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In recent work, we argued that a particular algebraic spin liquid �ASL� may be the ground state of the S
=1 /2 kagome lattice Heisenberg antiferromagnet. Furthermore, this state, which lacks a spin gap, is appealing
in light of recent experiments on herbertsmithite �ZnCu3�OH�6Cl2�. Here, we study the properties of this ASL
in more detail using both the low-energy effective field theory and Gutzwiller-projected wave functions of
fermionic spinons. We identify the competing orders of the ASL, which are observables having slowly decay-
ing power-law correlations—among them we find a set of magnetic orders lying at the M points of the
Brillouin zone, the familiar q=0 magnetic ordered state, the “Hastings” valence-bond solid �VBS� state, and a
pattern of vector spin-chirality ordering corresponding to one of the Dzyaloshinskii–Moriya �DM� interaction
terms present in herbertsmithite. Identification of some of these orders requires an understanding of the
quantum numbers of magnetic monopole operators in the ASL. We discuss the detection of the magnetic and
VBS competing orders in experiments. While we primarily focus on a clean system without DM interaction,
we consider the effects of small DM interaction and argue that, surprisingly, it leads to spontaneously broken
time-reversal symmetry �for DM interaction that preserves XY spin rotation symmetry, there is also XY mag-
netic order�. Our analysis of the projected wave function provides an estimate of the “Fermi velocity” vF that
characterizes all low-energy excitations of the ASL—this allows us to estimate the specific heat, which com-
pares favorably with experiments. We also study the spin and bond correlations of the projected wave function
and compare these results with those of the effective field theory. While the spin correlations in the effective
field theory and wave function seem to match rather well �although not completely�, the bond correlations are
more puzzling. We conclude with a discussion of experiments in herbertsmithite and make several predictions.
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I. INTRODUCTION

Recent experiments on herbertsmithite �ZnCu3�OH�6Cl2�
have reinvigorated the longstanding interest in the ground
state of the S=1 /2 Heisenberg antiferromagnet on the
kagome lattice.1–8 This material contains kagome layers of
antiferromagnetically coupled Cu2+ S=1 /2 moments, with
an exchange energy J�200 K. The coupling between adja-
cent kagome layers is expected to be very small. Remark-
ably, no sign of ordering—magnetic or otherwise—has been
observed down to the lowest temperatures measured �50 mK
for some probes�. Frozen magnetic moments and spin-glass
behavior are also not observed. Herbertsmithite is thus a can-
didate for the experimental realization of a quantum spin
liquid in two dimensions.9,10

Various experimental probes point to a vanishing spin
gap. Spin liquids with this property are variously �and
equivalently� referred to as gapless spin liquids, critical spin
liquids, or long-range resonating valence-bond states. So far,
most works studying nonmagnetic ground states of the
kagome antiferromagnet have focused on gapped spin liquid
states11,12 or valence-bond solid �VBS� states that break lat-
tice symmetries.11,13,14 A variety of microscopic calculations
have provided interesting information but are unable to es-
tablish the nature of the ground state15–24 �see also Ref. 25
for a review�.

The experimental work on herbertsmithite led us, in re-
cent work, to investigate the possibility of a gapless spin
liquid ground state in the kagome lattice Heisenberg model.26

By considering a class of Gutzwiller-projected fermion wave
functions, we concluded that the variational ground state of
the kagome model is a particular kind of gapless spin liquid
known as an algebraic spin liquid �ASL�.27,28 Some of us
studied the effect of a Zeeman magnetic field and argued that
it leads to spontaneous breaking of parity and XY spin
rotation.29 Gregor and Motrunich30 considered the effect of
nonmagnetic impurities in the ASL, finding results consistent
with the NMR experiments on herbertsmithite. In this paper,
we shall work out the properties of this realization of the
ASL in more detail; this leads to a number of predictions that
may be relevant for herbertsmithite.

We note that Ma and Marston31 considered a different
gapless spin liquid �Fermi-surface state� using Gutzwiller-
projected wave functions and argued that it can be stabilized
by addition of further-neighbor ferromagnetic exchange.
Also, a different route to a gapless spin liquid on the kagome
lattice has recently been discussed by Ryu et al.32

The effective field theory describing the ASL consists of
Nf =4 flavors of massless two-component Dirac fermions
coupled to a U�1� gauge field. This description is comple-
mentary to the projected wave function approach—the
former correctly captures universal long-distance properties,
while the latter can provide information about energetics and
other more microscopic properties. Significant progress has
been made recently in understanding algebraic spin liquids
using effective field theory,27,28,32–39 and it has been found
that such states exhibit striking observable properties. The
ASL is a quantum critical phase—like a quantum critical
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point, it supports gapless excitations and nontrivial critical
exponents, but can exist as a stable zero-temperature phase
and can be accessed with no fine tuning of parameters. The
ASL is Lorentz invariant, and all excitations propagate with
the same “Fermi velocity” vF. The symmetry of the ASL is
much larger than that of the microscopic spin model, and this
emergent symmetry unifies together a variety of superficially
unrelated observables. Some of these observables have
slowly decaying power-law correlations in space and time;
these are referred to as “competing orders.”

In this paper, we show how the observable properties of
the ASL are manifested in the kagome lattice model. In par-
ticular, we identify the competing orders most likely to have
slowly decaying correlations—these include magnetic orders
and VBS states, as well as patterns of order involving vector
and scalar spin chiralities. We discuss the detection of the
magnetic and VBS orders in experiments. We also present
further results in the projected wave-function approach—in
particular, we give an estimate of the velocity vF, and study
the spin-spin and bond-bond correlations of the wave func-
tion. Taken together, these results inform a variety of predic-
tions that may be relevant for herbertsmithite. Furthermore,
the estimate of vF allows us to estimate the low-temperature
specific heat and magnetic susceptibility, and we find reason-
able agreement with experiments.

It bears mentioning that herbertsmithite is almost cer-
tainly not described by a Heisenberg model alone. There is
now significant evidence that impurities play an important
role, especially at low temperature.4,6–8 It has been suggested
that antisite defects, where Zn and Cu trade places, constitute
the dominant disorder—this leads to both magnetic impuri-
ties �Cu occupying Zn sites� and site dilution in the kagome
layers �Zn occupying Cu sites�.6 Estimates of the concentra-
tion of magnetic impurities per kagome lattice site are in the
range of 5% to 10%. It has also been suggested that
Dzyaloshinskii–Moriya �DM� interaction is an important per-
turbation to the Heisenberg model.40,41 While DM interaction
is certainly present, its magnitude is uncertain.

Here, we have not attempted to address the effects of
impurities and DM interaction in detail. Instead, our ap-
proach is to first understand the spin liquid physics in a clean
model with only Heisenberg exchange. One can then include
impurities and DM as perturbations to this idealized model.
While we do discuss the effects of small DM interaction, the
effects of impurities, and of strong DM interaction, are left
for future work.

We now give an outline of the paper, which also serves as
a more detailed overview of our main results. Readers pri-
marily interested in predictions for experiment can skip Secs.
II and III. We begin in Sec. II A by discussing how the ef-
fective field theory is obtained starting from the Heisenberg
model. The field theory can be analyzed in a large-Nf expan-
sion, and our understanding of the physical case �Nf =4� de-
rives from the analysis in this limit. In Sec. II B, we show
how the microscopic symmetries are realized as transforma-
tions on the fields of the continuum theory.

Section III describes our main results from the effective
field theory approach. Section III A reviews the physics of
competing orders in the ASL. There are two sets of field
theory operators whose correlations are likely to decay

slowly for Nf =4. These are 15 fermion bilinears, and a set of
12 magnetic monopole operators. In Sec. III B we relate each
of the fermion bilinears to an ordering pattern in the kagome
spin model. The ordering patterns arising are the VBS state
considered before by Hastings,13 a set of magnetic orders
with crystal momenta lying at the M points in the Brillouin
zone, and a pattern of vector spin-chirality ordering, which
also corresponds to one of the DM terms allowed by sym-
metry in herbertsmithite. In Sec. III C, we relate the mono-
pole operators to ordering patterns in the spin model. This is
less straightforward than the analysis for the fermion bilin-
ears, as there is an ambiguity in determining the symmetry
transformations of the monopoles. This ambiguity is dis-
cussed and partially resolved using algebraic relations among
generators of the space group.32,37–39 Because the ambiguity
in monopole transformations can only be partially resolved,
we are left with three free parameters describing the possible
transformation laws. We make a conjecture on the value of
two of these parameters; based on this, we find among the
monopoles a pattern of magnetic order corresponding to the
familiar “q=0“ state of the kagome lattice. The conjecture is
supported by the spin correlations of the projected wave
function �Sec. VI B�. Depending on the remaining parameter,
there are monopoles corresponding to either a pattern of
spin-chirality ordering that breaks time-reversal symmetry,
or a VBS ordering pattern.

In Sec. IV, we discuss how to detect some of the compet-
ing orders in experiment. In particular, the M point and q
=0 magnetic orders can be detected via NMR relaxation rate
and also by inelastic neutron scattering—both these quanti-
ties obey universal scaling forms determined by the critical
properties of the ASL. The VBS competing order can be
detected via its coupling to an appropriate optical phonon.
The line shape of this phonon can be related to the VBS
susceptibility of the ASL, which again obeys a scaling form
as a function of frequency and temperature.

