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Dielectric and magnetic phenomena in spin- and charge-frustrated system RFe2O4 �R is a rare-earth metal
ion� are studied. An electronic model for charge, spin, and orbital degrees in a pair of triangular-lattice planes
is derived. We analyze this model by utilizing the mean-field approximation and the Monte Carlo simulation in
a finite size cluster. A threefold-type charge-ordered structure with charge imbalance between the planes is
stabilized in finite temperatures. This polar charge order is reinforced by spin ordering of Fe ions. This
magnetodielectric phenomenon is caused by spin frustration and charge-spin coupling in the exchange inter-
action. We show cross-correlation effect in magnetic- and electric-field responses. Oxygen-deficiency effect as
an impurity effect in a frustrated charge-spin coupled system is also examined.
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I. INTRODUCTION

The simultaneous existence of electric and magnetic po-
larizations and their control by external field have recently
been revived as multiferroic phenomena in correlated elec-
tron oxides.1–4 Behind the large coupling between electric
and magnetic moments, spin frustration plays dominant roles
on multiferroic properties. Noncollinear spin structures, such
as cycloid, spiral, and so on, are realized in frustrated spin
systems, and spontaneous electric polarization is induced to
gain the symmetric and/or antisymmetric exchange
interactions.5–10 From this viewpoint, this class of materials
is recognized as a spin driven ferroelectricity. Another class
of ferroelectricity can be considered. Apart from the integer
filling of electron in valence bands, a charge degree of free-
dom arises. The long-range charge order due to the Coulomb
interaction is ubiquitously observed in several transition-
metal compounds.11–13 When electronic charge is ordered
without inversion symmetry, a macroscopic electric polariza-
tion appears. In the case where this electric polarization can
be reversed by external electric field, it is a ferroelectric state
driven by electronic charge degree of freedom. Some low-
dimensional organic salts, e.g., the neutral-ionic transition
system14,15 and �-�BEDT-TTF�2I3,16 are considered to be-
long to this class of ferroelectric materials. A charge polar-
ized state observed in a layered structure manganite
Pr�Sr0.1Ca0.9�2Mn2O7 is attributed to the charge order associ-
ated with orbital order and lattice distortion.17 The possibility
of ferroelectricty in charge-ordered manganites is also pro-
posed from a theoretical viewpoint.18

Rare-earth iron oxides with layered crystal structure
RFe2O4 �R=Lu, Y, Yb, and Er�19 of the present interest be-
long to this class of ferroelectricity. The crystal structure of
RFe2O4 consists of paired Fe-O triangular-lattice layers and
R-O blocks stacked along the c axis. A schematic view of a
paired Fe-O layer, termed the W layer, is shown in Fig. 1�a�.
The average valence of Fe ions is +2.5, which implies that
equal amounts of Fe2+ and Fe3+ occupy the W layer. Charge
structure was investigated by the electron and x-ray diffrac-
tion experiments.20–22 In LuFe2O4, below 500 K, streak-type
diffuse scattering was observed along �1 /3 1 /3 l� lines, and
below 320 K, spots appear at �1 /3 1 /3 3m+1 /2� in the

streak lines associated with zigzag modulations. In this pa-
per, we use the hexagonal index, although the space group is
R3̄m. These experimental results are interpreted as two- and
three-dimensional charge orders of electrons. The three-
dimensional order of Fe2+ and Fe3+ was also confirmed by
the resonant x-ray scattering technique at Fe K edge.23 As for
the magnetic properties, magnetization in LuFe2O4 starts to
increase around 250 K.24 Neutron diffraction experiments re-
vealed that magnetic Bragg peaks at �1 /3 1 /3 m� appear and
a ferrimagnetic order is realized below this temperature.25–29

Electric polarization and dielectric anomalies were observed
around the three-dimensional charge-ordering temperature,
although the dielectric constant shows a strong dispersive
and diffusive nature.23,30 Several magnetodielectric phenom-
ena were also reported around the ferrimagnetic ordering
temperature.23,31,32 It is worth noting that these dielectric and
magnetic phenomena depend on the rare-earth metal element
R and the oxygen stoichiometry; in YFe2O4, with decreasing
temperature, the threefold-type charge order is changed into
a fourfold-type one, which is extremely sensitive to oxygen
deficiency.33–35

To elucidate the mechanism of dielectric phenomena in
RFe2O4, Yamada et al.21 proposed a model for the threefold-
type charge order. This charge-structure model is shown in
Fig. 5�a�, which will be introduced in more detail in Sec. III.
This is a �3��3 structure in a plane, and along �110�, elec-
tronic charges are aligned ¯Fe3+Fe3+Fe2+

¯ in the lower
plane and ¯Fe3+Fe2+Fe2+

¯ in the upper one. That is, elec-
tronic charge is polarized between the upper and lower
planes, and finite electric dipole moments exist in the W
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FIG. 1. �a� A pair of triangular-lattice planes �W layer�. �b� A
FeO5 cluster.
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layer. Based on this polar charge model and the neutron dif-
fraction data, a possible spin structure in the ferrimagnetic
ordered phase was proposed.34

Through a number of the experimental results19,21,23–25

and the theoretical analyses,20,27,36–38 it is recognized that
the electric polarization in this material is attributed to 3d
electronic charge order. Besides, electronic charges strongly
couple with spins, and charge and spin frustrations in the
W layer play dominant roles in dielectric and magnetic
properties. In this paper, we present a microscopic theory of
electronic structure and magnetodielectric phenomena in
RFe2O4. We focus on 3d electronic structure in a W layer
which is a minimum and main stage for the low-energy elec-
tronic state. We first suggest the orbital degree of freedom in
a Fe2+ ion and derive an electronic Hamiltonian in a W layer.
This model consists of the long-range Coulomb interactions
and the exchange interaction derived from the generalized pd
model. We analyze the charge structure by using the mean-
field approximation and the Monte Carlo �MC� simulation.
The threefold-type polar charge order competes with other
type nonpolar ones and is stabilized at finite temperature.
This is caused by charge fluctuation in a triangular lattice.
We, furthermore, examine spin structure and coupling be-
tween spin ordering and electric polarization. The polar
charge order is strongly stabilized below the magnetic order-
ing temperature. This magnetodielectric phenomenon is at-
tributed to spin frustration in a triangular lattice. We demon-
strate electric and magnetic responses that are available to
examine the present theoretical scenario. The effects of oxy-
gen deficiency on electric polarization are also studied.

In Sec. II, we derive the model Hamiltonian for electronic
structure in a W layer. In Sec. III, numerical results for the
charge structure and electric polarization are presented. Cal-
culated results for the spin structure and the magnetodielec-
tric responses are shown in Sec. IV. Examined oxygen-
deficiency effects are introduced in Sec. V. Section VI is
devoted to discussion and concluding remarks. Preliminary
results for the present study have been published in Refs. 36
and 37. Study of a doubly degenerate orbital model in a
honeycomb lattice as an orbital model for RFe2O4 is pre-
sented in separate papers.37,39

