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We calculate ground state properties �energy, magnetization, susceptibility� and one-particle spectra for the
S=1 Heisenberg antiferromagnet with easy-axis or easy-plane single-site anisotropy on the square lattice.
Series expansions are used, in each of three phases of the system, to obtain systematic and accurate results. The
location of the quantum phase transition in the easy-plane sector is determined. The results are compared to
spin-wave theory.

DOI: 10.1103/PhysRevB.77.224435 PACS number�s�: 05.30.�d, 75.10.�b

I. INTRODUCTION

Magnetic materials with S=1 ions have been of interest
for many years. The “classic” two-dimensional �2D� Heisen-
berg antiferromagnet K2NiF4 was studied in the 1970s.1

In the 1980s a number of �weakly coupled� linear chain
systems were investigated, including CsNiCl3,2 which has a
weak axial anisotropy, CsFeBr3,3 which has strong planar
anisotropy, and the complex materials NENP
�Ni�C2H8N2�2NO2�ClO4�� �Ref. 4� and NENC
�Ni�C2H8N2�2Ni�CN4��,5 which have weak and strong planar
anisotropy, respectively. The spin gaps observed in the
weakly anisotropic materials2,4 are believed to be examples
of the behavior predicted by Haldane.6 More recent work
includes molecular oxygen adsorbed on graphite,7 the bilayer
material Ba3Mn2O8,8,9 a spin-gapped material NiGa2S4,10

which as has been argued,11,12 may be a “spin nematic,”13

and a system of spin-1 bosonic atoms in an optical lattice.14

We have previously used series expansion methods to
study a wide range of spin-1/2 quantum antiferromagnets.15

Quantum fluctuations will be reduced when S=1, but new
physical features are possible. Besides the gapped Haldane
phase in one-dimensional �1D� systems,6 additional terms,
such as biquadratic exchange and/or single-site anisotropy,
which are absent in spin-1/2 systems, can lead to
quadrupolar/nematic phases with long-range order but no
magnetic moment, quantum phase transitions,16 and richer
excitation spectra. We explore some of these issues in the
present work, within the context of the Hamiltonian

H = J�
�ij�

Si · Sj − D�
i

�Si
z�2, �1�

which describes a Heisenberg antiferromagnet �J�0� with
isotropic exchange and a single ion anisotropy, which gives
rise to an easy axis �D�0� or easy plane �D�0�.

Significant single-ion anisotropy is believed to be present
in many of the 1D materials referred to above, and has been
included in analyses of the experimental data. Consequently
there has been much theoretical work devoted to the Hamil-
tonian �Eq. �1�� on a linear chain.17–19 For higher dimensions
various approaches have been used, including mean-field-
type theories,20,21 spin-wave approximations,22,23 a coupled
cluster calculation,24 a bosonic mean-field approach,25 and a

quantum Monte Carlo �QMC� calculation.26 We will com-
pare our results to each of these, where possible.

The present work deals with the 2D square �SQ� lattice.
For D=0 the spin-1 system has Néel order at zero
temperature,27 with quantum fluctuations reducing the stag-
gered magnetization by some 20%.28 When D�0 the system
will order along z, the “easy axis.” The order parameter will
be “Ising-like,” and long-range order will persist at finite
temperature up to a critical line Tc�D� with Ising �n=1� ex-
ponents. For D�0, on the other hand, the z axis is a “hard”
direction, and the spins will order antiferromagnetically
along some direction in the x-y plane �at least for small �D��.
The order parameter has n=2 components, and the continu-
ous symmetry will be spontaneously broken. Long-range
magnetic order will not persist to finite temperature �the
Mermin-Wagner theorem� although one may expect a
Kosterlitz-Thouless transition. For large negative D the
physics will be quite different. In the limit D→−� the
ground state will be a simple product state with Sz=0 at all
sites. This is a quadrupole state with no magnetic order. Thus
we expect a quantum phase transition at some D=Dc, which
we will locate using our series approach. The phase diagram
is illustrated in Fig. 1.

It is also of interest to study the elementary excitations
above the ground state. For D=0 these are magnons, with
Goldstone modes at k= �0,0� and �� ,��. A gap will open in
the spectrum for small positive D, which will be proportional
to 	D, according to spin-wave theory. On the other hand for
large �D� the picture will be quite different. For large nega-
tive D the excitations will consist of isolated Sz= �1 spins,
which have been termed excitons and antiexcitons.18 These
will have an energy gap, which we expect to vanish as D
→Dc−. For large positive D an excitation with �Sz=2 �i.e.,
Sz=−1↔Sz= +1� will have a smaller energy than a single
magnon. We expect, and confirm below, that there is a two-
magnon bound state, and we calculate its dispersion curve.