In Sec. V, we consider the effect of a small DM interac-
tion. Considering first DM interactions that preserve XY spin
rotation symmetry, we argue that, surprisingly, DM interac-
tion induces XY magnetic ordering, which is likely to be in
the q=0 pattern. More generically, DM interaction com-
pletely breaks spin rotation symmetry, and in this case the
same argument shows that it leads to spontaneous breaking
of time reversal.

In Sec. VI we turn to a further analysis of the projected
wave function. By construction of variational excited states,
in Sec. VI A we estimate the velocity vF. Later on in Sec.
VII, this allows us to calculate the specific heat and magnetic
susceptibility in mean-field theory; these quantities compare
favorably with the experimental data. In Secs. VI B and VI C
we investigate the spin-spin and bond-bond correlators of the
projected wave function. The spin-spin correlator is domi-
nated by correlations in the pattern of the q=0 state—in real
space, these correlations fall off roughly as 1 /r4. Although
the correlations of the M-point order are expected to decay
more slowly than this, they are not seen; this may indicate
that these correlations have a small coefficient and thus only
become important at very long distances. The bond-bond
correlation function exhibits power-law decay, but the ob-
served correlations are apparently dominated by Fourier
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components near q=0 and thus do not correspond to the
Hastings VBS state �or to the VBS state that may arise from
the monopoles, which also has crystal momenta at the M
points�. We speculate on the possible meaning of this in Sec.
VI C. We conclude in Sec. VII with a discussion of experi-
ments on herbertsmithite and open theoretical issues. Various
technical details are contained in Appendixes A–E.

II. DESCRIPTION OF ALGEBRAIC SPIN LIQUID

A. Effective theory

We are interested in the S=1 /2 Heisenberg antiferromag-
net on the kagome lattice with Hamiltonian

H = J �
�rr��

Sr · Sr�, �1�

where the sum is over nearest-neighbor pairs of sites. The
kagome lattice has a three-site unit cell; we label the sites by
pairs �R , i�, where R=n1a1+n2a2 is the lattice vector labeling
the unit cell, and i=0,1 ,2 labels the three sites �Fig. 1�a��.
We choose a1=x and a2= �1 /2�x+ �	3 /2�y, so the distance
between nearest-neighbor sites is 1/2. The reciprocal-lattice
primitive vectors can be chosen as b1=2��x− �1 /	3�y� and
b2= �4� /	3�y, and the Brillouin zone is as shown in Fig.
1�b�.

Although our main focus is on the pure Heisenberg
model, we shall also consider DM interactions of the type
allowed by the crystal symmetries in ZnCu3�OH�6Cl2. We
refer the reader to Ref. 41 for the definition of the two al-
lowed DM terms. In one of these, the Dz term, the DM vec-
tor points along the z axis. The Dp term, on the other hand,
has DM vectors lying in the xy plane.

We begin by representing the single-site Hilbert space in
terms of S=1 /2 fermionic spinons,


�� = f�
† 
0� , �2�

where �= ↑ ,↓. We choose fermions �as opposed to bosons�
because they allow for the description of stable gapless spin

liquid phases. This representation involves an enlargement of
the Hilbert space and must be accompanied by the local con-
straint fr�

† fr�=1 to eliminate unphysical empty and doubly
occupied sites.

These variables allow one to construct low-energy effec-
tive theories for spin liquid phases, as well as corresponding
trial ground-state wave functions. The starting point for these
constructions is a decoupling of the quartic exchange inter-
action using an auxiliary field residing on the bonds of the
lattice. Neglecting the fluctuations of the auxiliary field, one
arrives at a quadratic mean-field spinon Hamiltonian. In or-
der to obtain a correct description of any spin liquid ground
state, one needs to go beyond the mean-field description and
consider the fluctuations of the auxiliary field, which play an
important role. One way to do this is to solve the mean-field
Hamiltonian and then perform a Gutzwiller projection onto
the subspace with one fermion per site; this results in a le-
gitimate trial wave function for the spin model. Alternatively,
one can recognize that the fluctuations about the mean-field
saddle point take the form of a gauge field coupled to the
spinons. One can then write down an effective gauge theory
Hamiltonian, which will correctly capture the universal fea-
tures of a given spin liquid phase.

In a recent paper, we studied the kagome antiferromagnet
using Gutzwiller-projected wave functions.26 The main result
of this study was that a particular spin liquid state, first dis-
cussed by Hastings,13 has a very low energy, even without
any tuning of variational parameters. This state has the
mean-field Hamiltonian

HMFT = − t �
�rr��

srr��fr�
† fr�� + H . c.� . �3�

The hopping parameter t is sometimes written t=�J so that �
gives the mean-field hopping in units of J. Also, srr�= �1
encodes the background magnetic flux of the gauge field
coupled to the spinons; it is chosen so that � flux pierces the
kagome hexagons, and zero flux pierces the triangular
plaquettes. The total number of spinons is chosen so that
�fr�

† fr��=1.
Instead of a Fermi surface, HMFT has gapless Dirac points

at the Fermi energy, near which the fermions obey a massless
Dirac dispersion with velocity vF. One can diagonalize the
Hamiltonian using the six-site unit cell of Fig. 2, with the
signs of srr� chosen as shown; the Dirac nodes lie in the
reduced Brillouin zone at positions �Q, where Q=�y /	3
�Fig. 1�. One can describe the low-energy excitations near
the nodes in terms of the Lagrange density for Dirac fermi-
ons in 2+1-dimensional space-time,

LMFT = �̄�a�− i�������a. �4�

Here, ��a is a two-component fermion field, with �= ↑ ,↓
labeling the spin and a= + ,− labeling the two nodes at Q and
−Q, respectively. The two components of ��a correspond to
the two branches of the Dirac dispersion. Moreover, the in-
dex �=0,1 ,2 and ��= ��3 ,�2 ,−�1�, where �i are 2	2 Pauli

matrices. Finally, �̄�a� i�†�3. More details on the band
structure of HMFT, as well as its continuum limit, and the
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K
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Q

FIG. 1. �a� Unit cell of the kagome lattice, showing the lattice
vectors a1 and a2 and the numbering of the three sites within the
unit cell. �b� Brillouin zone. The M, K, and 
 points are labeled.
The M points will play an important role in our discussion and have
thus been numbered as shown to distinguish among them. The re-
duced Brillouin zone of the enlarged real-space unit cell �Fig. 2� is
denoted by the dashed rectangle. The Dirac nodes lie at �Q, where
Q= �� /	3�y.
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detailed relationship between ��a and the lattice spinon fields
are given in Appendix A.

The important fluctuations about the mean-field saddle
point specified by HMFT are encapsulated in the coupling of
the spinons to a compact U�1� gauge field, and the spin liq-
uid is thus an algebraic spin liquid. Because of this structure,
this state has been referred to as the U�1�-Dirac state;26,29

here, however, to emphasize the connections with earlier
work, we shall refer to it as an algebraic spin liquid. The
coupling to the gauge field is encoded in the following lattice
gauge theory Hamiltonian:

Heff = h �
�rr��

err�
2 − K�

p

cos��� 	 a�p� − t �
�rr��

srr��fr�
† eiarr�fr��

+ H . c.� . �5�

Here err� and arr� are the lattice electric field and vector
potential, respectively. They reside on nearest-neighbor
bonds of the lattice and satisfy the canonical commutation
relation �a ,e�= i. The electric field has integer-valued eigen-
values, and the vector potential’s eigenvalues are
2�-periodic and can be taken in the interval �−� ,��. The
notation �p denotes a sum over all triangular and hexagonal
kagome lattice plaquettes, and ��	a�p denotes the discrete
�oriented� line integral of arr� around the corresponding
plaquette, i.e., the magnetic flux of the gauge field. In general
we should allow the energy K to differ on triangular and
hexagonal plaquettes, but this will not be important for our
discussion here. This Hamiltonian must be supplemented by
the Gauss’ law constraint,

�� · e�r = fr�
† fr� − 1, �6�

where �� ·e�r��r��rerr� is the lattice divergence of the elec-
tric field �the sum is over nearest neighbors r� of r�.

In the limit h� t ,K, one recovers a spin model Hamil-
tonian. However, this effective description is most useful in
the limit of large K, where fluctuations of the magnetic field
are suppressed and the spinons become good variables to
describe the physics �at least for short length scales�. The
short-distance physics of the Heisenberg model is presum-
ably not similar to the short-distance physics of Heff in the

large-K limit. Instead, the idea is that the two Hamiltonians
may have the same long-distance physics, i.e., they are in the
same phase.

In the large-K limit, one obtains the algebraic spin liquid,
which is described by the Lagrangian density,

Leff = �̄�a�− i����� + ia�����a +
1

2e2�
�

���
��
a��2 + ¯ .