II. MODEL HAMILTONIAN

We start from the electronic structure in a single Fe ion in
the W layer. This ion is fivefold coordinate with three O ions
in the xy plane and two at apices, as shown in Fig. 1�b�. We
calculate the crystalline-field splitting of the Fe 3d orbitals in
the FeO5 cluster which belongs to the point group D3d. Five
O ions are replaced by point charges with valence of −2e,
and their positions are determined by the crystal structure
data.40,41 The hydrogenlike wave functions are adopted for
the Fe 3d orbitals, and the effective nuclear charge is taken
to be +8. The split 3d orbitals are identified by the irreduc-
ible representations of the D3d point group that have a basis
in the d manifold: the d3z2−r2 orbital with A� and two sets of
the doubly degenerate orbitals �−adzx+bdx2−y2 ,adyz+bdxy�
with E� and �adx2−y2 +bdzx ,−adxy +bdyz� with E�. Numerical
coefficients a and b satisfy the relation a2+b2=1. We obtain

that the degenerate E� orbitals take the lowest energy with
b=0.89, and the first excited level is E�. The energy differ-
ence between E� and E�, �EE�−E�, is about 0.1 eV, which is
smaller than that between E� and A�, �EE�−A��0.6 eV.
When we see the crystal structure in detail, an Fe ion is not
located at the center of a O5 cage. Distance between the Fe
ion and the O3 plane denoted by h �see Fig. 1�b�� is about
0.1 Å in LuFe2O4.40,41 We obtain that, with taking h into
account, �EE�−E� increases and �EE�−A� decreases. The hy-
bridization effects between Fe 3d and O 2p orbitals may in-
crease these level separations. However, because of the small
value of �EE�−E�, we do not exclude a possibility that
�dx2−y2 ,dxy� and �dzx ,dyz� strongly couple with each other,
i.e., a�b, and that the E� level is the lowest. In any cases,
the lowest orbitals are degenerate. As a result, in Fe3+, each
orbital is singly occupied, and total spin S=5 /2 of the high-
spin state. On the other hand, in Fe2+, one of the degenerate
lowest levels is doubly occupied by a hole, and S=2. Thus,
twofold orbital degeneracy exists in Fe2+. This is represented
by the orbital pseudospin operator defined by

Ti =
1

2 �
���s

di�s
† ����di��s, �1�

where di�s
† is the creation operator for an Fe 3d hole with

orbital �, spin s�=↑ ,↓� at site i, and ���� are the Pauli ma-
trices. In following part of this paper, we assume for simplic-
ity that the two orbitals in the lowest level are �dx2−y2 ,dxy�,
and the index � in Eq. �1� takes the values x2−y2 and xy. The
z component of the operator Ti

z is 1 /2 �−1 /2� for the state
where a hole occupies the dx2−y2 �dxy� orbital. Even in the
case where the orbitals in the lowest level are �dzx ,dyz�, the
following part of this paper is valid by reinterpreting that the
index � in Eq. �1� takes the values yz and zx.

We set up the model Hamiltonian for the electronic struc-
ture in a W layer. The 3d electrons in the Fe ions and the 2p
ones in O which hybridizes with Fe 3d are introduced. We
start from the following generalized pd Hamiltonian:

Hpd = Hd + Hp + Ht + HV, �2�

with

Hd = �
i��

��
d di��

† di�� + �
i�

Udni�↑
d ni�↓

d

+
1

2 �
i�������

Wdni��
d ni����

d

−
1

2 �
i�������

Iddi��
† di���di����

† di���, �3�

Hp = �
j	�

�	
ppj	�

† pj	� + �
j	

Upnj	↑
p nj	↓

p

+
1

2 �
j	�	����

Wpnj	�
p nj	���

p

−
1

2 �
j	�	����

Ippj	�
† pj	��pj	���

† pj	��, �4�
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Ht = �
i
�

tpddi
x
2−
y

2�

† pi+�

y� + H.c., �5�

HV = � �
	ij


abNN

VabNN + �
	ij


cNN

VcNN + �
	ij


cNNN

VcNNN�ni
dnj

d, �6�

where di��
† is the creation operator for the Fe 3d hole with

orbital � �=xy ,x2−y2 ,yz ,zx ,3z2−r2� and spin � �=↑ ,↓� at
site i and pj	�

† is for the O 2p hole with orbital 	 �=x ,y ,z�.
Number operators are defined by ni��

d =di��
† di��, nj	�

p

= pj	�
† pj	�, and ni

d=���ni��
d . A symbol �
 is a connecting

vector between Fe and nearest neighboring �NN� O ions
along direction 
. Interactions in a Fe ion are described in
the first term of Eq. �2�, Hd, where the level energy ��

d , the
intraorbital Coulomb interaction Ud, the interorbital one Wd,
and the exchange interaction Id are considered. Interactions
in Hp are defined in the same way with those in Hd. Hopping
of a hole between the NN Fe and O ions in the same plane is
described in Ht with the transfer integral tpd. For conve-
nience, we introduce the three two-dimensional coordinates
�
x ,
y�, with 
= �� ,� ,
�, which are obtained by a rotation
of the xy axis by 2�m
 /3, with �m� ,m� ,m
�= �0,1 ,2� �see
Fig. 2�. In each coordinate, we define the operators as

�di
x
2−
y

2�

di
x
y�
� =� cos

4�

3
m
 sin

4�

3
m


− sin
4�

3
m
 cos

4�

3
m


�dix2−y2�

dixy�
� �7�

and

�pi
x�

pi
y�
� =� cos

2�

3
m
 sin

2�

3
m


− sin
2�

3
m
 cos

2�

3
m


�pix�

piy�
� . �8�

In the bond direction 
, the d
x
2−
y

2 and p
y
orbitals compose

the � bond. The intersite Coulomb interactions between Fe
ions are taken into account in the last term of Eq. �2�, i.e.,
HV. We consider the largest three interactions in the W layer,
as shown in Fig. 3: the interplane NN interaction �VcNN�, the
intraplane NN one �VabNN�, and the interplane next NN one
�VcNNN�. This is because �1� these Coulomb interactions are a

minimum set that reproduces the three types of charge struc-
tures experimentally observed, and �2� a distance between
the fourth neighbor Fe ions in the W layer is comparable to
that between the NN W layers. This will be discussed in Sec.
III in more detail. Summations in HV take the three kinds of
pairs. When the 1 /r-type Coulomb interaction is assumed,
we obtain VcNN /VabNN=1.2 and VcNNN /VabNN=0.77 for
LuFe2O4. By introducing the pseudospin operator Qi

z for
charge degree of freedom, HV is rewritten as an antiferro-
magnetic Ising model,

HV = ��
	ij


cNN

VcNN + �
	ij


abNN

VabNN + �
	ij


cNNN

VcNNN�Qi
zQj

z, �9�

where a constant term is omitted. The operator Qi
z takes 1 /2

and −1 /2 for Fe3+ and Fe2+, respectively. The charge conser-
vation is imposed by a relation �iQi

z=0.
Based on the extended pd Hamiltonian Hpd, we derive the

effective Hamiltonian for the superexchange interactions be-
tween NN Fe ions in a plane. This interaction arises from
virtual hopping of holes between Fe ions. The Hamiltonian is
derived by the fourth order projection-perturbation procedure
in terms of the hopping term Hpd. The following two ex-
change processes are considered:

dMp0dN → dM+1p0dN−1 → dMp0dN, �10�

and

dMp0dN → dM−1p2dN−1 → dMp0dN, �11�

where we adopt the hole picture, and M and N represent the
numbers of holes. These are termed the dd and dpd pro-
cesses, respectively, from now on. Here, we present the out-
line of derivation, and details are given in Appendix A. A
general form of the Hamiltonian is

HJ = P̂Ht
1

Ei − H0
Q̂Ht

1

Ei − H0
Q̂Ht

1

Ei − H0
Q̂HtP̂ , �12�

where P̂ is the projection operator for the d5 �d4� high-spin

states in Fe3+ �Fe2+�, Q̂=1− P̂ and Ei is the initial-state en-
ergy. Many body effects of HV in the intermediate states are
considered approximately; we assume that the intermediate-
state energies for dM+1p0dN−1 �see Eq. �10�� are higher than
the initial- and final-state energies by a constant energy pa-

rameter V̂, which is of the order of the intersite Coulomb

y

x

y�

�y
�x

�y

�x

�
x

FIG. 2. Three two-dimensional coordinates ��x ,�y�, ��x ,�y�,
and �
x ,
y� in a FeO triangular lattice. Filled and dotted circles
represent Fe and O ions, respectively.