FIG. 1. The phase diagram of the spin-1 J-D model on the
square lattice at zero temperature, showing the Ising antiferromag-
netic phase �IAFM�, planar antiferromagnetic phase �PAFM�, and
quantum paramagnetic phase �QPM�.
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To conclude this introduction we will briefly describe the
series-expansion approach for both ground-state bulk prop-
erties and excitations, referring the reader to our recent
book15 for further details. The approach is based on writing
the Hamiltonian in the usual perturbative form

H = H0 + �V , �2�

where H0 has a simple known ground state. This subdivision
is carried out in various ways, appropriate to the different
phases of the model. Calculations are carried out for a se-
quence of finite connected clusters, and the results are com-
bined to obtain bulk lattice properties. Series are derived for
the ground-state energy, order parameter, and other quantities
of interest, in powers of �, and extrapolated to �=1 by nu-
merical methods using Padé approximants. A range of differ-
ent approximants is calculated, and then the error bars shown
in the figures are subjective “confidence limits” estimated
from the spread of approximant values. Where no error bars
are shown the estimated error is no larger than the plotted
point.

A similar approach is used for excitations. An orthogonal
transformation is used to obtain an “effective Hamiltonian”
matrix for each cluster, yielding transition amplitudes for the
excitation in real space, which are then combined to obtain
dispersion curves throughout the Brillouin zone. Points
where the gap approaches zero can be easily identified, and
their corresponding series are obtained for the gap itself.

In the body of the paper we will present and analyze
various results in the easy-axis �D�0� phase �Sec. II�, and in
the easy-plane �D�0� phase �Sec. III�. Sec. IV contains a
summary and conclusions.

II. EASY-AXIS (D�0) CASE

A. Bulk ground-state properties

We have computed a series for the ground-state energy
per spin and for the ground-state staggered magnetization up
to order �12, where H0 and V are

H0 = J�
�ij�

Si
zSj

z − D�
i

�Si
z�2 − h�

i

	iSi
z, �3�

V =
1

2�
�ij�

�Si
+Sj

− + Si
−Sj

+� �4�

for various values of D. Here h is a staggered field, included
to allow calculation of the order parameter, and 	i= �1 on
the respective sublattices. We do not present the series coef-
ficients here, but can provide them on request. Figures 2 and
3 show the ground-state energy and staggered magnetization
versus D.

For purposes of comparison, we also present results from
conventional spin-wave theory, first-order spin-wave theory
�SW1�, modified first-order theory �SW1a�, and second-order
theory �SW2�. The first-order theory gives

E0 = − 4J − �1 + 	�D +
1

N
�

k


k, �5�

Ms =
3

2
−

1

N
�

k

4J + 2	D


k
, �6�

where 
k, the spin-wave energy, is given by


k = 4J	�1 + 	D/�2J��2 − �k
2, �7�

with �k= �cos kx+cos ky� /2. The constant 	=1,1 /2 for SW1
and SW1a, respectively. This factor arises from a choice in
treating the anisotropy term. In large S theory 	=1, but for
S=1, such as in this case, normal ordering of the quartic
boson terms gives 	=1 /2. This is explained in Appendix A,
where we also present the more complex second-order
theory.

As is apparent from Fig. 2, SW1 is a rather poor approxi-
mation, but SW1a and SW2 are in almost quantitative agree-

FIG. 2. Ground-state energy per spin for the easy-axis J-D
model on the SQ lattice. The individual points are the estimates
from series. The various lines are results of different spin-wave
approximations: SW1, short-dashed line; SW1a, long-dashed line;
SW2, solid line. For convenience, we plot E0+D versus D, and set
J=1.

FIG. 3. Staggered magnetization for the easy-axis J-D model on
the SQ lattice. Notation as in Fig. 2.
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ment with the series results, within 1%. For the magnetiza-
tion, a similar conclusion applies. Note that the
magnetization exhibits a square-root cusp behavior near D
=0, in agreement with the spin-wave theory.

B. One-magnon excitations

At least for small D the lowest energy excitations in the
unperturbed system consist of a single spin excited from its
ordered Sz= �1 state to Sz=0, i.e., �Sz= �1. The quantum
fluctuations, embodied in the perturbation V, will then allow
this to propagate through the lattice, forming a coherent
magnon band.