�7�

This is the so-called QED3 Lagrangian, which includes the
minimal coupling of the gauge field to the spinons, as well as
an explicit Maxwell term for the gauge field. In general we
may �and must� add other perturbations as allowed by micro-
scopic symmetries—such terms are represented by the ellip-
sis. While QED3 is a strongly coupled problem, in the sense
that the interaction between spinons and gauge field is
strongly relevant in the RG sense, it can be understood in a
large Nf limit, where the number of two-component fermions
fields is increased from 4 to Nf �e.g., �=1, . . . ,Nf /2�. The
theory can be solved for Nf →�, and one can calculate per-
turbatively in powers of 1 /Nf. This large-Nf expansion un-
derpins the understanding of the algebraic spin liquid fixed
point, and has been discussed in great detail
elsewhere.28,33,35,36,42,43

It shall be convenient to organize the four two-component
fermions into the eight-component object,

� =

�↑,+

�↑,−

�↓,+

�↓,−

� . �8�

The �i Pauli matrices act in the two-component space of each
Dirac fermion so that

�i� =

�i�↑,+

�i�↑,−

�i�↓,+

�i�↓,−

� . �9�

We also define �i Pauli matrices acting in the spin space, and
�i Pauli matrices acting in the “nodal” space connecting the
two nodes at �Q. For example, we have

�3� =

�↑,+

�↑,−

− �↓,+

− �↓,−

� , �10�

and

�3� =

�↑,+

− �↑,−

�↓,+

− �↓,−

� . �11�

Different types of Pauli matrices commute with one another:

��i,� j� = ��i,� j� = ��i,� j� = 0. �12�

2

3 4

5

2a

0 1
a12

FIG. 2. The doubled unit cell used to diagonalize the mean-field
spinon Hamiltonian �Eq. �3��. The lattice vectors are 2a1 and a2, as
shown. It should be stressed that the unit-cell doubling is a gauge
artifact and does not represent a breaking of translation symmetry.
The thick bonds are those where srr=−1, and the sites are numbered
as shown.
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B. Symmetries

For our analysis later on, we need to work out how the
symmetries of the microscopic Hamiltonian �Eq. �1�� are re-
alized in the continuum theory. The procedure for obtaining
these results is described in Appendix B; here, we shall sim-
ply enumerate the symmetries and quote the results. The
space group of the kagome lattice is generated by transla-
tions by the Bravais lattice vector R=n1a1+n2a2 �TR�, rota-
tions by � /3 about the center of a hexagonal plaquette
�R�/3�, and a reflection Ry mapping y→−y. These point-
group symmetries are depicted in Fig. 3. For definiteness in
defining the rotations and reflections, we take the origin of
coordinates at the center of a hexagon. The remaining sym-
metries are spin rotations and time reversal.

For each symmetry operation, its action on the lattice
spinon fields fr� is determined by two requirements. First, it
must reproduce the correct action of the symmetry on the
spin operator Sr—this ensures that the action of the symme-
try on all physical operators is correctly realized. This re-
quirement does not completely specify the action of the sym-
metry on fr� because Sr is invariant under local SU�2� gauge
transformations of the spinons—the symmetry may therefore
be supplemented by an arbitrary SU�2� gauge transforma-
tion. However, we should also impose a second requirement:
the effective Hamiltonian �Eq. �5�� should be invariant. In
the present case, this requirement will fix the symmetry op-
eration completely up to multiplication by a global U�1�
phase factor. This also determines the transformation proper-
ties of the electric field err� and vector potential arr�. Due to
the presence of the gauge structure, symmetries have non-
trivial action on the spinon fields fr�; the mathematical struc-
ture describing the realization of symmetries in such a situ-
ation is referred to as the projective symmetry group.44

If S is a space-group symmetry mapping r→S�r�, then the
above requirements dictate that the fermions transform as

S:fr� → �rfS�r��, �13�

where �r is a gauge transformation depending on S; in the
gauge chosen in Eq. �5� we can take �r= �1. Spin rotations
send fr�→U��fr�, where U is an SU�2� matrix. Time rever-
sal acts as follows:

T:fr� → �i�2���fr�. �14�

These transformation laws also imply that the electric field
and vector potential transform as scalars under translations
and as vectors under rotations and reflections. Under time
reversal, the electric field is even and the vector potential is
odd.

Following the procedure in Appendix B, we obtain the
following transformations for the �real space� continuum
field ��r�:

Ta1
:� → �i�2�� , �15�

Ta2
:� → �i�3�� , �16�

Ry:� → �i�1�exp� i�

2
�ry�� , �17�

R�/3:� → exp� i�

6
�3�exp�2�i

3
�R�� , �18�

T:� → �i�2��i�2��− i�2�� , �19�

where

�ry = −
1
	2

��1 + �3� , �20�

�R =
1
	3

��1 + �2 − �3� . �21�

III. MANY COMPETING ORDERS: FERMION BILINEARS
AND MAGNETIC MONOPOLES

A. General discussion

The focus of this paper is on the observable properties of
the algebraic spin liquid on the kagome lattice; the most
dramatic such property is the unification of many competing
orders within the ASL.36 This is manifested in the fact that
correlations of a variety of superficially unrelated observ-
ables obey power-law decay in space and time with the same
critical exponent. This unification is accomplished math-
ematically through the presence of an emergent SU�4� sym-
metry that contains the microscopic SU�2� spin rotation sym-
metry as a subgroup. This means, for example, that magnetic
order parameters can be rotated into nonmagnetic ones. Fur-
thermore, because the ASL is an interacting critical state, the
critical exponents governing many physically interesting cor-
relation functions are not equal to their mean-field values. In
particular, for those observables we refer to as competing
orders, the correlation functions decay more slowly than in
mean-field theory. Such slow decay of a correlation function
indicates that the system is closer to being ordered in a par-
ticular channel and is likely to be observable in both experi-
ments and numerical studies.

In the language of critical phenomena, the dominant long-
distance correlations within the ASL, and hence, the domi-

π/3

FIG. 3. Depiction of the generators of the point-group symmetry
of the kagome lattice, Ry and R�/3.
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nant “competing order parameters,” are given by finding the
operators in the critical theory with smallest scaling dimen-
sion. Suppose we are interested in the correlations of some
microscopic observable m�r�, which is some function of spin
operators Sr� for r� near the lattice point r. Its long-distance
correlations can be understood from the following expres-
sion:

m�r� � �
i

ciOi�r� . �22�

On the right-hand side of this expression are a set of opera-
tors in the field theory Oi, also located at the spatial point r.
The meaning of Eq. �22� is that the quantities on the left- and
right-hand sides have the same correlations at distances
much greater than a short-distance cutoff. For any operator in
the field theory, generically the coefficient ci will be nonzero
if and only if Oi transforms identically to m�r� under micro-
scopic symmetries �in this case, spin rotation, time-reversal,
and space-group operations�. Apart from this condition, the
ci are nonuniversal. This tells us, then, that the dominant
long-distance correlations of m�r� are given by the Oi ap-
pearing in Eq. �22� with the smallest scaling dimension �;
so, for example, �m�r�m�0��� 
r
−2�.

Which operators in the ASL critical theory have smallest
scaling dimension? In the large-Nf limit, these are a set of
fermion bilinears transforming as the adjoint of SU�Nf�. In
the physical case of Nf =4, these operators are

Na = �†�3Ta� , �23�

where a=1, . . . ,15 and the Ta are the 15 generators of SU�4�.
One can choose a basis for the generators where they are
expressed in terms of the �i and �i Pauli matrices,

Ta = ��i,�i,�i� j� . �24�

In the large-Nf limit, Rantner and Wen28 calculated the scal-
ing dimension of one of the Na in the context of the “stag-
gered flux” spin liquid on the square lattice. In Ref. 36 the
SU�4� symmetry was emphasized, which implies that all the
Na have the same scaling dimension. The result of Ref. 28 is

�N � dim Na = 2 −
32

3�2Nf
+ O�1/Nf

2� . �25�

Because the U�1� gauge interaction, which is stronger for
smaller Nf, tends to bind together the � and �† fermions in
Na and make the mode it creates propagate more coherently
as opposed to decaying into its two constituent fermions, it is
expected that �N�2 for all values of Nf.

There are other operators in the ASL that may have even
smaller scaling dimension than the Na when Nf =4. The most
likely candidates are magnetic monopole operators—these
are topological disorder operators for the U�1� gauge field.
Because the U�1� gauge field is compact, its magnetic flux is
quantized in multiples of 2�, and monopole operators are
those which insert integer multiples of 2� flux. Therefore
they carry nonzero integer charge under the U�1�flux symme-
try, which emerges at the ASL fixed point and corresponds to
the irrelevance of monopole operators there.35 It is important
to emphasize that for the ASL fixed point to be stable, all

monopoles that are allowed as perturbations to the action by
microscopic symmetries must be irrelevant. The monopoles
we will consider here carry nontrivial quantum numbers and
are not allowed perturbations, so they may become relevant
without destabilizing the ASL.

As is typical for topological disorder operators, it is diffi-
cult to construct monopole operators explicitly in terms of
the fermions and gauge field. However, they can be con-
structed by exploiting the state-operator correspondence
from conformal field theory, and it has been found33 that
monopoles with smallest scaling dimension at large-Nf have
unit magnetic charge and transform under the completely
antisymmetric self-conjugate representation of the SU�Nf�
flavor symmetry. In the case Nf =4 this representation is six
dimensional. Formally we can represent these six operators
by m��

� =−m��
� , where � ,�=1, . . . ,4 are SU�4� indices.

There is another set of six monopoles with charge −1 and the
same scaling dimension, m��= �m��

� �†. In the large-Nf limit,
the scaling dimension of these operators was found to be

�m � dim m�� = cNf + O�1� , �26�

where c�0.265.33 If we naïvely put Nf =4 into the leading
order large-Nf result, we obtain �m�1.06 compared to �N
�1.73 putting Nf =4 into Eq. �25�. So it may well be the case
that the monopoles give the dominant long-distance correla-
tions for the physical case of Nf =4. Below, we shall work
out the quantum numbers of Na and m�� under microscopic
symmetries and determine the spin model observables to
which they correspond.