FIG. 3. Intersite Coulomb interactions between Fe ions. The
solid, broken, and dotted arrows represent interactions between the
nearest neighbor �VcNN�, the next nearest neighbor �VabNN�, and the
third neighbor �VcNNN� Fe-Fe bonds, respectively.
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interaction. Then, we set H0=Hd+Hp+ V̂. We interpret that
effects of HV in other intermediate states are included in the
charge-transfer energy, �CT, between the d
x

2−
y
2 and p
y

or-
bitals. The obtained Hamiltonian HJ is classified by valences
of Fe ions in the initial states, i.e., Fem+-Fen+ where n and m
take 2 and 3, and electron configurations in the intermediate
states denoted by k. The Hamiltonian is given as

HJ = �
�mn�k

H�mn�−k. �13�

All possible intermediate states k are taken into account in
Eq. �13� which consists of six terms in H�22�−k and H�23�−k

and four terms in H�33�−k. Explicit formulas of all terms are
presented in Appendix A. Here, we show some representa-
tive terms:

H�22�−1 = J�22�−1�
	ij


�Ii · I j + 6��1

2
− 2�i
i

� j
j
�

��1

2
− Qi

z��1

2
− Qj

z� , �14�

H�23�−1 = J�23�−1�
	ij


�Ji · I j +
15

2
��1

2
− � j
j

�
��1

2
+ Qi

z��1

2
− Qj

z� , �15�

H�33�−1 = J�33�−1�
	ij


�Ji · J j −
25

4
��1

2
+ Qi

z��1

2
+ Qj

z� .

�16�

We define the spin operators Ii and Ji for Fe2+ and Fe3+ with
amplitudes of 2 and 5/2, respectively. The orbital operator is
redefined in the �
x ,
y� coordinate as

�i
 = Ti
z cos�2�

3
m
� + Ti

x sin�2�

3
m
� . �17�

This operator takes 1/2 �−1 /2�, when the d
x
2−
y

2 �d
x
y
� or-

bital is occupied by a hole. In a given pair of i and j sites,
subscripts 
i and 
 j in �i
i

and � j
j
are automatically deter-

mined. The exchange constants are defined by J�22�−1

=−tddc
2 / �10��22�−1�, J�23�−1=−2tddc

2 / �25��23�−1�, and J�33�−1

=4tddc
2 / �25��33�−1�, where tddc is the transfer integral between

NN Fe ions defined by tddc= �tpd
2 cos �� /�CT with the Fe-

O-Fe bond angle � �=120°�. We introduce the intermediate-

state energies as ��22�−1=Wd− Id+ V̂, ��23�−1= V̂, and ��33�−1

=Ud+4Id+ V̂. It is worth noting that �1� H�22�−l is expressed
as a product of charge, spin, and orbital interactions between
given sites i and j, and �2� H�32�−l includes a linear term of
the orbital pseudospin because Fe3+ does not have the orbital
degree of freedom.

After all, we obtain the Coulomb- and exchange-
interaction Hamiltonian

H = HV + HJ, �18�

where HV and HJ are given in Eqs. �9� and �13�, respec-
tively. Before going to the numerical results calculated in the
Hamiltonian, we briefly mention the energy scales of charge,
spin, and orbital degrees of freedom and signs of the ex-
change interactions. The intersite Coulomb interactions pro-
vide a larger energy scale than the exchange interactions.
Thus, the charge sector is frozen at the highest temperature
in comparison with spin and orbital ones. This is consistent
with the experimental results in LuFe2O4 where the charge-
ordering temperature �about 320 K� is higher than the spin
ordering one �about 250 K�.20,21,27 By calculating the ex-
change energy in a given NN bond, we estimate stable spin
and orbital configurations. This is not trivial from the
Goodenough–Kanamori rule because of the 120° bond angle.
The energy parameter sets for the exchange coupling con-
stant J�mn�−l are determined from the experimental data in
LaFeO3,42,43 and Ii and Ji are assumed to be the Ising spins.
We obtain the spin and orbital configurations for the lowest
exchange energies as �1� for a Fe2+-Fe2+ bond, Ii

zIj
z=−4 �an-

tiferromagnetic� and �i=� j =1 /2, which is energetically close
to Ii

zIj
z=4 �ferromagnetic� and �i=−� j =1 /2, �2� for Fe3+-Fe3+,

Ji
zJj

z=−25 /4 �antiferromagnetic�, and �3� for Fe2+-Fe3+, Ii
zJj

z

=5 �ferromagnetic� and �i=1 /2. The schematic views for the
stable configurations are presented in Fig. 4. In the neutron
scattering experiments, the ferrimagnetic phase indexed as
�1 /3 1 /3 m� appears around 250 K. Possible magnetic struc-
tures are shown in Fig. 13, which will be explained in more
detail later. In this structure, Fe2+ ions in the 2Fe3+-Fe2+ �up-
per� plane are surrounded by six NN Fe3+. Thus, the ex-
change Hamiltonian in this plane is reduced into a form of
�	ij
��1 /2���i
i

� which becomes a constant by using the re-
lation of �	ij
�i
i

=0. This relation is also applicable to the
Fe2+-Fe3+ bonds in the 2Fe2+-Fe3+ �lower� plane where three
Fe2+-Fe3+ bonds connecting a Fe2+ ion are equivalent �see
Fig. 13�. Therefore, the orbital part of the exchange Hamil-
tonian in this ferrimagnetic phase is mapped onto the follow-
ing orbital model defined on a Fe2+ sublattice:

Horb = Jorb�
i

�
��i��i+e�
 + �i
�i+e�� + �i��i+e
�� , �19�

where �e� ,e� ,e
� represent the three unit vectors connecting
NN Fe2+ sites in a honeycomb lattice. A summation �i� takes

FIG. 4. The lowest-energy spin and orbital configurations �a� for
Fe2+-Fe2+ bond, �b� for Fe3+-Fe2+, and �c� for Fe3+-Fe3+. The open,
filled, and dotted circles represent Fe2+, Fe3+, and O ions, respec-
tively. Spin and orbital configuration in �a� is energetically close to
ferromagnetic spin alignment with dx2−y2 and d�x�y

orbitals.
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Fe2+ sites in one of the two sublattices in a honeycomb lat-
tice. The coupling constant Jorb is given by the exchange
constants J�nm�−k. In this model, it is theoretically obtained
that the orbital does not show a conventional long-range or-
der down to very low temperature of the order of 0.005Jorb.
Therefore, for simplicity, we assume that the pseudospin op-
erators for orbital in HJ are set to be zero in the following
calculation. Theoretical study of the orbital model on a hon-
eycomb lattice is presented in separate papers.37,39

III. CHARGE STRUCTURE AND ELECTRIC
POLARIZATION

First, we focus on the charge structure and the electric
polarization by analyzing the intersite Coulomb interaction
term HV. We apply, at the first stage, the mean-field approxi-
mation to HV and obtain stable charge structures. The charge
conservation is taken into account by adding the chemical
potential term, −Vext�iQi

z, in the Hamiltonian. We assume
that the expectation value 	Qi

z
 is periodic along the 	110
 or

	210
 directions and takes the same amplitude along 	1̄10
 or
	010
, respectively. Periodicity L is taken up to 12. In upper
and lower planes, 	Qi

z
’s are independent and have the same
periodicity along the 	110
 or 	210
 directions. Each solution
is characterized by the momentum q��M /2L ,M /2L ,n� or
�M /2L ,0 ,n�, where M is the number of nodes of 	Qi

z
 along
the 	110
 or 	210
 directions, respectively. When a phase
difference between 	Qi

z
’s in the upper and lower planes is 0

���, n takes 0 �1/2�. Phase diagram is determined by com-
paring the free energy. Representative charge structures are
shown in Fig. 5. Four types of CO’s in Fig. 5, denoted by
CO1/3, CO1/4, CO1/2−I, and CO1/2−II, are characterized by
momenta q= �1 /3,1 /3,0��q1/3, �1 /4,1 /4,1 /2��q1/4,
�1 /2,1 /2,0��q1/2−I, and �1 /2,0 ,0��q1/2−II, respectively.
As suggested by Yamada et al.,20,21 CO1/3 shows finite elec-
tric polarization due to charge imbalance between the two
triangular-lattice planes. A ratio of Fe2+ and Fe3+ is 1:2 �2:1�
in the upper �lower� plane. In other charge structures, equal
numbers of Fe2+ and Fe3+ occupy the upper and lower
planes, and there is no electric polarization.