Within spin-wave theory the excitation energy is given by
Eq. �7� �or the more general result in Appendix A�. We have
computed a series expansion for the excitation energy up to
order �11, following the original work of Gelfand29 �see also
Ref. 13�.

In Fig. 4 we show the excitation energy, along symmetry
lines in the Brillouin zone, for the case D /J=1, and again for
comparison the spin-wave results. Again we see that SW1 is
a rather poor approximation, but SW1a and SW2 provide an
excellent description of the data, with SW1a actually better
than SW2.

The dispersion curves are smooth and rather featureless.
The most significant feature is the opening of a gap at k
= �0,0� for any nonzero D. This reflects, in the easy-axis
case, the fact that the remnant O�2� symmetry of the Hamil-
tonian is not spontaneously broken in this case, and so Gold-
stone modes are absent.

Figure 5 shows the dependence of the gap at k= �0,0� on
the coupling D. The 	D dependence at small D predicted by
spin-wave theory is clearly evident. At large D the single-
magnon gap is predicted to increase linearly with D.

C. Large D excitations

It is clear that for large D the single-magnon excitations
of the previous subsection will not be the lowest energy ex-
citations of the system. Their energy will be of the order D,

whereas an excitation with �Sz=2 will have an energy of the
order J. Such an excitation, created at a particular site, can
again propagate through the lattice, forming a quasiparticle
band. We may think of this as a two-magnon bound state
where the magnons are bound on the same site �see Appen-
dix A�.

Figure 6 shows the dispersion relation for the �Sz=2 ex-
citation at D /J=1 compared to the lower edge of the two-
magnon continuum. It can be seen that in the midregion of
the plot, the excitation indeed seems to lie below the con-
tinuum, becoming a bound state at slightly below this cou-
pling. The energy here is close to the asymptotic limit of 8 J.
In the wings of the plot the error bars are much larger, and
the excitation may not be bound. It is possible that these
facts may be related. At higher values of D /J, the bound-
state energy remains close to 8 J, so that the binding energy
rises almost linearly with D /J.

FIG. 4. Single-magnon excitation energy at D /J=1.0 along
symmetry lines in the Brillouin zone, obtained from series �full
dots� and spin-wave approximations. Notation as in Fig. 2.

FIG. 5. Single-magnon excitation energy at k= �0,0� as a func-
tion of D in the easy-axis region �setting J=1�. The solid line is the
second-order spin-wave approximation �SW2�.

FIG. 6. Dispersion relation of the �Sz=2 excitation at D /J
=1.0. The points with error bars are the series estimates. The dashed
line is the lower limit of the two-magnon continuum.
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D. Finite-temperature phase transition

Since the continuous O�3� symmetry of the Heisenberg
model is destroyed by an easy-axis anisotropy term, and the
order parameter is Ising-like, taking one of two possible val-
ues, the ordered ground state will persist to a finite tempera-
ture, up to a critical temperature Tc�D�. We have derived
high-temperature series in the variable K=J /kBT up to order
K11 for the staggered susceptibility �s, for various values of
D. These are then analyzed via standard D log Padé approxi-
mants to obtain the critical temperature and exponent. Figure
7 shows the critical temperature versus D and, for compari-
son, the mean-field approximation �MFA�.21 One would not
expect MFA to give accurate results in two dimensions, and
indeed there is a sizeable discrepancy. We note that MFA
gives a finite critical temperature even for the isotropic case,
D=0, which violates the Mermin-Wagner theorem. The criti-
cal exponent � is consistent with the universal 2D Ising ex-
ponent 7/4, although there is substantial scatter in the esti-
mates from these relatively short series.

III. EASY-PLANE (D�0) CASE

The easy-plane case shows much more interesting phys-
ics, including, as we shall see, two distinct phases separated
by a quantum phase transition �QPT�.

For small �D� the spins will be preferentially in the x-y
plane �choosing z as the hard axis�, and the Hamiltonian will
have O�2� symmetry. At T=0 this symmetry will be sponta-
neously broken, and the system will exhibit Néel order in
some direction, reduced by quantum fluctuations. We refer to
this as the planar antiferromagnetic phase �PAFM�. The bro-
ken O�2� symmetry will result in a single gapless Goldstone
mode. In the following we will present results from series
expansions for both ground-state bulk properties and for
single-magnon excitations. These will again be compared to
spin-wave theory. Although there will be no ordered phase at
finite temperature we expect a finite-temperature Kosterlitz-

Thouless transition. However we do not explore this aspect.
For large �D�, where the anisotropy term is dominant, we

expect the system to prefer a singlet phase, where spins are
in the Sz=0 state. This phase has no magnetic order and is
aptly referred to as a quantum paramagnetic phase �QPM�.
Quantum fluctuations, arising from the exchange terms, will
modify the state. Low energy excitations in the QPM phase
consist of spins excited to the Sz= �1 states, which have
been termed “excitons” and ”antiexcitons.” In the following
we derive series for both bulk properties and excitations in
the QPM phase. An analytic approximation, due to
Papanicolaou,18 is also presented and compared to the series
results.