B. Fermion bilinears

It is convenient to break the Na into three different classes
of operators. These are

NA
i = �†�3�i�� , �27�

NB = �†�3�� , �28�

NC
i = �†�3�i� . �29�

Using the results of Sec. II B we can determine how each of
these observables transforms under all microscopic symme-
tries. Clearly NA

i form a set of three spin triplets, and NB is
also a spin triplet, while NC

i are spin singlets. Under time
reversal NA

i is odd, while NB and NC
i are even. This implies

that NA
i is the order parameter for a magnetically ordered

state.
For each of these operators, we can identify one or more

microscopic operators that transform identically under all the
symmetries of the kagome model. Then, by Eq. �22�, Na will
contribute to the long-distance correlations of these micro-
scopic operators. Actually, rather than looking for operators,
it is easier to look for ordering patterns �i.e., states as op-
posed to operators� with the corresponding symmetry trans-
formations. To understand how to do this, let us consider the
transformations of NA

i . If S is a space-group operation, then
we have

HERMELE et al. PHYSICAL REVIEW B 77, 224413 �2008�

224413-6



S:NA
i → Uij

F1�S�NA
j , �30�

where UF1�S� is an O�3� matrix. These matrices form the F1
irreducible representation of the space group �see Appendix
C for more details�. If we can find a set of magnetically
ordered states for which �Sr� transforms under the same rep-
resentation of the space group, then NA

i is an order parameter
for this state. Furthermore, we can go on to construct micro-
scopic operators that are also order parameters for this state
and identify correlation functions of these operators that
obey power-law decay with exponent 2�N.

The relevant details of the group theory and representa-
tion theory of the kagome space group are summarized in
Appendix C. As stated above, each component in spin space
of NA

i transforms in the F1 irreducible representation. The NC
i

also transform as F1, that is, S :NC
i →Uij

F1�S�NC
j , and each

component in spin space of NB transforms as the A2 repre-
sentation. We have already established that NA

i correspond to
magnetically ordered states. We are primarily interested in
finding a combination of spin operators corresponding to
each NA

i , and for this purpose, it is enough to consider col-
linear ordering patterns only. We therefore focus on the z
component in spin space �NA

i �z.
Our task is then to find three ordering patterns of kagome

spins pointing along the z axis in spin space. One approach is
simply to guess the right pattern, but it is possible to be more
systematic. We are interested in patterns of site ordering on
the kagome lattice that are invariant under translations by
2a1 and 2a2, since the Na are also invariant under such trans-
lations. So we can consider all possible site-ordering patterns
on a cluster of 2	2 unit cells with 12 sites and periodic
boundary conditions. For each site of the cluster r, we can
associate a vector 
r�, and the various site-ordering patterns
can be represented as real linear combinations of these states,
where the coefficients of 
r� should be associated with �Sr

z�.
The space group acts on this vector space by S
r�= 
S�r��,
where S is a space-group operation, so the vector space is a
12-dimensional representation of the space group. This can
be decomposed into irreducible representations using the
character table of Appendix C. The irreducible representa-
tions we find in this manner are a complete catalog of
kagome site-ordering patterns invariant under T2a1

and T2a2
.

We find that the F1 representation of interest occurs precisely
once in this catalog. The corresponding magnetic ordering
patterns can be read off from the basis vectors of this repre-
sentation and are shown in Fig. 4. We stress that this is the
unique site-ordering pattern corresponding to �NA

i �z.
Next, we wish to find ordering patterns corresponding to

NC
i . Because these operators are spin singlets and invariant

under time reversal, it is natural to look for bond ordering
patterns, with order parameters that can be built from
−�Sr ·Sr��, where r and r� are nearest neighbors. This observ-
able measures the strength of singlet formation on a bond.
Following the same procedure as for the site-ordering pat-
terns, we note that the same unit cell contains 24 bonds; the
resulting 24-dimensional vector space is decomposed into
irreducible representations in Appendix C. In this case, we
find that the F1 representation occurs twice and leads to the
patterns shown in Figs. 17–19. Taken together with the “uni-

form” state, where �Sr ·Sr�� is the same on every bond, we
can superpose the two patterns of Fig. 19 to form the Hast-
ings VBS state, as shown in Fig. 5. It has three inequivalent
bonds in its unit cell, and this is precisely because it is built
from a superposition of three bond ordering patterns belong-
ing to distinct irreducible representations of the space group.
The fourfold-degenerate Hastings state is not the only
ground state that can be built from the bond ordering patterns
obtained in Appendix C, but we restrict our attention to it for
simplicity. Furthermore, the ordering patterns obtained in
Appendix C contain enough information to work out the con-
tributions of NC

i to the bond-bond correlation function within
the ASL.

Finally we turn to NB. This object is a spin triplet but is
even under time reversal; the simplest microscopic operator
with these properties is the vector chirality Crr�=Sr	Sr� de-
fined on nearest-neighbor bonds. Rather than searching for
states as above, in this case it is simpler to find a spin opera-
tor transforming identically to NB. We define an object that
naturally resides on the hexagonal plaquettes of the kagome
lattice, which we label with the position vectors rh,

3
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+ −
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+

+
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1 2

FIG. 4. Magnetic ordering patterns corresponding to �NA
i �z.

These can be thought of as stripes of up- and down-spin hexagons,
which are labeled with “+” and “−,” respectively. A spin between
two up-spin hexagons points up and between two down-spin hexa-
gons points down. Spins between an up-spin and down-spin hexa-
gon have no average moment. The three patterns are labeled accord-
ing to their crystal momenta, which lies at the three M points of the
Brillouin zone Mi, where i=1,2 ,3. The labeling of the M points is
as in Fig. 1.
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FIG. 5. Depiction of the Hastings valence-bond solid state.
There are three inequivalent sets of bonds, these are distinguished
by shading and vertical or horizontal hatching. In previous treat-
ments in the literature �Refs. 13 and 26�, the shaded bonds were
taken to have strong dimerization, and the vertically and horizon-
tally hatched bonds to have weak �and equal� dimerization. How-
ever, other choices are possible without changing the symmetry of
the ground state.
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Ch�rh� = �
�rr���h

Crr�. �31�

This can be interpreted as the vector spin chirality of a
kagome hexagon. Here, the sum is over the six bonds con-
tained in the perimeter of the hexagon, following the orien-
tation convention shown in Fig. 6. More precisely, r is al-
ways taken to be the “first” site on the bond according to Fig.
6, and r� the “second” site. It is straightforward to check that
Ch�rh� has identical transformation properties as NB �once a
suitable long-wavelength average is taken�. The observable
Ch is also related to the DM interaction on the kagome lat-
tice, and, in particular,

HDM = Dz�
rh

Ch
z�rh� �32�

is precisely the Dz term allowed by the crystal symmetries in
ZnCu3�OH�6Cl2.41 The effects of DM interaction on the ASL
are discussed further in Sec. V.

C. Magnetic monopoles

Here, we work out the quantum numbers of the magnetic
monopole m��

� , which was formally defined in Sec. III A,
based on the results on Ref. 33. Our analysis builds on re-
sults of Refs. 32 and 37–39, where monopole quantum num-
bers were worked out in different but closely related settings
to the present one. However, we adopt a different perspec-
tive; we believe this clarifies some of the issues involved,
and we comment on this at the end of this section. Our strat-
egy is first to determine how each microscopic symmetry is
embedded in the full symmetry group of the low-energy ef-
fective theory. We do not have enough information to deter-
mine this completely, so several free parameters have to be
introduced. To proceed further, we argue that these free pa-
rameters must satisfy certain constraints, determined by re-
lations among the generators of the space group. After taking
the constraints into account, we shall be left with three free
parameters, and we make a conjecture that determines two of
them, based on a physical argument and on calculations us-
ing the projected wave function.

First, it is useful to recall how m��
� transforms under the

continuous symmetries of the low-energy ASL fixed point. It
is a scalar under Lorentz and continuous translation symme-
try. Under SU�4� rotations, we have

m��
� → U��U��m��

� , �33�

and under a U�1�flux rotation, we have

m��
� → ei�m��

� , �34�

m�� → e−i�m��. �35�

We now decompose the SU�4� symmetry into its SU�2�
	SU�2� subgroup. The first SU�2� is simply spin rotation
symmetry �generated by the �i�, and the second consists of
“nodal” rotations �generated by the �i� that mix the two
Dirac nodes but commute with spin rotations. This decom-
position is useful because it separates spin rotations from
space-group operations, which are realized in the SU�4�
space as nodal SU�2� rotations. We replace the SU�4� index
� by a pair of SU�2� indices: �→ ��a�. Here, �=1,2 trans-
forms under spin SU�2� and a=1,2 under nodal SU�2�. Un-
der an SU�2�	SU�2� rotation, we have

m��a���b�
� → U���

S U���
S Uac

N Ubd
N m���c����d�

� , �36�

where US and UN are SU�2� matrices in the spin and nodal
spaces, respectively. We can also decompose the monopole
operators according to their transformations under the
SU�2�	SU�2� subgroup. We have

vi
� = ��i�2��i����i�2�abm��a���b�

� , �37�

wi
� = �i�2�����i�2��i�abm��a���b�

� . �38�

Here, vi
� is a spin triplet and a nodal singlet, and wi

� is a spin
singlet and nodal triplet.