Mean-field phase diagram at zero temperature is pre-
sented in Fig. 6. The nonpolar CO1/2−II and CO1/4 structures
are stable in the regions of VCNN /VCNNN�2 and
VCNN /VCNNN�2, respectively. The polar CO1/3 structure ap-
pears only on the phase boundary where CO1/3 is degenerate
with CO1/2−II and CO1/4. Realistic parameter values for
RFe2O4 correspond to a shaded area in Fig. 6. We fix a value
of VcNN /VabNN to be 1.2, as shown by a dashed line in Fig. 6,
and calculate finite-temperature phase diagram �Fig. 7�. The
polar CO1/3 is stabilized in a wide region between CO1/4 and
the CO1/2−II.

Beyond the mean-field calculation, we examine the
charge structure in finite temperature by using the MC simu-

FIG. 5. Charge structures in a W layer: �a� CO1/3, �b� CO1/4, �c�
CO1/2−I, and �d� CO1/2−II. The filled and open circles represent
Fe3+ and Fe2+, respectively, and large and small circles are for Fe
ions in the upper and lower planes, respectively. Lower panel in

each figure is a side view from �11̄0�.
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FIG. 6. Mean-field phase diagram for charge order at zero tem-
perature. Three charge structures, CO1/4, CO1/2−II, and CO1/3, are
degenerate on a line of VcNN=2VcNNN and the two, CO1/4 and
CO1/2−I, are degenerate on a line of VcNNN=0. The shaded area
corresponds to a region for RFe2O4. Phase diagram in finite tem-
peratures, shown in Fig. 7, is calculated on broken line.
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lation. To avoid a trap of a simulation in local minima, we
adopt the multicanonical Monte Carlo �MUMC� method.44

Simulations are performed on a paired triangular lattice of
L�L�2��2N� �L=6 and 12� sites with the periodic-
boundary condition in the ab plane. We use 6�106 MC
steps to obtain a histogram in the MUMC method and 16
�106 MC steps for measurement. We calculate the charge
correlation function and the electric polarization P defined
by

N�q� =
1

�2N�2�
ij

	Qi
zQj

z
e−iq·�ri−rj�, �20�

P = 	p2
1/2, �21�

with

p =
1

N
��

i

u

− �
i

l �Qi
z, �22�

where ri is a position of site i and �i
u�l� represents a summa-

tion of site i in the upper �lower� plane.
The charge correlation functions at VcNNN /VabNN=0.58,

0.6, and 0.62 are presented in Fig. 8. At VcNNN /VabNN=0.6,

N�q1/3� shows a hump around T̃�T /VabNN=0.18 and keeps
a finite value down to the low temperature limit. From the

specific heat data, we identify that T̃=0.18 corresponds to the
charge-ordering temperature. In both cases of VcNNN /VabNN
=0.58 and 0.62, N�q1/3� is dominant in high temperatures,

starts to decrease around T̃=0.2, and disappears at the lowest
temperature. On the contrary, the charge correlation

N�q1/2−II� and N�q1/4� grow up around T̃=0.05 and increase
with decreasing temperature. These results and the specific
heat data imply that the charge order at q1/3 is changed into

the other type of charge order at q1/4 �q1/2−I� around T̃
=0.04 �0.045� for VcNNN /VabNN=0.58 �0.62�. Temperature
dependence of P at several values of VcNNN /VabNN is pre-
sented in Fig. 9. At VcNNN /VabNN=0.6, P remains down to
the low temperature limit. Apart from VcNNN /VabNN=0.6, P
starts to decrease at the temperature where N�q1/2−II� and
N�q1/4� grow up and disappears at the lowest temperature.
These results obtained by the MUMC method are qualita-
tively consistent with the ones in the mean-field calculation.

The polar charge structure characterized by q1/3 and the
transition to the another structure characterized by q1/4 at
VcNNN /VabNN�0.6 are consistent with the experimental re-
sults. In LuFe2O4, charge order indexed as �1 /3 1 /3 3m
+1 /2� appears around 350 K and remains, at least, down to
around 20 K.20 On the other hand, in YFe2O4, charge order
indexed as �1 /3 1 /3 3m+1 /2� observed at room temperature
is changed into the one as �1/4 1/4 3/4� around 250 K.34,35

We suppose that different rare-earth metal ions slightly
change ratio of the Coulomb potentials, and LuFe2O4
�YFe2O4� corresponds to the parameter region of
VcNNN /VabNN�0.6 �VcNNN /VabNN�0.6� in the present calcu-
lation.

Stability of the CO1/3 phase is attributed to large thermal
fluctuation in a triangular lattice. A key issue is the two-
sublattice structure in this charge-ordered phase �see Fig.
10�:45 Fe2+ ions in the 2Fe2+-Fe3+ �lower� plane and Fe3+ in
the Fe2+-2Fe3+ �upper� one belong to a sublattice termed A.
Other Fe ions belong to another sublattice termed B. All
in-plane NN ions of a site in the sublattice B have an oppo-
site valence. On the other hand, a site on the sublattice A is
surrounded by three NN Fe2+ and three NN Fe3+ in the plane.
Therefore, the Coulomb potentials at these sites from the
in-plane NN ions are canceled out, and charge fluctuation is
able to easily occur without loss of VabNN. It is obtained in
the numerical calculation that an amplitude of the mean-field
on the sublattice A is 0.9VabNN at low temperature which is
much less than that on the sublattice B, 2.1VabNN. Large
charge fluctuation at the sites grows up with increasing tem-
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FIG. 8. �Color online� Charge correlation functions N�q� at �a�
VcNNN /VabNN=0.60, �b� 0.58, and �c� 0.62 calculated in HV. The
Coulomb interaction VcNN /VabNN is chosen to be 1.2.

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4

0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

P

T / V

FIG. 9. �Color online� Electric polarization P as a functions of
VcNNN /VabNN calculated in HV. The Coulomb interaction
VcNN /VabNN is chosen to be 1.2.
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perature and contributes to the entropy gain at finite tempera-
ture. On the contrary, in the CO1/2−II and CO1/4 structures,
all Fe2+ �Fe3+� are equivalent and charge fluctuation is
weaker than that in the sublattice A of CO1/3. This is the
reason why the polar charge order characterized by �1/3, 1/3,
0� is more stable than other charge structures in finite tem-
peratures.

Let us focus on the charge structure in low temperatures
in more detail. As shown in Figs. 8�b� and 9, saturated values
of N�q1/3� and P in VcNNN /VabNN=0.6 at the low temperature
limit are 0.032 and 0.094, respectively, which are smaller
than the values expected from the ideal CO1/3 phase, 0.056
and 0.33 respectively. This implies that the charge configu-
ration at low temperature in VcNNN /VabNN=0.6 is not the
ideal CO1/3 state. We analyze the probability histogram in the
MUMC simulation and examine the charge configurations
realized in the lowest temperatures. These are classified into
the following three configurations: the polar CO1/3 structure
shown in Fig. 5�a�, partially polarized charge structures char-
acterized by the momentum q1/3, termed COA, and nonpolar
structures termed COB. Detailed structures of COA and COB
are shown in Appendix B. In COA, the polarization is P
=N /3−n�N with an integer number n satisfying a relation of
0�n�2�N /3. Degeneracy of a sum of these configurations
is of the order of �n2�N/3Cn�2�N where kCp=k ! / �p ! �k
− p�!�. As for the COB state, degeneracy of the configuration
is also of the order of 2�N. Because of the coexistence of
these charge structures, the saturated values of P and N�q1/3�
are smaller than the expected values from the ideal CO1/3
state. This tendency is remarkable in the large system size.

This coexistence of the polar and nonpolar CO states im-
plies that the full polarization expected from the ideal CO1/3
state is realized by additional weak interactions. The long-
range Coulomb interactions between the NN W layers are
one of the candidates. This scenario is plausible, since, in
LuFe2O4, the electric polarization appears around the three-
dimensional charge-ordering temperature.23,30 We examine
the effects of the inter-W-layer Coulomb interaction based on
a model where two W layers stacked along the c axis are
coupled by the Coulomb interaction. Saturated values of
N�q1/3� and P at low temperature are identical to the ex-
pected values from the ideal polar CO1/3 state. Roles of the
exchange interaction as another candidate to lift the degen-
eracy are examined in Sec. IV.