As �D� is reduced in the QPM phase �or increased in the
PAFM phase� a quantum phase transition is found to occur,
and we use series expansions to locate this transition accu-
rately, and to study its properties.

A. PAFM phase: Bulk ground-state properties

It is convenient to rotate the spin axes and to write the
Hamiltonian as

H = J�
�ij�

�Si
zSj

z + Si
xSj

x + Si
ySj

y� − D�
i

�Si
x�2

= J�
�ij�

Si
zSj

z +
1

2
J�

�ij�
�Si

+Sj
− + Si

−Sj
+� −

1

4
D�

i

�Si
+ + Si

−�2,

�8�

where z is the ordering axis, and x is the hard axis. We now
decompose H=H0+�V, with

H0 = J�
�ij�

Si
zSj

z +
1

2
D�

i

�Si
z�2 − h�

i

	iSi
z, �9�

V =
1

2
J�

�ij�
�Si

+Sj
− + Si

−Sj
+� −

1

4
D�

i

�Si
+Si

+ + Si
−Si

−� , �10�

where we have dropped a constant term −ND and, as before,
included a staggered field term.

We have computed series for the ground-state energy and
staggered magnetization up to order �12. Figures 8 and 9
show the ground-state energy and magnetization versus D, as
obtained by analysis of these series.

For comparison we show the results of SW1. The details
of this are given in Appendix B. In Fig. 8, we see that the
SW1 theory gives quite a good description of the bulk
ground-state energy in the PAFM phase, as compared to the
series estimates �squares�.

The series estimates for the magnetization in the PAFM
phase were obtained as follows. The perturbation series in �
typically exhibit a singularity of the form ��c−�� for �c,
which is only a little larger than 1, so a naive Padé extrapo-
lation in � gives unreliable results. Instead, at each value of
D /J we estimate �c and  using standard D log Padé meth-
ods, and then extrapolate the series to �=1 using a variable
�=1− �1−� /�c�. The data seem to show a crossover from a
singularity with a very small  at small, negative D values to
another one with 
0.27 nearer the critical point. The esti-

FIG. 7. Critical temperature versus D /J for the S=1 easy-axis
model on the SQ lattice. The filled circles are the series results, with
estimated errors no larger than the size of the symbols. The line is a
guide to the eye. The dashed line is the MFA result �Ref. 21�
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mated magnetization at the crossover point, around D /J
=−3.5, shows large error bars.

The results are shown in Fig. 9. We note that SW1 gives
qualitatively the right behavior at small �D�, but it becomes
rather poor for large �D�, where it shows no sign of the de-
crease toward the transition point. Near D=0, the magneti-
zation shows a square-root cusp—the mirror of that in the
easy-axis region, marking the transition from the easy-axis to
the easy-plane phase. The series results show a rapid de-
crease in magnetization beyond D /J�−5, heralding the ex-
pected quantum phase transition to the QPM phase. However
the error bars are large, and it is not possible to locate the
transition with any degree of precision from the magnetiza-
tion alone. The fit in this region will be discussed in Sec.
III D.

B. PAFM phase: Elementary excitations

We have computed series for the single-magnon excita-
tions in the PAFM phase up to order �10. The series are

analyzed to compute the magnon energies 
�k�, and these are
shown in Fig. 10, along symmetry lines in the Brillouin zone,
for values D /J=−1.0 and −5.0. Again, for comparison, we
show the result of first-order spin-wave theory �Appendix B�.
We note that spin fluctuations transverse to the ordering di-
rection are no longer isotropic, and hence the full Brillouin
zone must be used.

The energy gap vanishes at k= �� ,��, according to spin-
wave theory, corresponding to the expected Goldstone mode.
The series extrapolations in � by means of standard Padé
approximants still give a finite result at that point because
they assume the series is regular at �=1. The energy gap at
k= �0,0� is indeed finite and behaves like 	D at small �D�,
mirroring that in the easy-axis region. It rises rapidly at large
D. The qualitative behavior is well reproduced by SW1
theory.