We now wish to specify the action of microscopic sym-
metries on vi

� and wi
�. In doing this, we encounter two prob-

lems. First, we determined the SU�4� rotation corresponding
to each microscopic symmetry by working out the transfor-
mations of the fermion field �. This only determines the
SU�4� rotation up to multiplication by the matrix C4
=diag�i , i , i , i�, which generates the Z4 center of SU�4�. The
reason for this ambiguity is that multiplication of � by C4 is
indistinguishable from a gauge transformation. However,
m�� is odd under C4 but is of course gauge invariant. Sec-
ond, each microscopic symmetry may come along with a
rotation in the U�1�flux space. Because � carries no U�1�flux
charge, we have no information about this rotation. Both of
these ambiguities can be taken into account by multiplying
m�� by an undetermined phase factor associated with each
symmetry operation. We note that there are no such ambigu-
ities associated with continuous spin rotations—it can be
shown that adding an additional U�1� phase factor to a spin
rotation is not consistent with spin rotation symmetry.

We can now enumerate how the space-group symmetries
act on the monopoles,

Ta1
:vi

� → ei�a1vi
�, �39�

Ta1
:wi

� → ei�a1Rij�Ta1
�wj

�, �40�

Ry:vi
� → ei�ryvi, �41�

FIG. 6. Orientation of kagome lattice bonds used to define the
vector spin chirality of a hexagon Ch�rh�.
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Ry:wi
� → ei�ryRij�Ry�wj , �42�

R�/3:vi
� → ei�Rvi

�, �43�

R�/3:wi
� → ei�RRij�R�/3�wj

�. �44�

Note that the reflection symmetry sends vi
� to vi, and simi-

larly for wi
�. This is because reflections change the sign of the

magnetic charge. Here we have introduced SO�3� matrices
describing the rotations in the nodal SU�2� space, which are
obtained from the symmetry operations of Sec. II B and are

R�Ta1
� = 
− 1 0 0

0 1 0

0 0 − 1
� , �45�

R�Ry� = 
0 0 1

0 − 1 0

1 0 0
� , �46�

R�R�/3� = 
 0 1 0

0 0 − 1

− 1 0 0
� . �47�

We can immediately eliminate the phase factor �ry by rede-
fining vi

�→ei�ry/2vi
�, and similarly for wi

�. This does not af-
fect the other symmetries, and we have

Ry:vi
� → vi, �48�

Ry:wi
� → Rij�Ry�wj . �49�

We shall now determine the unknown phase factors �a1
and �R to the greatest extent possible, exploiting relations
among the space-group generators. For example, we shall
demand the relation R�/3

6 =1 holds when acting on monopole
operators. In general, such relations need only hold up to a
phase when acting on quantum states. However, in the
present case, these relations hold with no additional phase
factors when acting on any physical state in either the spin
model or the effective lattice gauge theory Hilbert spaces.
Since nothing forbids the insertion of a single monopole in
the lattice gauge theory, the relations must hold for the
monopole operators with no extra phase factors. The relation
R�/3

6 =1 implies that �R=�nR /3, where nR is an integer.
Next, the relation

R�/3Ta1
R�/3Ta1

−1R�/3
−2 = Ta1

�50�

implies �a1
=0. So we are left only with the free parameter

nR=0,1 ,2 ,3 ,4 ,5.
We also need to consider time reversal. We have

T:vi
� → tvvi, �51�

T:wi
� → twwi, �52�

where tv , tw= �1. Note that time reversal changes the sign of
magnetic charge, so it takes monopoles to antimonopoles.

Furthermore, time reversal commutes with the SU�2�
	SU�2� subgroup of SU�4� �see Eq. �19��, so it must take
the spin triplet vi

� to the spin triplet vi, and similarly for the
nodal triplets wi

� and wi. It is not consistent for tv and tw to be
arbitrary phases, given that T2=1, which holds for all physi-
cal states of the spin model and of the effective lattice gauge
theory. The relations of Eqs. �51� and �52� are the most gen-
eral transformations consistent with these considerations.

We proceed by using some physical input to conjecture
the likely values of nR and tv—the resulting conjecture is
supported by the numerical results on the projected wave
function �see Sec. VI B�. The source of physical input is the
following puzzle about the kagome ASL: in the large-S limit
of the kagome antiferromagnet, there are an infinite number
of nearly degenerate magnetically ordered ground states.
These consist of all states where the vector sum of classical
spins on every triangle is zero—among these states, those
with coplanar spin configurations are selected by the zero
point energy of spin-wave fluctuations about the ground
state. Finally, among the coplanar states, the 	3		3 state is
selected by anharmonic fluctuations.45–47 Up to this point in
our analysis, we have not found signatures of any of these
classical low-energy states within the ASL. �The ordered
states of Fig. 4 have distinct symmetry from the classical
ground states lying at the M points, which transform in the
F3 representation of the space group.� It is possible that no
sign of the large-S physics survives down to S=1 /2, but it
would perhaps be more natural if at least a hint of it re-
mained, especially given that the ASL has no spin gap.

This leads us to the conjecture that vi will be the order
parameter for one of these classical ground states. We know
from the analysis above that vi carries zero crystal momen-
tum, and the unique classical low-energy state with this prop-
erty is the so-called q=0 state, which is shown in Fig. 7. It is
the classical ground state for ferromagnetic third-neighbor
exchange J3�0.45 It turns out that if we choose nR=2 and
tv=−1, then vi is an order parameter for the q=0 state. This
can be seen by following the construction of the q=0 state
order parameter in Appendix D. Based on these consider-
ations, from now on we shall fix nR=2 and tv=−1. This
choice is supported by the presence of substantial q=0 spin
correlations in the projected wave function.

The parameter tw= �1 still remains to be determined. The
Hermitian operators wi

+=wi+wi
� and wi

−= i�wi−wi
�� are spin

singlets, with crystal momenta lying at the M points. If tw
=1, they are even under time reversal and then likely corre-
spond to bond ordering patterns. If tw=−1, they are odd un-

FIG. 7. The q=0 magnetically ordered state.
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der time reversal and correspond to ordering patterns in the
scalar spin chirality S1 · �S2	S3�, where the spins can be
taken on any three distinct nearby lattice sites. Since the
bond-bond correlations in the projected wave function are
apparently dominated by Fourier components near q=0, we
are led to speculate that tw=−1 and the monopoles corre-
spond to spin-chirality order.

We now contrast the approach taken here with that of
Refs. 32 and 37–39, where symmetry transformations of
monopole operators were obtained by construction of mean-
field ground-state wave functions with a background �2�
flux—this is the quantum state one obtains after insertion of
a monopole operator. The correspondence of the resulting
states to scaling operators of the low-energy critical theory,
in which one is ultimately interested, is not clear, and this
issue makes it difficult to interpret the results of Refs. 32 and
37–39. However, our approach here, which focuses directly
on the scaling operator m��

� , is formally equivalent to the
analysis of Refs. 32 and 37–39 and puts it on firm ground.
On the other hand, Refs. 32 and 37–39 obtained additional
information on symmetries by carrying out an adiabatic in-
sertion of 2� flux numerically. In our opinion, because the
ASL has gapless excitations, the correspondence between
this procedure and insertion of the scaling operator m��

� is
not established.

IV. DETECTION OF COMPETING ORDERS

The competing orders arising in the kagome ASL can be
detected by a variety of experimental probes. Here, we out-
line some predictions that we hope will be tested in future
experiments on ZnCu3�OH�6Cl2. In this section we focus on
the case of an ideal system free of perturbations such as
impurities and Dzyaloshinskii–Moriya interaction. We post-
pone discussion of these issues to the following section, and
also Sec. VII.

Two critical exponents enter into this discussion. The first
is �N=2�N−1, which characterizes the correlations of the Na

fermion bilinears, and hence, the M-point magnetic order,
the Hastings VBS order, and the hexagon vector chirality
Ch�Uh�. The second, �m=2�m−1, characterizes the m��

monopole operators and hence the correlations of q=0 mag-
netic order.

The magnetic competing orders can be detected via neu-
tron scattering and NMR. In neutron scattering, the structure
factor will exhibit critical scaling behavior near the 
 and M
points in reciprocal space, with the scaling form

���q + Q,�� =
c


�
2−�FQ� ��

kBT
,

�

vF
q − Q
� , �53�

where c is a nonuniversal constant prefactor, and 
q
 is much
smaller than the Brillouin-zone size. �=�N if Q lies at one of
the M points, and �=�m if Q=0. There are two different
universal scaling functions FQ�x ,y�, again depending on
whether Q lies at the 
 point or one of the M points.