IV. SPIN STRUCTURE AND MAGNETOELECTRIC
EFFECT

In this section, we introduce spin degree of freedom and
examine coupling between the electric polarization and the
magnetic ordering. The Hamiltonian HV+HJ is analyzed by
utilizing the MUMC method in a 6�6�2-site cluster. The
spin operators Ii and Ji in HJ are assumed to be the Ising
spins because of the strong magnetic anisotropy observed in
RFe2O4.27 The energy parameters in the Hamiltonian are
chosen to be Ud=7.8, Wd=6.2, Id=0.8, Up=4.1, Wp=2.9,

Ip=0.6, tpd=1.8, �CT=3, and V̂=1 in a unit of VabNN. These
are determined from the experimental data in LaFeO3.42,43 In
this section, the orbital pseudospin operators in HJ are set to
be zero, as explained in Sec. II. In particular, we focus on a
parameter region around VcNNN /VabNN=0.6, where CO1/3 is
seen down to the lowest temperature in Fig. 7, and that
around 0.58–0.59, where the transition from CO1/3 to CO1/4
is shown in Fig. 7.

Temperature dependences of the charge correlation func-
tion, the spin correlation function defined by

S�q� =
1

�2N�2�
ij

	Ki
zKj

z
e−iq·�ri−rj�, �23�

where Ki
z= Ii

z �Ji
z� for Fe2+ �Fe3+� and the electric polarization

are calculated. The results at VcNNN /VabNN=0.60 and 0.59
are shown in Figs. 11 and 12, respectively. For comparison,
we also plot the data obtained in HV. At VcNNN /VabNN=0.6,

three characteristic temperatures, T̃=0.2, 0.085, and 0.015,

FIG. 10. Two-sublattice structure in the CO1/3 phase. The am-
plitude of the mean field at Fe sites surrounded by broken circles is
0.9VabNN and that at other sites is 2.1VabNN.
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FIG. 11. �Color online� �a� Charge correlation functions N�q�,
�b� spin correlation functions S�q�, and �c� electric polarization P
calculated in HV+HJ. The dashed lines in �a� and �c� are results
obtained in HV. The parameters are chosen to be VcNN /VabNN

=1.2 and VcNNN /VabNN=0.60.
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are seen in N�q1/3�. The highest one, 0.2��TCO�q1/3��, corre-
sponds to the charge-ordering temperature for CO1/3. Other
two are the magnetic ordering ones at momentum q1/3. At
T̃=0.085��TN�q1/3�� and 0.015, spins in the Fe2+-2Fe3+ and
2Fe2+-Fe3+ planes in CO1/3 �see Fig. 5� start to order, respec-
tively. This double-magnetic transition may be an artifact in
the present model where the interplane exchange interactions
are neglected, and spins in the upper and lower planes are
independent with each other. We expect that the interplane
exchange interactions are much smaller than the in-plane
ones. This is because, when electrons in the dxy and dx2−y2

orbitals are concerned, there are no exchange paths between
Fe ions in an interplane NN bond. When higher-order ex-
change processes and/or contributions from other d orbitals
are taken into account, weak interplane interactions may
unify the double transition in the present calculation. As
shown in Fig. 11, the charge correlation function at q1/3 and

the polarization increase at T̃=0.085 and 0.014. Results
clearly show that magnetic ordering enhances stability of the
polar CO1/3 phase. In the low temperature limit, N�q1/3� and
P take 0.056 and 0.33, respectively, which are the ideal val-
ues in CO1/3. At VcNNN /VabNN=0.59 �Fig. 12�, a weak shoul-

der in N�q1/3� around T̃=0.2 corresponds to the charge or-
dering for CO1/3. Sequential charge-ordering transition

occurs from CO1/3 to CO1/4 around T̃=0.015 ��TCO�q1/4��,
which is lower a little than the result in HV. Magnetic order

at q1/3 appears around T̃=0.1��TN�q1/3��. Below TCO�q1/4�,
magnetic structure is also changed; the spin correlation func-
tions at q1/4 and �5/12, 5/12, 0� become dominant. It is also

shown, in this parameter, that the electric polarization is en-
hanced in the CO1/3 phase. A similar temperature dependence
is obtained in VabNN /VcNNN=0.61, where the CO1/2−II phase
appears in low temperatures instead of CO1/4.

Low temperature charge and spin structures at
VcNNN /VabNN=0.6 are shown in Fig. 13�a�. Charge structure
is identified to be CO1/3. Spins at Fe3+ in the Fe2+-2Fe3+

�upper� plane and those at Fe2+ in the 2Fe2+-Fe3+ �lower� one
are antiferromagnetically aligned. On the other hand, spin
directions at Fe2+ in the Fe2+-2Fe3+ plane and at Fe3+ in the
2Fe2+-Fe3+ one are not uniquely determined. We note that the
spin structure in the 2Fe2+-Fe3+ �lower� plane is sensitive to
the parameter values in HJ. The structures shown in Figs.
13�a� and 13�b� are almost degenerate with each other. The
numerical results presented in this paper are obtained in the
parameter sets where the spin structure in Fig. 13�a� is ob-
tained. However, qualitative difference for the results in the
two parameter sets is not seen. It is also true that the essence
of the coupling between the spin ordering and the electric
polarization shown in Fig. 11 does not depend on the detailed
parameter values. Since the antiferromagnetic interaction be-
tween NN Fe3+-Fe3+ bonds in the 2Fe3+-Fe2+ �upper� plane is
robust, Fe2+ spins are surrounded by three up and three down
spins in their NN Fe3+ sites. Therefore, spin directions in
Fe2+ are not uniquely determined as explained above. Be-
cause the number of these sites is N /3, there is a macro-
scopic number of degenerate spin states of the order of 2N/3

which contributes to the entropy gain in finite temperatures.
This is a kind of partially disordered phase, which has been
examined in the antiferromagnetic Ising model on a triangu-
lar lattice.46,47 In the present case, spins in Fe2+ and Fe3+ are
inequivalent, i.e., S=2 and 5/2, and this partial disordered
state becomes more stable in comparison to that in the con-
ventional Ising model. Since this spin structure is realized in
the CO1/3 structure and the spin entropy is larger than the
charge entropy in the nonpolar and partially polar charge-
ordered phases, i.e., COA and COB, the polar CO1/3 is rein-
forced through the spin-charge coupling in the exchange
Hamiltonian. This is a kind of “order from fluctuation”
mechanism, and, in the present spin-charge coupled system,
a ferroelectric order is stabilized by spin fluctuation. This
phenomenon is not expected in CO1/2−I, CO1/2−II, and
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FIG. 12. �Color online� �a� Charge correlation functions N�q�,
�b� spin correlation functions S�q�, and �c� electric polarization P
calculated in HV+HJ. The dashed lines in �a� and �c� are results
obtained in HV. Parameters are chosen to be VcNN /VabNN=1.2 and
VcNNN /VabNN=0.59.

FIG. 13. Charge and spin structures in the polar CO1/3 phase at
VcNNN /VabNN=0.6. The filled and open circles represent Fe3+ and
Fe2+, respectively, and large and small circles are for Fe ions in the
upper and lower planes, respectively. The arrows represent spin
directions. At Fe sites surrounded by broken circles, spin directions
are not uniquely determined. The spin structures in �a� and �b� are
almost degenerate.
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CO1/4. Low temperature charge and spin structures in
VcNNN /VabNN=0.59 and 0.61 are shown in Fig. 14. In both
cases, all spins in NN Fe2+-Fe2+ and Fe3+-Fe3+ bonds are
antiferromagnetically aligned. There are a number of degen-
erate spin states; for example, when all spins on a chain
along �110� in CO1/2−II are flipped, the exchange energy is
not changed. However, this spin degeneracy is of the order of
2�N, which is smaller than O�2N/3� in CO1/3.