C. QPM phase: Bulk ground-state properties

To investigate the large �D� quantum paramagnetic phase,
we decompose the full Hamiltonian as H=H0+�V, with

H0 = �D��
i

�Si
z�2 + J�

�ij�
Si

zSj
z �11�

and

V =
J

2�
�ij�

�Si
+Sj

− + Si
−Sj

+� . �12�

The unperturbed ground state has all spins in the Sz=0
state, and the effect of the perturbation is to create �+−�
states on neighboring sites �exciton-antiexciton pairs�. Note
that, unlike the previous sections, we do not perform a spin
rotation on one sublattice. The derivation then follows stan-
dard lines, and we have obtained series up to order �12 for
both the ground-state energy and for the ”quadrupole mo-
ment” Q= �3�Si

z�2−2�. An alternative approach, in which
only the anisotropy term is included in H0 and the full ex-
change term as V, is also possible. The expansion parameter
is then J /D. We have carried this through, but it seems not to
yield any improvement in precision.

FIG. 8. Ground-state energy per site in the easy-plane region for
the S=1 J-D model on the SQ lattice. The squares are series results
for the PAFM phase, and the dashed line is the first-order spin-wave
estimate in the PAFM phase. We have set J=1.

FIG. 9. Staggered magnetization in the PAFM phase of the S
=1 J-D model on the SQ lattice. The points are series estimates, and
the short-dashed line is first-order spin-wave theory. The long-
dashed line is a fit in the critical region.

FIG. 10. Single-magnon dispersion curves for the PAFM phase
for D /J=−1.0 �circles� and D /J=−5.0 �squares�. The dashed lines
are from the first-order spin-wave theory.
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In Fig. 11 we plot the ground-state energy versus D /J in
the QPM phase. We also include some of the data from the
PAFM expansion �Sec. III A, above� near the crossover re-
gion. As can be seen, the two curves meet smoothly, but the
precision is inadequate to distinguish between a second-order
transition and a weak first-order transition �with a small dis-
continuity in slope�. The quadrupole moment Q increases
smoothly from a value −2 at large �D� to approximately −1.6
at D=−5, but shows no interesting behavior.

D. QPM phase: Excitations

The low energy excitations, termed “excitons” and “anti-
excitons,” arise from exciting one of the Sz=0 sites to Sz

= �1. Such a local excitation can then propagate through the
lattice as a well-defined quasiparticle with energy 
�k�.

Using the Hamiltonian decomposition �Eqs. �11� and �12��
and the usual linked cluster methods, we have computed se-
ries for the excitation energy up to order �10. Figure 12
shows a plot along symmetry lines in the Brillouin zone for
two values of D /J, viz. D /J=−10.0,−6.0. As is apparent, the
energy gap at �� ,�� is closing as D increases, and we expect
it to vanish at the quantum phase transition point Dc. We

found that the best way of locating the phase transition from
the QPM to the PAFM phase was to perform a D log Padé
analysis of the series in � for the energy gap in the QPM
phase at k= �� ,��, looking for the zero point. Hence we
estimate that the critical point, where the energy gap goes to
zero at the physical value �=1, lies at �D /J�c=−5.61�5�. A
similar analysis of the magnetization in the PAFM phase
gives a somewhat less reliable estimate, �D /J�c=−5.7�2�,
which is compatible with the value above. We note that the
coupled cluster calculation24 gives �D /J�c=−6.97,−6.38 at
successive levels. The bosonic mean-field theory25 gives
�D /J�c=−5.471 while QMC �Ref. 26� gives �D /J�c
=−5.65�2�. The latter result is in full agreement with our
estimate.

The energy gap in the QPM at momentum k= �� ,�� was
again estimated by forming Padé approximants in the vari-
able �=1− �1−� /�c�, where �c and  are the location and
critical index, respectively, of the energy gap as a function of
�, estimated by the usual D log Padé methods. The index 
appeared consistently as 0.70�2�.

Figure 13 shows the resulting estimates of the energy gap
in the QPM at this momentum, as a function of D /J, with a
fit near the critical region of the form 
�k�� �5.61−D /J��,
where the fit gives �=0.73�3�. One would naturally conclude
that the critical indices � and  are identical.

A similar fit of the form Ms� �5.61+D /J�� to the magne-
tization in the PAFM phase is shown in Fig. 9. The fit over
the range −5.6�D /J�−4.5 gives �=0.25�3�, and again one
would conclude that the magnetization indices in the vari-
ables � and D /J are the same.