Based on Eq. �53�, the NMR relaxation rate is predicted to
be

1

T1
� T�. �54�

Here, � depends on the nuclear site considered—Cu, O, and
Cl sites are all sensitive to the M-point magnetic order, but
only Cu and O are sensitive to q=0 order. Therefore we
expect

�Cu = �O = min��N,�m� , �55�

�Cl = �N. �56�

The VBS competing order can be detected via its coupling
to phonons. We consider, for simplicity, a single optical pho-
non that couples to one of the patterns of VBS order shown
in Figs. 17 and 18 and hence to some linear combination of
the NC

i fermion bilinears of the ASL. Using inelastic x-ray or
neutron scattering, the line shape of this phonon can be mea-
sured. The line shape is determined by D���, the retarded
Green’s function for the phonon mode’s normal coordinate.
We treat the phonon mode using the RPA of Ref. 48, which
neglects the influence of the gapped optical phonon on the
gapless spin system, and has been successfully applied to
quasi-one-dimensional magnets for temperatures above the
spin-Peierls transition.49 We then have, for the phonon spec-
tral function A���=−�1 /��Im D���,

A��� =
− g2�VBS� ��,T�/�

��2 − �0
2 − g2�VBS� ��,T��2 + �g2�VBS� ��,T��2 .

�57�

Here, g characterizes the spin-phonon coupling, �0 is the
bare phonon frequency, and �VBS� and �VBS� are the real and
imaginary parts, respectively, of the retarded Green’s func-
tion �VBS of the VBS order parameter. We have the scaling
form

�VBS��,T� =
c


�
2−�N
FVBS� ��

kBT
� , �58�

where c is a nonuniversal prefactor. Also, FVBS is related to
the scaling function appearing in Eq. �53� by Im FVBS�x�
=FQ�x ,0� for Q lying at one of the M points. It may be
possible to test this scaling form by measuring the
T-dependence of A���.

V. DZYALOSHINSKII–MORIYA INTERACTION

We now consider the effect of a small DM interaction,
Dz ,Dp�J. First, we must understand which new perturba-
tions to the ASL fixed point are allowed by the now reduced
microscopic symmetry. While spin rotation symmetry is
completely broken, the space-group symmetry remains un-
changed. However, lattice reflections and rotations must now
be accompanied by appropriate operations in spin space. In
the three-dimensional herbertsmithite structure, the reflection
Ry is realized as a � rotation about the x axis �passing
through the center of a hexagon� along with a corresponding
rotation in spin space. The rotation R�/3 is realized by first
making the same � rotation about the x axis, followed by
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mirror reflection through the plane with normal a2−a1 �in-
tersecting the center of the same hexagon�. In the continuum,
the resulting modified symmetry operations are

Ry�:� → �i�1��i�1�ei��ry/2� , �59�

R�/3� :� → ei��3/3ei��3/6e2�i�R/3� . �60�

Using these operations, combined with translations and
time reversal �which are unchanged�, it can be shown that the
only fermion bilinear allowed by symmetry is NB

z . Further-
more, the q=1 monopole operators m��

� are still forbidden by
symmetry—the spin-triplet monopoles vi are odd under time
reversal, and the spin singlet monopoles wi carry nonzero
crystal momentum. Therefore we expect NB

z to be the most
relevant perturbation to the ASL generated by the DM terms.

We now consider adding the term

LDM = mNB
z �61�

to the ASL fixed point. We wish to understand how m de-
pends on Dz and Dp. As noted in Sec. III B, the Dz term and
NB

z are symmetry equivalent, so m will contain a term linear
in Dz. We now give an argument that m contains no term
linear in Dp. Consider a microscopic Hamiltonian with given
values of Dp and Dz. Upon some amount of coarse graining,
we obtain a continuum field theory with a given value of m.
Now we make a � rotation in spin space about the z axis.
This sends Dp→−Dp but otherwise leaves the microscopic
Hamiltonian unchanged. Various operators in the continuum
field theory will be affected by this operation but the value of
m remains the same. We have shown that m does not depend
on the sign of Dp. Therefore, up to second order in Dz and
Dp,

m = cz1Dz + cz2
Dz

2

J
+ cp2

Dp
2

J
, �62�

where cz1, cz2, and cp2 are dimensionless coefficients.
Ignoring coupling between the gauge field and the fermi-

ons, the effect of the perturbation Eq. �61� is to open a spin
gap. However, coupling to the gauge field plays a surprising
and important role. As the fermions are now massive, mag-
netic monopoles will condense, leading to confinement.50

Naïvely this leads to a fully gapped spectrum, but we argue
below that in this case it leads instead to XY magnetic order.

Let us first imagine Dz�0 but Dp=0, so that we have
U�1� spin rotation symmetry about the z axis in spin space.
The mass term LDM will be induced, and we observe that this
term can be written as

LDM = m �
a=�

��↑a
† �3�↑a − �↓a

† �3�↓a� . �63�

That is, this term has a mass m for the up-spin fermions, and
a mass of opposite sign −m for the down-spin fermions. Ig-
noring coupling to the gauge field for the moment, such a
mass term leads to a 
=1 quantum Hall effect �QHE� for the
up-spin fermions, and a 
=−1 QHE for spin-down
fermions.51

Now, imagine we adiabatically insert a localized +2� flux
of the gauge field. The QHE implies that a single extra

spin-up spinon will be induced along with the gauge flux,
while one spin-down spinon will be depleted. This is equiva-
lent to a spin-flip operation, and we see that insertion of a
monopole is accompanied by a spin flip. Furthermore, be-
cause the fermions are gapped, the gauge-field dynamics is
controlled by the Maxwell term LMaxwell=

1
2e2 �����
��
a��2,

and therefore the insertion of a monopole only costs finite
action in the imaginary time functional integral. This implies
that the monopole propagator is long-ranged—that is, if
m��r� is a monopole creation operator, then �m��r�m�0�� ap-
proaches a constant as 
r
→�. Because monopole insertion
is accompanied by a spin flip, in the ground state we will
have �S+��0, which corresponds to XY magnetic ordering.
Furthermore, within the resulting ordered state, the photon of
the gauge field is expected to correspond to the XY Gold-
stone mode. We note that a similar situation arises, in the
absence of DM interaction, when a Zeeman magnetic field is
applied.29

In Sec. III C, we argued that some of the monopole op-
erators in the ASL correspond to the q=0 ordered state. We
therefore expect that the XY order induced in the presence of
the Dz term is in the q=0 pattern, and therefore that the ASL
is unstable toward q=0 magnetic ordering in the presence of
Dz. We remark that once Dp�0, the U�1� spin rotation sym-
metry is lost and there is no longer an XY Goldstone mode.
On the other hand, time reversal is still a good symmetry of
the Hamiltonian but is broken in the q=0 state. So, for more
general DM interaction �Dp�0�, we expect the ASL is un-
stable to a time-reversal broken ground state.

VI. ANALYSIS OF PROJECTED WAVE FUNCTION

We now turn to an analysis of the Gutzwiller-projected
variational wave function for the ASL. To obtain this wave
function, one begins with 
�MFT

0 �, the mean-field ground state
of the Hamiltonian Eq. �3�. The trial wave function is ob-
tained from this by writing


�prj
0 � = PG
�MFT

0 � , �64�

where the Gutzwiller projection operator,

PG = �
r

nr�2 − nr� , �65�

with nr= fr�
† fr�, enforces the single occupancy constraint.

Properties of these wave functions can be calculated numeri-
cally using a standard Monte Carlo technique.52

In Ref. 26, we found that 
�prj
0 � has the lowest energy

among a class of spin liquid wave functions. Furthermore,
the energy is very low, less than 1% above an extrapolation
of the exact ground-state energy to the thermodynamic
limit;19 this is achieved without tuning any continuous varia-
tional parameters to minimize the energy. By continuously
deforming 
�MFT

0 � to include a small VBS ordering of the
Hastings type and measuring the resulting variational energy,
we argued that ASL is locally stable to this type of ordering.
Here, we discuss some of the properties of this wave func-
tion. First, we construct variational excited states to estimate
the velocity vF characteristic of the ASL. Next, we proceed
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to discuss the spin-spin and bond-bond correlation functions
of the wave function and connect them to our understanding
of the low-energy effective theory.

We consider finite systems with periodic boundary condi-
tions for the physical spin operators so that

S�r + L1a1� = S�r + L2a2� = S�r� . �66�

Such a system has 3L1L2 sites. This still allows the consid-
eration of twisted boundary conditions for the fermions—we
consider both periodic and antiperiodic fermion boundary
conditions. A technical point that plays a role in some of our
analysis is that, depending on the system size, it is not al-
ways possible to construct a projected wave function that is
fully symmetric under the kagome space group. The details
of this subtlety are given in Appendix E. There we show how
to construct symmetric wave functions for L1=L2=4n. The
technique of Gros52 is easily extended to calculate with these
wave functions, which are superpositions of three projected
single Slater determinants, and all the correlation function
results shown here are for these fully symmetric wave func-
tions.

A. Fermi velocity

An important parameter in the algebraic spin liquid is the
“Fermi velocity” vF. Physically, vF is defined as the ratio of
energy and momentum for any low-energy excitation—
because the ASL is Lorentz invariant at low energies, all
excitations propagate with the same velocity. In principle, vF
can be directly measured via inelastic neutron scattering by
tracking the leading edge of the scattering continuum near
the 
 point and the M points, where the spin gap is predicted
to vanish. Furthermore, it appears in the coefficients of spe-
cific heat and magnetic susceptibility, and in various critical
scaling functions that may be measurable.

To estimate vF, we need to generate low-energy excita-
tions of the ASL. A natural way to do this is to make a
particle-hole excitation of the mean-field state, then act with
the projection operator,


��k,q,i, j�� = PGfki↑
† fqj↑
�MFT

0 � . �67�

One can calculate the variational energy of the excited state

��k ,q , i , j�� �later referred to as “projected particle-hole ex-
citation”� with respect to the ground state as a function of k,
q, and the band indices i , j. We label the bands by indices
1 ,2 , . . . ,5, as shown in Fig. 8. Note that band 5 is doubly
degenerate.