In a remaining part of this section, we examine responses
to the electric and magnetic fields in the present spin-charge
coupled system. First, we pay our attention to the magnetic-
field effect by introducing the Zeeman term of the Hamil-
tonian

HH = H�
i

Ki
z, �24�

where Ki
z= Ii

z or Ji
z for Fe2+ or Fe3+, respectively, and H is the

magnetic field. The Hamiltonian HV+HJ+HH is analyzed
by utilizing the MUMC method in a 6�6�2-site cluster.
Magnetic-field dependence of the electric polarization and
the charge correlation functions at VcNNN /VabNN=0.6 and
0.59 are presented in Figs. 15 and 16, respectively. Tempera-

ture in the inset of Fig. 15�b� is chosen to be T̃=0.05, which
is below the Néel temperature TN�q1/3�, and those in the inset

of Fig. 16�b� are T̃=0.05 and 0.01, which are between
TN�q1/3� and the charge-ordering temperature of CO1/4
�TCO�q1/4�� and below TCO�q1/4�, respectively. When VabNN is
taken to be 1 eV, magnetic field H /VabNN=0.01 corresponds
to about 100 T. In the magnetically ordered CO1/3 phases at
VcNNN /VabNN=0.6 and 0.59, applying the magnetic field re-
duces the electric polarization. On the other hand, in the
antiferromagnetic CO1/4 phase at VcNNN /VabNN=0.59 �see T
�TCO�q1/4� in Fig. 16�b��, the electric polarization is induced
by applying the magnetic field. At the same time, the charge
correlation function N�q1/3� increases and N�q1/4� decreases.
Similar results are obtained at VcNNN /VabNN=0.61, where the
CO1/2−II phase collapses and the electric polarization appears

below T̃=0.015 by applying the magnetic field. Thus, oppo-
site magnetic-field effects are obtained in the magnetically
ordered CO1/3 phase and the antiferromagnetic CO1/4 and
CO1/2−II.

We, first, pay our attention to the negative magnetic-field
effect in the magnetically ordered CO1/3 phase. As explained
in Sec. III, the three charge structures, the polar CO1/3, the
partially polar COA, and the nonpolar COB, coexist at H=0.
Among the three, the polar CO1/3 is a dominant structure
because of the large spin entropy due to the spin degeneracy
of the order of 2N/3. By applying the magnetic field, these
N /3 spins are aligned to be parallel to the magnetic field, and
the macroscopic spin degeneracy is lifted. On the other hand,
in both the nonpolar COB and the partially polar COA, a
macroscopic degeneracy in the charge configuration, which
is of order of 2�N, survives under the magnetic field. As the
result, the charge entropy in COA and COB overcomes the
spin one in CO1/3, and P is reduced. In other words, under
the magnetic field, the present spin-charge coupled system is

FIG. 14. �a� Charge and spin structure at VcNNN /VabNN=0.59
and that at 0.61 �b�.
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FIG. 15. �Color online� Magnetic-field effect in �a� charge cor-
relation function N�q� and �b� electric polarization P. The param-
eters are chosen to be VcNN /VabNN=1.2 and VcNNN /VabNN=0.6. The
inset of �b� shows magnetic-field dependence of the electric polar-
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FIG. 16. �Color online� �a� Magnetic-field effect in charge cor-
relation function N�q� and �b� electric polarization P. Parameters
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mapped onto a spinless model described by HV where the
charge entropy plays a dominant role. On the contrary, the
positive magnetic-field effect in the antiferromagnetic CO1/4
phase is explained from the Zeeman energy. Under the mag-
netic field, the ferrimagnetic structure in the polar CO1/3
phase is more stable than the antiferromagnetic one in CO1/4,
and the polarization appears below TCO�q1/4�. However, un-
der a high magnetic field larger than H /VabNN�0.01, the
polar CO1/3 competes with COA and COB, and the polariza-
tion decreases, as discussed above.

We are also able to demonstrate the response to the elec-
tric field in the present spin-charge coupled system. The
static electric field E applied along the c axis is formulated
by the Hamiltonian

HE = − eEd�
i

u

Qi
z, �25�

where d is a distance between the two triangular-lattice
planes in a W layer. Amplitude of the electric field
eEd /VabNN=0.01 corresponds to about 50 MV/m, when we
take VabNN=1 eV and d=2.2 Å. Electric-field dependences
of the spin correlation functions at VcNNN /VabNN=0.6 and
0.58 are presented in Fig. 17. By applying the electric field,
the spin correlation at q1/3 is enhanced, in particular, below
TCO�q1/4� in VcNNN /VabNN=0.58. This is a consequence of
the polar CO1/3 phase stabilized by the electric field. The
results would be used as a test for the present scenario.

V. EFFECT OF OXYGEN DEFICIENCY

It is well known that several dielectric and magnetic prop-
erties in RFe2O4, e.g., charge and spin ordering temperatures,
are extremely sensitive to the oxygen stoichiometry, which is

denoted by � in the formula RFe2O4−�.33,35,48 Effects of the
oxygen deficiency in this system are recognized as the im-
purity effects in charge-spin coupled system in a triangular
lattice. Here, we examine roles of oxygen deficiency on the
magnetoelectric phenomena. We simulate the following two
aspects of the oxygen deficiencies: �1� charge imbalance be-
tween Fe2+ and Fe3+, which is introduced by the modified
charge conservation relation as N−1�iQi

z=−2� and �2� ran-
dom electrostatic potential around defect sites. This is mod-
eled by the Hamiltonian

HR = 2�
i

�
j

�
VR��i − j��Qj

z, �26�

where �i and � j� represent summations of defect sites and
that of the neighboring Fe sites, respectively. We assume that
a defect site is in the FeO plane, and effective charge of a
defect is 2+. Amplitudes of the electrostatic potentials are
estimated by the 1 /r-type potential as VR=1.73VabNN and
1.60VabNN for the NN and next NN sites from a defect site,
respectively. The model Hamiltonian HV+HJ+HR is ana-
lyzed with the relation N−1�iQi

z=−2� by the MUMC
method. One defect is introduced in a 6�6�2-site cluster.
This concentration corresponds to �=0.05.

In Fig. 18, oxygen-deficiency effect on the electric polar-
ization is presented. In CO1/3 �see below TCO�q1/3� in Fig.
18�a� and between TCO�q1/3� and TCO�q1/4� in Fig. 18�b��,
both the charge-imbalance and electrostatic potential effects
suppress the electric polarization. On the contrary, in the an-
tiferromagnetic CO1/4 phase below TN�q1/4� in Fig. 18�b�, the
electric polarization is induced by both the two types of de-
ficiency effects. These results are consistent with the
electron-diffraction experiments in YFe2O4−�;48 in samples
with large �, the fourfold-type charge order disappears, but
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FIG. 17. �Color online� Electric-field effect of spin correlation
function S�q� at q1/3. The parameters are chosen to be �a�
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the threefold-type indexed as �1 /3 1 /3 3m+1 /2� is robust.
We turn to explain a mechanism of the charge-imbalance

effect. Reduction in P in the CO1/3 phase shown in Fig. 18�a�
is a kind of a usual impurity effect which tends to break the
long-range order. On the contrary, increase in P in low tem-
peratures shown in Fig. 18�b� is related to the characteristic
charge frustration in CO1/3 as follows. The charge imbalance
represented by a relation N−1�iQi

z=−2� implies replacement
of some Fe3+ ions in a stoichiometric system by Fe2+. This
corresponds to flipping of pseudospins Qi

z. It is rather trivial,
in Fig. 5, that this flipping of a Qi

z uniquely happens in the
CO1/2−I, CO1/2−II, and CO1/4 structures. However, in CO1/3,
there are two ways to flip a Qi

z because of the two-sublattice
structure mentioned in Sec. III: Fe2+ sites surrounded by NN
three Fe2+ and three Fe3+ in a plane �sublattice A� and those
surrounded by six NN Fe3+ in a plane �sublattice B�. A pseu-
dospin in the sublattice A is able to be easily flipped in en-
ergy. We numerically calculate energy costs due to a flipping
in sublattice A, which is about 40% of that in sublattice B,
and is about 65% in CO1/2−II and CO1/4. Such low-energy
charge excitations in CO1/3 stabilize the charge structure un-
der the charge imbalance.