These indices should be compared to the expected values
for the universality class corresponding to this quantum
phase transition, namely those of the classical O�2� model in
three dimensions, which are �=0.671 and �=0.346.30 The
agreement is not very good, but this is perhaps not surprising
in view of the crude and indirect methods used in our esti-
mates.

An analytic theory for the QPM phase has been proposed
by Papanicolaou,31 based on a generalized Holstein-
Primakoff transformation. This gives


�k� = 	D�D + 8J�k� , �13�

which yields for the �� ,�� gap

FIG. 11. Ground-state energy per site at negative D /J �setting
J=1�. The open circles are estimates in the QPM phase, and the
filled squares are PAFM estimates.

FIG. 12. Single-particle dispersion in the QPM phase along
symmetry lines in the Brillouin zone, for D /J=−10.0 �circles� and
D /J=−6.0 �squares�.

FIG. 13. The energy gap at momentum k= �� ,�� in the QPM
phase, as a function of D �J=1�. The dashed line is a fit to the data
in the region −7.0�D /J�−5.6, in the neighborhood of the critical
point.
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��,�� = 	D�D + 8J� , �14�

i.e., �D /J�c=−8.0 and �=0.5. These do not agree well with
the series estimates.

IV. CONCLUSIONS

Magnetic systems with S=1 and with easy-axis or easy-
plane crystal-field anisotropy have become of interest again,
as a result of new materials and suggestions of novel quan-
tum phases. Early theoretical approaches, based on mean
field, Green’s function, and spin-wave approximations are of
uncertain and dubious validity. Present day �numerical� ap-
proaches such as quantum Monte Carlo and series methods
allow rather precise calculation of ground-state properties
and of the spectrum of elementary excitations, and hence of
energy gaps.

We have used comprehensive series methods, to study the
model on the square lattice. Three distinct phases are identi-
fied, in agreement with the previous work. We have com-
pared our results to those of first- and second-order spin-
wave theory. In the Ising antiferromagnetic �IAFM� phase,
the first-order theory deviates substantially from the series
results, but the SW2 �and even SW1a� are in quantitative
agreement with the series, within one or two percent. In the
planar antiferromagnetic �PAFM� phase, only a first-order
theory is available, which gives a reasonable description at
small, negative D, but fails in the neighborhood of the tran-
sition to the quantum paramagnetic �QPM� phase.

The transition between the planar antiferromagnetic and
quantum paramagnetic phase is located at D /J=−5.61�5�.
The transition appears to be of second order, with critical
indices in qualitative but not quantitative agreement with
those of the classical O�2� model in three spatial dimensions.
We would not claim any contradiction here as the error bars
on our estimates are rather large.

The series approach followed in this paper can, of course,
be applied equally well to other lattices. Indeed there is con-
siderable interest in the 1D case, and work on this is in
progress.
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APPENDIX A: SPIN-WAVE THEORY
FOR THE EASY-AXIS (D�0) CASE

The spin-wave approximation is well known. Neverthe-
less, for completeness, we give a brief summary of the
second-order theory for this model, following closely the
treatment of Ref. 32.

The initial Hamiltonian

H = J�
�ij�

�Si
zSj

z +
1

2
�Si

+Sj
− + Si

−Sj
+� − D�

i

�Si
z�2 �A1�

is expressed in terms of boson operators ai ,bj on the respec-
tive sublattices via a Dyson-Maleev transformation

A: Si
z = S − ai

†ai, Si
+ = 	2S�1 − ai

†ai/2S�ai, Si
− = 	2Sai

†,

B: Sj
z = bj

†bj − S, Sj
+ = 	2Sbj

†�1 − bj
†bj/2S�, Sj

− = 	2Sbj ,

�A2�

followed by a transformation to k-space �Bloch� operators

ai =	 2

N
�
k

e−ik·Riak, bj =	 2

N
�
k

eik.Rjbk, �A3�

where the sum is over N /2 points in the reduced Brillouin
zone, giving

H = −
1

2
NS2�zJ + 2D� + �S�zJ + 2D� − D��

k
�ak

†ak + bk
†bk�

+ zJS�
k

�k�ak
†bk

† + akbk� −
zJ

N
�

k1,k2,k3,k4

��k1 − k2 − k3

+ k4��2�k3−k4
ak1

† ak2
bk3

† bk4
+ �k4

ak1

† ak2
ak3

bk4

+ �k1
ak1

† bk2

† bk3

† bk4
� −

2D

N
�

k1,k2,k3,k4

��k1 + k2 − k3 − k4�

��ak1

† ak2

† ak3
ak4

+ bk1

† bk2

† bk3
bk4

� . �A4�

Here z is the coordination number of the lattice, and �k is the
usual

�k = 1/z�
nn

exp ik · � =
1

2
�cos kx + cos ky� �A5�

for the SQ lattice.
The reader’s attention is drawn to the factor �S�zJ+2D�

−D� associated with the diagonal quadratic terms. If we con-
sider successive orders of spin-wave theory as corresponding
to decreasing powers of S, then the first-order theory �SW1�
will retain only S�zJ+2D�. However if we include the com-
plete term, for S=1, we have �zJ+D�. This is the origin of
the modified first-order theory �SW1a� discussed in Sec.
II A.