The spectrum of projected particle-hole excitations can be
translated into a projected band structure. This is simplest if
there is a single-particle �or single-hole� excitation that costs
zero energy in the mean-field band structure. In this case, if
the hole in the particle-hole excitation has zero energy, we
can interpret the energy as that of the particle, and vice versa.
This situation can be arranged by choosing the boundary
condition such that there are fermions precisely at the nodal
points in momentum space. Particles and holes created at the
nodal points �in bands 3 and 4� have zero energy in mean-
field theory. We study the projected particle-hole excitations
for L1=L2=8 with periodic-periodic boundary conditions,

which ensure that we have nodal fermions. �This boundary
condition, on the other hand, has a higher ground-state en-
ergy than that of periodic-antiperiodic boundary conditions,
in which case there are no nodal fermions.�

To extract the projected band structure, we fix the hole at
one node in band 3, then scan the momentum and band label
of the particle in bands 4 and 5 and find the energies of this
projected state E�
��k ,q , i , j���. This is essentially a particle
excitation and we plot E�
��k ,q , i , j���−EGS �where EGS is
the projected ground-state energy� in Fig. 8 with respect to
the Fermi energy. Similarly we fix the particle at one node in
band 4, then scan the momentum and band label of the hole
in bands 1, 2, and 3. This is a hole excitation and we plot
EGS−E�
��k ,q , i , j��� instead.

It should first be noted that when both k and q lie right on
the nodal points in bands 3 and 4, the excitation energy is
very small compared to the bandwidth, even if the particle
and hole are at two different nodes. For example when the
particle and hole are at the same node, we find the excitation
energy relative to the ground state to be 0.03�1�J; when the
particle and hole are at opposite node, we find the excitation
energy to be 0.01�1�J. This is consistent with the mean-field
band structure, where such excitations cost zero energy. We
can fit the low-energy-projected particle-hole excitations in
bands 3 and 4 �i.e., the low-energy excitations� with the
mean-field band structure by tuning the hopping parameter �.
�Recall that �= t /J is the mean-field hopping in units of J.�
We find �=0.40�0.04 �the mean-field value �mean=0.221 in
Hastings’ study13�. The parameter � determines the Fermi
velocity vF= a�J

	2�
, where a is the lattice spacing and J /kB

�200 K for herbertsmithite. Therefore, for herbertsmithite,
we estimate vF�5.0	103 m /s.

B. Spin-spin correlation function

We consider the spin-spin correlation function defined by

Sij�R� =
1

3
�SRi · S0j� , �68�

and its Fourier transform Sij�q�=�Re−iq·RSij�R�. We are pri-
marily interested in the spin correlations at long distances; in

FIG. 8. Plot of the mean-field band structure �solid lines� and
projected band structure �solid rectangles�, obtained as discussed in
the text. The energy is in units of �J. The band structure is plotted
along the line from −M2 to M2 in the Brillouin zone. The projected
band structure can be fit by the mean-field band structure, choosing
�=0.40�0.04. The band indices are shown on the right.
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order to better understand these, it is convenient to define the
following object:

Sij�q,dmin� = �

r�R,i�−r�0,j�
�dmin

e−iq·RSij�R� . �69�

The distance 
r�R , i�−r�0, j�
 above is understood to mean
the shortest distance between the lattice points r�R , i� and
r�0, j�, accounting for periodic boundary conditions.
Sij�q ,dmin� is the Fourier transform of the spin-correlation
function, with all pairs of sites with separation below dmin
removed.

In Fig. 9 we have plotted 
S00�q ,dmin�
 for L1=L2=12 at
four different values of dmin. The q=0 correlations dominate
as dmin is increased; this trend continues for larger values of
dmin. The same is true for 
S10�q ,dmin�
 �not shown�. Further-
more, we find that S00�0,dmin��0 and S10�0,dmin��0 for all
values of dmin in the L1=L2=12 system �although, for the
very largest values of dmin, the result may be dominated by
statistical error�. This suggests that the long-distance q=0
correlations are dominated by the q=0 pattern of magnetic
order shown in Fig. 7.

One expects that the q=0 spin correlations decay as a
power law; the exponent of the power-law decay can be es-

timated from the behavior of Sij�R� in real space. In particu-
lar, for a system size L=L1=L2, we consider the behavior of
Sij�R� measured at a distance 
R
=L /2. The 01 component of
Sij�R� is plotted for the two inequivalent directions R
= �L /2�a1 , �L /2��a2−a1�, and the 01 component is plotted for
R= �L /2�a1 , �L /2�a2. In all four cases, the data are consistent
with

Sij�R� �
1

L4 . �70�

This behavior leads to an estimate �m�2 for the monopole
scaling dimension �Fig. 10�.

It is perhaps surprising that the M-point magnetic orders
depicted in Fig. 4 do not appear to contribute significantly to
the spin correlations of the projected wave function. In par-
ticular, if the estimate �m�2 is accurate, we expect the
M-point correlations to decay more slowly, dominating at
long distances. This follows from the expectation �N�2.28

We wish to make two comments on this result. First, we
emphasize again that the projected wave function may not
give correct values for critical exponents of the ASL. Sec-
ond, the M-point correlations in the wave function may in-
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FIG. 9. �Color online� Contour plots of 
S00�q ,dmin�
 for �a� dmin=0, �b� dmin=	3, �c� dmin=2, and �d� dmin=	7. The scale is shown to the
right of each plot. The statistical error is roughly 1.5	10−4, much less than the q=0 peak height for all values of dmin shown.
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deed decay more slowly than the q=0 correlations, but with
a much smaller coefficient.

C. Bond-bond correlation function

The bond-bond correlation function has four inequivalent
components, depending on the relative position and orienta-
tion of the two bonds involved. These are illustrated in Fig.
11, and the corresponding components of the correlation
function are

C1�R� = ��SR,0 · SR,1��S0,0 · S0,1�� − B̄2, �71�

C2�R� = ��SR,1 · SR+a1,0��S0,0 · S0,1�� − B̄2, �72�

C3�R� = ��SR,0 · SR,2��S0,0 · S0,1�� − B̄2, �73�

C4�R� = ��SR,2 · SR+a2,0��S0,0 · S0,1�� − B̄2, �74�

where B̄��S0,0 ·S0,1� is the average dimerization, and the

subtraction of B̄2 ensures that that the correlation function
decays to zero at infinity.

Because computation of bond-bond correlation is expen-
sive for larger systems, we only compute some particular
values at a distance of half of the system size. For L1=L2
=L we consider either R= �L /2�a1 or R= �L /2�a2. Table I
lists the five sets of data that we obtained. We note that in the

second and third rows of Table I, the correlation function
changes sign �for a relatively small value of L� as L in-
creases. This signals that these data sets may be further from
the scaling limit than those that do change sign. Therefore, in
Fig. 12 we only plot the first, fourth, and fifth sets of data,
which are consistent with power-law decay. We estimate the
power law to be

Ci�R� �
1


R
2.25�0.05 . �75�

Surprisingly, this power-law decay does not seem to cor-
respond to the Hastings VBS state. To better understand the
long-distance decay of the correlations, we have computed
C1�R� for a few values of R near �L /2��a1+a2�—note that,
by reflection symmetry, C1� L

2 , L
2 �=C1�0, L

2 �. We assume the
long-distance correlations are dominated by the three M
points and the 
 point so that, near R= �L /2��a1+a2�,

C1�R� � �
i=0

3

ci�L�eiQi·R, �76�

where Q0=0, and Qi for i=1,2 ,3 are the three M-point wave
vectors. The coefficients ci�L� can then be obtained from the
four values C1� L

2 , L
2 �, C1� L

2 +1 , L
2 �, C1� L

2 , L
2 +1�, and C1� L

2
−1 , L

2 +1� and are plotted in Fig. 13. The coefficient c0�L� is
significantly larger than the M-point coefficients and behaves

TABLE I. The bond-bond correlation in units of 10−4 at half of the system size.

L 4 8 12 16 20

C1�0, L
2 � 59.4�4� 8.0�3� 2.9�1� 1.51�9� 0.91�9�

C1� L
2 ,0� −61.8�6� 18.8�4� −7.4�1� −3.9�1� −2.6�1�

C2�0, L
2 � 16.7�9� −1.9�3� −1.5�1� −1.35�7� −0.98�8�

C2� L
2 ,0� 83.2�8� 19.6�2� 7.69�7� 4.11�7� 2.39�6�

C3�0, L
2 � 36.8�5� 9.9�2� 3.83�6� 1.99�6� 1.23�6�

FIG. 11. We illustrate the relative bond positions and orienta-
tions that lead to the four inequivalent components of the bond-
bond correlation function. Ci�R� is given by the expectation value of
the product of the dimerization of the black bond, with the dimer-
ization of the gray-shaded bond at position i. For example, the
gray-shaded bond at position 1 gives C1�a1�, and other values of
C1�R� are obtained by translating the gray bond by a lattice vector.

FIG. 10. Real space spin correlations measured at a distance of
half the system size for L=4,8 ,12,16. The straight line is a plot of
the function 1 /L4.
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consistently with the same power-law decay found for Ci�R�
in Fig. 12.