The electrostatic potential effect is also understood from a
viewpoint of a soft charge structure in the CO1/3 phase. Since
an effective charge of a defect is 2+, Fe2+ ions, rather than
Fe3+, tend to assemble to screen this positive excess charge.
However, due to the Coulombic interaction between Fe2+

ions, a simple cluster consisting of Fe2+ around a defect is
not energetically favored. Exchange of Fe2+ and Fe3+ be-
tween the planes in a W layer is able to reduce such Cou-
lombic energy. Energy cost for this kind of exchange of Fe2+

and Fe3+ is much lower in CO1/3 than that in other charge-
ordered structures. That is, the electrostatic screening for ex-
cess charge easily occurs in CO1/3 because of the two-
sublattice structure.

VI. DISCUSSION AND CONCLUDING REMARKS

Here, we have remarks on some issues that are not explic-
itly included in the present model and calculation. Effects of
the electron transfer in 3d orbitals are not taken into account
in Hamiltonian �18�. This may be reasonable for the first-step
theoretical model in RFe2O4. It is because, even above the
three-dimensional charge-ordering temperature �250 K� in
YFe2O4, the electric resistivity � shows an insulating behav-
ior; � increases with decreasing temperature. A magnitude of
� about 250 K is of the order of 102 � cm,49 which is much
larger that that above the Verwey transition in Fe3O4.50

Therefore, we suppose that dominant electron motion is
caused by thermal motion rather than quantum electron
transfer. This is supported by the experimental data in the
dielectric constant; it shows strong dispersive feature well
described by the Debye model based on the thermal fluctua-
tion of dipole moments.23,30,51 Electron-transfer effects for
the charge-ordered phase in a triangular lattice have been
investigated for some low-dimensional organic salts.52,53 In
theoretical calculations based on the V-t and extended Hub-
bard models at quarter filling, a metallic phase appears in a
parameter region between two different charge orders or it

coexists with the threefold-type charge order. We suppose
that small electron transfer in RFe2O4 stabilizes the CO1/3
phase, although diffusive features in the dielectric function
become more remarkable.

Lattice degree of freedom and a coupling with electron
are not explicitly included in the present calculation. In our
knowledge, there are no detailed crystal structure data in
spin-charge-ordered phases. It is thought from the experi-
mental analyses in YFe2O4 that the crystal symmetries in
both the two- and three-dimensional charge-ordered phases
indexed as �1 /3 1 /3 3m+1 /2� are trigonal, but that in the
fourfold-type charge order is monoclinic.48 This result indi-
cates that the lattice distortion in the threefold-type charge
order is weaker than that in other charge-ordered phases.
This is consistent with the present results for a soft charge-
order character in CO1/3; amplitude of the charge correlation
function is smaller than that in other phases. A weak lattice
distortion expected in the threefold-type charge order is also
related to the symmetry of the CO1/3 structure, where the
rhombohedral symmetry remains in a FeO planes, unlike
other charge-ordered phases.

In Sec. IV, we show that the electric polarization is rein-
forced by the ferrimagnetic ordering, and this originates from
the spin entropy in a triangular lattice. The long-range ex-
change interactions and/or the magnetostriction effects,
which are not explicitly included in the present model, may
release the spin degeneracy. In these cases, we suppose that
the spins, which are not fixed in the present model �see Fig.
13�, are loosely bounded by such low-energy scale interac-
tions. However, these still fluctuate in a temperature region
that is higher than the energy scale of the interactions and
contribute to the entropy gain.

In the present paper, we analyze an electronic model de-
fined in a single W layer that is recognized as a minimal and
main stage in RFe2O4. Obtained results provide a starting
point to elucidate a variety of magnetic and dielectric phe-
nomena. We briefly discussed, in Sec. III, some roles of the
inter-W-layer Coulomb interaction. To clarify the three-
dimensional charge and spin structures20,28,29,33 and the mag-
netodielectric response along the c axis, a more realistic
modeling for the inter-W-layer interactions, in particular, the
inter-W-layer exchange interactions, and analyses of a three-
dimensional model are necessary.

In summary, electronic structure and magnetodielectric
phenomena in the rare-earth iron oxides are examined. The
model Hamiltonian describing the electronic interactions be-
tween charge, spin, and orbital degrees of freedom of Fe ions
is derived. This model is analyzed by utilizing the Monte
Carlo simulation in a finite size cluster. The threefold-type
charge order associated with electric polarization is more sta-
bilized in finite temperature than the nonpolar twofold- and
fourfold-type charge orders. This originates from the two-
sublattice structure in this polar phase; the Coulomb poten-
tial at a site in one of the sublattices from the in-plane NN
sites is canceled out because of frustration. As a result, large
charge fluctuation easily occurs and contributes to the en-
tropy gain in finite temperature. It is shown that this polar
phase is reinforced below the magnetic ordering temperature.
The obtained threefold-type spin structure is consistent with
the experimental results. This stabilization of the polar phase
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is attributed to a macroscopic number of spin degeneracy
caused by spin frustration. Because this spin structure occurs
in the polar charge order, and the spin entropy surpasses the
charge entropy in the nonpolar phases, the polar phase is
stabilized through the spin-charge coupling in the exchange
Hamiltonian. Magnetoelectric responses to the external fields
are shown. By applying magnetic field in the threefold-type
charge order, the electric polarization is reduced. This is in-
terpreted that the spin degeneracy is quenched under the
magnetic field. This result is available as a test of the present
theory. We also study effects of the oxygen deficiency to
which the dielectric and magnetic properties in RFe2O4 are
extremely sensitive. The threefold-type polar charge order is
more robust than the twofold- and fourfold-type ones. This is
attributed to the soft charge-order character in this polar
phase; low-energy charge fluctuation reduces the energy cost
by charge imbalance and electrostatic potential due to oxy-
gen deficiency. Through the present study, we provide a uni-
fied picture for a variety of magnetic and dielectric phenom-
ena in RFe2O4.
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APPENDIX A: EXCHANGE HAMILTONIAN

In this appendix, we show the details of the superex-
change processes and an explicit form of the Hamiltonian HJ
introduced in Sec. II. There are two kinds of the superex-
change processes termed the dd and dpd processes as intro-
duced in Eqs. �10� and �11�. The Hamiltonian HJ is classified
by valences of Fe ions, Fem+-Fen+, in the initial and final
states, and the electronic structure in the intermediate states k
�see Eq. �13��. In this appendix, nearest neighboring Fe sites
concerning in the superexchange interactions are denoted as i
and j. Electron configurations in Fe and O ions are repre-
sented in a hole picture.

1. Exchange interactions in Fe2+-Fe2+

For the dd processes, electron configurations in the inter-
mediate exchange processes are denoted as d3p0d5. Five
holes are at a site j and three holes at i with S=3 /2. The
intermediate states are classified by the spin and orbital states
at site j �see Figs. 19�a�–19�c��: �a� the total spin of Fe holes
at site j, S is equal to 5/2 and both the two E� orbitals are
occupied, �b� S=3 /2 and the two E� are occupied, and �c�
S=3 /2 and one of the E� is occupied. The explicit forms of
the exchange Hamiltonian are given by

H�22�−1 = J�22�−1�
	ij


�Ii · I j + 6��Pi
�+Pj

�− + Pi
�−Pj

�+�Pi
Q−Pj

Q−,

�A1�

H�22�−2 = J�22�−2�
	ij


�Ii · I j − 4��Pi
�+Pj

�− + Pi
�−Pj

�+�Pi
Q−Pj

Q−,

�A2�

H�22�−3 = J�22�−3�
	ij


�Ii · I j − 4�Pi
�+Pj

�+Pi
Q−Pj

Q−. �A3�

Here, we define the projection operators for charge

Pi
Q� =

1

2
� Qi

z, �A4�

and those for orbital,

Pi
�� =

1

2
� �i
i

. �A5�

The exchange parameters are given as J�22�−1=
−tddc

2 / �10��22�−1�, J�22�−2= tddc
2 / �10��22�−2�, and J�22�−3

= tddc
2 / �4��22�−3�, and ��mn�−k is the energy of the second or-

der intermediate states given by ��22�−1=Wd− Id+ V̂, ��22�−2

=Wd+4Id+ V̂, and ��22�−3=Ud+4Id+ V̂. We define tddc
= tdd

2 cos � /�CT and tdds= tdd
2 sin � /�CT.