To diagonalize the quadratic part of the Hamiltonian, we
use a standard Bogoliubov transformation

ak = ukAk − vkBk
† ,

bk = − vkAk
† + ukBk, �A6�

with uk=cosh �k , vk=sinh �k.
This gives, after some algebra,
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H = NE0 + �
k

�k�Ak
†Ak + Bk

†Bk� + �
k

Vk�Ak
†Bk

† + AkBk�

+
1

N
�

k1,k2,k3,k4

��k1 + k2 − k3 − k4�V4�k1,k2,k3,k4�

��Bk1

† Bk2

† Bk3
Bk4

+ Ak1

† Ak2

† Ak3
Ak4

�

+ further normal ordered quartic terms, �A7�

where

E0 = − �2J + D� + �4J + D�R2 − 4JR3 − 2J�R2 − R3�2 − 2DR2
2,

�A8�

�k = �4J�1 − R2 + R3� + D�1 − 4R2��cosh 2�k − 4J�1 − R2

+ R3��k sinh 2�k, �A9�

Vk = 4J�1 − R2 + R3��k cosh 2�k − �4J�1 − R2 + R3� + D�1

− 4R2��sinh 2�k, �A10�

V4�k1,k2,k3,k4� = 4J��uk1
uk2

uk3
vk4

+ vk1
vk2

vk3
uk4

��k4

− 2uk1
vk2

uk3
vk4

�k2−k4
� − 2D�uk1

uk2
uk3

uk4

+ vk1
vk2

vk3
vk4

� , �A11�

and

R2 =
2

N
�
k

vk
2 = −

1

2
+

1

N
�
k

cosh 2�k,

R3 =
2

N
�
k

�kukvk =
1

N
�
k

�k sinh 2�k, �A12�

and we have set z=4,S=1.
We may choose our parameter �k so that Vk=0, i.e.,

tanh 2�k =
4J�1 − R2 + R3��k

4J�1 − R2 + R3� + D�1 − 4R2�
. �A13�

Dropping the quartic terms in Eq. �A7� then yields the
second-order spin-wave Hamiltonian

H = NE0 + �
k


k�Ak
†Ak + Bk

†Bk� , �A14�

with


k
2 = �4J�1 − R2 + R3� + D�1 − 4R2��2 − �4J�1 − R2 + R3��k�2.

�A15�

The magnetization is

M = S − �ai
†ai� = ¯ = 1 − R2. �A16�

These equations can then be solved numerically. Note that
the expressions �A12� for R2 and R3 themselves involve R2
and R3 on the right-hand side, and must be solved iteratively.
A convenient starting point is the first-order spin-wave re-
sults. We used a double Gaussian quadrature procedure to
carry out the Brillouin-zone integrations.

We can obtain the qualitative behavior of these quantities
at small D from the SW1a approximation. Then


k = 	�4J + D�2 − �4J�k�2 � 2	2JD as D → 0

�A17�

for k= �0,0�, showing that the energy gap behaves like 	D at
small D. In the same approximation, we find

R2 =
1

8�2�
0

2� �
0

2�

dkxdky
�1 + D/4J�

��1 + D/4J�2 − �cos kx + cos ky�2/4�

−
1

2
� 0.1966 −

1

�
� D

2J
�1/2

as D → 0 �A18�

using the results of Ref. 32. Thus we see a 	D singularity
emerging in the magnetization near D→0 as well.

At large D, on the other hand, we have

uk � 1, vk � 0 as D → � , �A19�

and hence in leading order, the single-magnon energy is


k � D + 4J as D → � . �A20�

The two-particle transition amplitude is

V4�k1,k2,k3,k4� � − 2D as D → � . �A21�

In terms of the center of mass and relative momenta

K = k1 + k2 = k3 + k4, �A22�

q =
1

2
�k1 − k2�, p =

1

2
�k3 − k4� , �A23�

the two-particle bound state obeys the integral Bethe-
Salpeter equation

�E2�K� − E1�K/2 + q� − E1�K/2 − q���2�K,q�

=
1

N
�
p

M�K,q,p��2�K,p� , �A24�

where

M�K,q,p� = 2V4�K,q,p� � − 4D as D → � .

