped due to
spin-orbit coupling�, there should be additional almost Gold-
stone modes at wave vectors Q� and Q�, whose gap is a
direct reflection31 of quantum fluctuations of the spin through
order from disorder.

Finally, we conclude with some more speculative re-
marks:

�1� Many papers1,11,19,26 have observed a transition tem-
perature, T�, at which there is a relatively sharp feature in the

resistivity. While this transition has been widely identified as
a spin-density wave transition, in LaFeAsO, for which direct
neutron-scattering evidence is available, it actually occurs at
TN rather than at the 15 K lower TSDW. This suggests that
T�=TN, more generally. With increasing doping, x, T� drops
and so, presumably does both TN and TSDW. Following the
logic of the present paper, it is probable that TSDW→0 at a
critical doping concentration, xSDW, which is less than the
critical concentration, xN, at which TN→0. If we accept the
identification between T� and TN, then extrapolating the re-
sults to where T�→0, one would conclude that xN is greater
than the minimum xc for superconductivity, and indeed
roughly coincides with the point at which the superconduct-
ing Tc first reaches its maximum value. However, contrary to
the inference made in Ref. 10 in which this feature was ob-
served, this does not necessarily imply the coexistence of
superconductivity and magnetism; it is possible that xSDW
�xc�xN.

�2� Si and Abrahams conjectured that the superconductiv-
ity in the oxypnictides may have d-wave symmetry. While
we are still uncertain as to how far the present strong-
coupling approach can be extended, it does seem natural
from the present perspective that the d-wave character of the
electron nematic order could carry over to a d-wave charac-
ter of the proximate superconducting state.

�3� The existence of a form of stripe order, and of a nem-
atic phase associated with fluctuating stripe order, would
constitute a striking piece of evidence of a close relation
between the physics of the cuprate and the oxypnictide su-
perconductors. Stripe order, albeit with a longer period and a
different character, has been observed for many years in a
variety of cuprate superconductors.13 Fluctuating stripe order
has been detected in neutron-scattering studies of a much
broader class of cuprates. Moreover, recently, it has been
confirmed in neutron-scattering studies15,38 of underdoped
YBCO, that a nematic phase associated with fluctuating
stripe order occurs at a temperature well above the supercon-
ducting Tc, which presumably vanishes at a critical doping
somewhere inside the superconducting dome.
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