In the intermediate states of the dpd process, two holes
occupy the O ion. These states are classified by the spin and
orbital states at the O site �see Figs. 19�d�–19�f��: �d� the
total spin of the O holes, S, is equal to 1 and both the px and
py orbitals are occupied by holes, �e� S=0 and two p orbitals
are occupied, and �f� S=0 and one of the p orbitals occupied
by holes. The exchange Hamiltonians are given by

H�22�−4 = J�22�−4�
	ij


�Ii · I j + 12�Pi
�+Pj

�+Pi
Q−Pj

Q−, �A6�

FIG. 19. Intermediate states of the exchange processes in a
Fe2+-Fe2+ bond represented by hole picture. �a�–�c� are for the
Hamiltonian H�22�−1, H�22�−2, and H�22�−3 in the dd processes, re-
spectively, and �d�–�f� are for H�22�−4, H�22�−5, and H�22�−6 in the
dpd ones, respectively. Long and short arrows represent spins with
S=3 /2 and 1/2, respectively.
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H�22�−5 = J�22�−5�
	ij


�Ii · I j − 4�Pi
�+Pj

�+Pi
Q−Pj

Q−, �A7�

H�22�−6 = J�22�−6�
	ij


�Ii · I j − 4�Pi
�+Pj

�+Pi
Q−Pj

Q−. �A8�

The exchange parameters are given as J�22�−4

=−tdds
2 / �4��22�−4�, J�22�−5= tdds

2 / �4��22�−5�, and J�22�−6

= tddc
2 / �2��22�−6�, with ��22�−4=2�CT+Wp− Ip, ��22�−5=2�CT

+Wp+ Ip, and ��22�−6=2�CT+Up.

2. Exchange interactions in Fe2+-Fe3+

Electron configurations in the intermediate states are
d4p0d5 and d4p2d3 for the dd and dpd processes, respectively.
As well as the exchange interaction in the Fe2+-Fe2+ bond,
these are classified by the spin and orbital structures in the d5

and p2 sites for the dd and dpd processes, respectively �see
Fig. 20�. The explicit forms of the exchange Hamiltonians
are

H�32�−1 = J�32�−1�
	ij


�Ji · I j +
15

2
�Pj

�−Pi
Q+Pj

Q−, �A9�

H�32�−2 = J�32�−2�
	ij


�Ji · I j − 5�Pj
�−Pi

Q+Pj
Q−, �A10�

H�32�−3 = J�32�−3�
	ij


�Ji · I j − 5�Pj
�+Pi

Q+Pj
Q− �A11�

for the dd processes and

H�32�−4 = J�32�−4�
	ij


�Ji · I j + 15�Pj
�+Pi

Q+Pj
Q−, �A12�

H�32�−5 = J�32�−5�
	ij


�Ji · I j − 5�Pj
�+Pi

Q+Pj
Q−, �A13�

H�32�−6 = J�32�−6�
	ij


�Ji · I j − 5�Pj
�+Pi

Q+Pj
Q− �A14�

for the dpd ones. The exchange parameters are given as
J�32�−1=−2tddc

2 / �25��32�−1�, J�32�−2=2tddc
2 / �25��32�−2�, J�32�−3

= tddc
2 / �10��32�−3�, J�32�−4=−tdds

2 / �5��32�−4�, J�32�−5

= tdds
2 / �5��32�−5�, and J�32�−6=2tddc

2 / �5��32�−6�, with ��32�−1

= V̂, ��32�−2=5Id+ V̂, ��32�−3=Ud−Wd+4Id+ V̂, ��32�−4
=2�CT+Wp− Ip, ��32�−5=2�CT+Wp+ Ip, and ��32�−6=2�CT
+Up.

3. Exchange interactions in Fe3+-Fe3+

Electron configurations in the intermediate states are
d4p0d6 and d4p2d4 for the dd and dpd processes, respectively.
In the d6 configuration for the dd process, total spin is 2 �see
Fig. 21�a��, and the explicit form is given by

H�33�−1 = J�33�−1�
	ij


�Ji · J j −
25

4
�Pi

Q+Pj
Q+. �A15�

The exchange parameter is J�33�−1=4tddc
2 / �25��33�−1�, with

��33�−1=Ud+4Id+ V̂. For the dpd processes, the intermediate
states are classified by the spin and orbital structures in the O
site �see Figs. 21�b�–21�d��. The Hamiltonians are given by

H�33�−2 = J�33�−2�
	ij


�Ji · J j +
75

4
�Pi

Q+Pj
Q+, �A16�

H�33�−3 = J�33�−3�
	ij


�Ji · J j −
25

4
�Pi

Q+Pj
Q+, �A17�

FIG. 20. Intermediate states of the exchange processes in a
Fe2+-Fe3+ bond represented by hole picture. �a�–�c� are for the
Hamiltonian H�23�−1, H�23�−2, and H�23�−3 in the dd processes, re-
spectively, and �d�–�f� are for H�23�−4, H�23�−5, and H�23�−6 in the
dpd ones, respectively. Long, medium, and short arrows represent
spins with S=2, 3/2, and 1/2, respectively.

FIG. 21. Intermediate states of the exchange processes in a
Fe3+-Fe3+ bond represented by hole picture. �a� is for the Hamil-
tonian H�33�−1 in the dd processes, respectively, and �b�–�d� are for
H�33�−2, H�33�−3, and H�33�−4 in the dpd ones, respectively. The
long, medium, and short arrows represent spins with S=2, 3/2, and
1/2, respectively.
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H�33�−4 = J�33�−4�
	ij


�Ji · J j −
25

4
�Pi

Q+Pj
Q+. �A18�

The exchange parameters are J�33�−2=−4tdds
2 / �25��33�−2�,

J�33�−3=4tdds
2 / �25��33�−3�, and J�33�−4=8tddc

2 / �25��33�−4�, with
��33�−2=2�CT+Wp− Ip, ��33�−3=2�CT+Wp+ Ip, and ��33�−4
=2�CT+Up.

APPENDIX B: CHARGE STRUCTURES OF COA AND COB

In this appendix, detailed charge structures in the COA
and COB phases, which are introduced in Sec. III, are pre-
sented. Charge configurations of COA are constructed from
CO1/3. Start from the CO1/3 structure shown in Fig. 22�a�,
and focus on chains, e.g., along �1̄10�, where different va-
lences of Fe ions occupy the upper and lower planes. Let
exchange all Fe2+ and Fe3+ in any of these chains with each
other. One of the obtained configurations, termed COA, is
shown in Fig. 22�b�. These structures of COA are energeti-

cally degenerate with CO1/3 in the Hamiltonian HV+HJ. The
Coulomb interaction between the second NN sites in the
plane may lift the degeneracy. When the number the chains,
where Fe2+ and Fe3+ ions are exchanged, is n �0�n
�2�N /3�, the electric polarization is P=N /3−n�N. The de-
generacy of a sum of these states is of the order of
�n2�N/3Cn�2�N. Such exchange of Fe ions is also allowed on
chains along the �120� and �210� directions.

In another degenerated structure, COB, the configuration
in one side of the W layer is constructed by stacking two
kinds of chains alternately. These chains are schematically
given as ¯ � � • � � •¯ �termed chain A� and ¯ • • � • • �¯
�chain B� along the �110� direction where • and � represent
Fe3+ and Fe2+, respectively. As shown in Fig. 23, without
energy loss of VabNN, there are two ways to stack a chain A

on a chain B, and vice versa. These are denoted as A and Ā

and B and B̄ in Fig. 23. Therefore, these configurations are
degenerated of the order of 2�N. Charge configuration on
another side of the W layer is uniquely determined to gain
the interplane Coulomb interactions VcNN and VcNNN.
Obtained charge structures are degenerate with the CO1/3
structure.
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