�A25�

This equation is satisfied by a solution where �2�K ,q� is
independent of q �corresponding to two-particle excitations
at the same point�, with

E2�K� = E1�K/2 + q� + E1�K/2 − q� − 2D � 2�4J + D� − 2D

= 8J as D → � . �A26�

This is precisely the energy one would naively expect for a
�Sz= �2 excitation in this limit.

APPENDIX B: SPIN-WAVE THEORY FOR THE PAFM
PHASE

To derive spin-wave theories for the easy-plane small �D�
phase, we assume two-sublattice Néel order in the z direction
and write the Hamiltonian as
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H = J�
�ij�

�Si
zSj

z +
1

2
�Si

+Sj
− + Si

−Sj
+� −

1

4
D�

i

�Si
+ + Si

−�2,

�B1�

where we have chosen the x axis to be the hard direction.
To leading order in S we again introduce boson operators

in the respective sublattices

A: Si
z = S − ai

†ai, Si
+ = 	2Sai, Si

− = 	2Sai
†,

B: Sj = bj
†bj − S, Sj

+ = 	2Sbj
†, Sj

− = 	2Sbj , �B2�

followed by a transformation to Bloch operators as before.
Keeping only the quadratic terms yields

H = − �2J +
1

2
D�N + �4J − D��

k
�ak

†ak + bk
†bk�

+ 4J�
k

�k�ak
†bk

† + akbk

−
1

2
D�

k
�ak

†a−k
† + aka−k + bk

†b−k
† + bkb−k �� , �B3�

where we have set S=1,z=4. The Brillouin-zone sums are
over N /2 points in the reduced zone.

To diagonalize this, more general, quadratic Hamiltonian
we introduce operators �q1 ,q2 ,q3 ,q4���ak ,bk

† ,a−k
† ,b−k� and

write the Hamiltonian as

H = − 4JN +
1

2�
k

hijqi
†qj , �B4�

where h is the 4�4 matrix

h =�
4J − D 4J�k − D 0

4J�k 4J − D 0 − D

− D 0 4J − D 4J�k

0 − D 4J�k 4J − D
� . �B5�

We now introduce a transformation to new coordinates
�Qi : i=1,4�

qi = �
j

SijQj �B6�

with the constraint �Qi ,Qj
†�=Ji�ij with Ji= �1,−1,−1,1�, i.e.,

SJS†=J �where J is a diagonal matrix with entries Jii=Ji�.

Following the argument of Tsallis,33 one easily shows that
the matrix

h̃ = hJ =�
4J − D − 4J�k D 0

4J�k − �4J − D� 0 − D

− D 0 − �4J − D� 4J�k

0 D − 4J�k 4J − D
�
�B7�

can be diagonalized by a similarity transformation, with its
eigenvalues remaining invariant. It has eigenvalues
��1 , ��2 where �1 ,�2 are the spin-wave energies.

The diagonalized Hamiltonian can then be written as

H = NE0 + �
k

��1kAk
†Ak + �2kBk

†Bk� �B8�

with

E0 = − 4J +
1

2N
�
k

��1k + �2k� . �B9�

Direct calculation gives

�1k
2 = 16J2�1 − �k

2� − 8DJ�1 + �k� , �B10�

�2k
2 = 16J2�1 − �k

2� − 8DJ�1 − �k� . �B11�

In the reduced zone we have two branches, one of which is
gapless at k= �0,0� and the other at �� ,��. However we note
that �2��−kx ,�−ky�=�1�kx ,ky�, and hence in a full zone we
need only consider a single branch �k=�1k. Then we find
that the spin-wave energy vanishes at k= �� ,��, correspond-
ing to the expected Goldstone mode, while at k= �0,0� the
gap is 4	J�−D�, mirroring the square-root behavior found in
the easy-axis case �modulo the factor 	 referred to previ-
ously�.

The magnetization is given by

M = 1 −
2

N
�
k

��S12�k��2 + �S13�k��2� �B12�

and can be obtained numerically from the transformation
equations.

The theory described above follows from either the
Holstein-Primakoff or Dyson-Maleev approach, at lowest or-
der. However an attempt to extend these to higher order fails,
as the resulting spin-wave energies do not possess the Gold-
stone mode required by symmetry.
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