The fact that the dominant bond correlations lie near q
=0, rather than at the M-points, is puzzling. Note that the
spin singlet monopoles wi, even if they are even under time
reversal �tw=1�, carry crystal momenta at the M points and
thus do not contribute to the q=0 correlations. One possibil-
ity is that the dominant long-distance bond correlations are
still not evident for L1=L2=20. If the dominant long-distance
correlations really are at q=0, then either there is another
operator in the ASL leading to these correlations that has
been missed so far or the projected wave function simply
does not give a good description of the ASL critical behavior.
Since, to our knowledge, virtually nothing is known analyti-
cally about the critical properties of Gutzwiller-projected
wave functions in two dimensions, it is impossible at the
moment to decide among these possibilities.

VII. DISCUSSION

Here, we discuss our results in the context of experiments
on herbertsmithite, then conclude with a discussion of open
theoretical issues.

The estimate of vF provided by the projected wave func-
tion calculations of Sec. VI A allows us to calculate the spe-

cific heat C�T� and magnetic susceptibility ��T� in mean-
field theory and compare to the experimental data. The
results are

��T� =
3.2�B

2

J2 �kBT� , �77�

C�T� =
74.6NAkB

3

J2 T2. �78�

Here, ��T� is the susceptibility per Cu site, and C�T� is the
specific heat per mole of formula units. The only free param-
eter is the exchange energy J /kB, which we take to be 200 K.
We note that the 1 /N corrections to the coefficients of C�T�
and ��T� have been calculated in Ref. 53. Because of the
crude nature of our estimate for vF, we have not made use of
those results in the above formulae. C�T� is plotted in Fig. 14
and agrees well with the data for T 30 K.

For the susceptibility, we take the point of view that it is
dominated by impurities at low temperature. A better esti-
mate of the intrinsic susceptibility of the kagome Heisenberg
model is given by the NMR Knight shift. In both Refs. 4 and
8, a component of NMR spectrum was found to have a shift
that decreased at low temperature and was argued to corre-
spond more closely to the intrinsic susceptibility. In the case
of Ref. 8, saturation is observed at the lowest temperatures.
In both cases, the slope of the decrease is consistent with that
of the calculated ��T� within a factor of 2. In order to make
this comparison, one must convert Knight shift to units of
magnetic susceptibility—this can be done using the quoted
hyperfine constants in Refs. 4 and 8. The saturation observed
in Ref. 8 may be due to DM interaction or coupling of im-
purities to the bulk kagome layers.

We note that the physics of the ASL is expected to be
relevant at temperatures below the spinon bandwidth W J,
which we estimate to be W�0.25J following the analysis of
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FIG. 12. Plot of bond-bond correlation function at a distance of
half the system size. The straight line is a plot of the function L−2.25.
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FIG. 13. Plot of the coefficients ci�L� for L=8,12,16. The value
of c1�8� is not shown, as it is negative. The error bars are on the
order of the symbol size or smaller, except where shown. The
straight line is a plot of the function e−2.75 /L2.25.
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FIG. 14. Herbertsmithite specific heat in zero and 14 T magnetic
field �courtesy of Helton et al. �Ref. 1�� together with the mean-field
theoretical curve. Note that the theoretical curve is not a fit to the
experimental data—there is no tunable parameter. We have assumed
J /kB=200 K and used the estimate of vF �equivalently, of the hop-
ping parameter �� in Sec. VI A. The specific heat is per mole of
formula units.
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Sec. VI A �we define W to be the difference in energy from
the Dirac points to the top of the lowest empty band�. Taking
J /kB�200 K, the temperature W /kB�50 K sets the correct
scale for the onset of the downturn in the Knight shift.

Perhaps the most striking prediction is the presence of
gapless spin-triplet excitations at the 
 and M points in the
Brillouin zone. If sufficiently large single crystals become
available, this could be tested with inelastic neutron scatter-
ing. Such neutron experiments would also allow detection of
the magnetic competing orders at both the 
 and M points; a
strong test for the presence of the ASL would be a verifica-
tion of the scaling forms for ���q ,�� given in Sec. IV. The
NMR relaxation rate also provides, in principle, a probe of
the magnetic competing orders of the ASL via the power-law
behavior 1 /T1�T�, where �=2�N−1, assuming �N��m
�see Sec. IV�. Such power-law behavior has been
observed,4,8 with ��0.5 �which corresponds to �N�0.75�.
However, the power law seems to depend on magnetic field,4

suggesting that the observed relaxation rate is dominated by
magnetic impurities. As discussed in Sec. IV, the VBS com-
peting order may be probed via inelastic x-ray or neutron-
scattering measurements of the line shape of an appropriate
optical phonon. Again, this would require single-crystal
samples to be prepared.

Since the spinons carry entropy, we expect they will con-
tribute to the thermal conductivity !. Measurement of ! will
be important in herbertsmithite; because it distinguishes be-
tween localized and delocalized gapless excitations, it should
be particularly helpful in understanding the observed spin
liquid behavior. It will also be important to develop a theo-
retical understanding of thermal conductivity in the ASL.

All our predictions for herbertsmithite are tempered by
the twin complications of impurities and DM interaction. To
the extent that magnetic impurities play a dominant role,
their effect may be reduced by applying a large enough mag-
netic field to polarize them. For example, measurements of
specific heat1 and susceptibility7 suggest that magnetic impu-
rities are polarized for a field of H=14 T at temperature T
�2 K. Assuming that the coupling of magnetic impurities to
the bulk kagome spins is characterized by an energy Jimp
�J, then for temperature in the range Jimp�T�W, the effect
of impurities on the intrinsic physics of the kagome layers
should not be severe. However, in this regime one needs to
focus on probes where impurity and intrinsic contributions
can be separated.

An understanding of the effects of DM interaction would
be greatly aided by a better knowledge of its magnitude. To
this end, it will be important to measure the anisotropy of
��T� when single-crystal samples become available. If it is
possible to have a reasonable range of temperature where
Dp ,Dz�T�W, then DM interaction should not be important
within this range. For kBT Dp ,Dz, we argued in Sec. V that
DM interaction will induce spontaneous breaking of time-
reversal symmetry. It would be interesting to look for this at
low temperature in herbertsmithite. We also note that, based
on the local structure of the Cu-O-Cu bonds in herbertsmith-
ite, we expect Dz�Dp, which is consistent with the results of
Refs. 40 and 41. It may be the case that Dz is small enough
that it can be ignored.

We conclude by mentioning some of the open theoretical
issues relevant to the present study. It is important to develop

a better understanding of the effects of impurities on the
ASL. The physics of single nonmagnetic impurities have
been studied in Ref. 54. What is still needed is a treatment of
magnetic impurities, and an understanding beyond the single
impurity level. It would also be useful to make a systematic
study of slave fermion mean-field states including DM inter-
action.

It would be helpful to understand the critical properties of
the ASL better for Nf =4. For example, it might be possible
to calculate the exponent �N by numerical simulations of the
effective field theory. In this paper, we have used calcula-
tions in the projected wave-function approach to try to esti-
mate critical exponents—a better understanding of the criti-
cality in projected wave functions, and its relation to that of
the ASL, would also be helpful.
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APPENDIX A: CONTINUUM LIMIT OF THE MEAN-
FIELD STATE

In this appendix, we first solve the mean-field Hamil-
tonian �Eq. �3�� and discuss its band structure. Then, focus-
ing on the low-energy excitations near the Dirac nodes, we
take the continuum limit and demonstrate explicitly the rela-
tionship between the continuum and lattice spinon fields. The
realization of the microscopic symmetries �e.g., space group�
in the continuum theory depends crucially on these results;
this is discussed in Appendix B.

We work with the six-site unit cell, as shown in Fig. 2.
Note that the six-site unit cell is used in order to accommo-
date the background �-flux per hexagon of the U�1� gauge
field; however, translation symmetry is not broken, and the
true, or underlying, unit cell has three sites as usual. Unit

cells are labeled by Bravais lattice vectors R� =2n1a1+n2a2,
where n1 and n2 are integers, and the primitive vectors are
2a1=2x and a2= �1 /2�x+ �	3 /2�y. Note that we use the sym-
bol R for lattice vectors of the underlying three-site kagome

unit cell, and R� for the enlarged six-site unit cell. Within each
unit cell, sites are labeled, as shown in Fig. 2. Dropping the
spin index, the Hamiltonian may be written as

HMFT = − t�
R�

�f
R� 0

† �fR� 1 + fR� 2� + f
R� 1

† �fR� 2 − fR� 3� + f
R� 2

† �− fR� +a2,0

− fR� −a1+a2,4� + f
R� 3

† �fR� 4 + fR� 5� + f
R� 4

† �fR� 5 + fR� +a1,0�

+ f
R� 5

† �fR� +a2,3 − fR� +a2,1� + H . c.� . �A1�
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We shall always take t�0; in fact, this involves no loss of generality �see the discussion at the end of this appendix�.
Defining the Fourier transform by

fR� i =
1

	Nc
�

k
eik·R� fki, �A2�

where Nc is the number of unit cells, we may go to momentum space and write the Hamiltonian as HMFT= t�kfki
† H�k�ij fkj,

where

− H�k� =

0 1 �1 − K2

�� 0 K1
� 0

1 0 1 − 1 0 − K2
�

�1 − K2� 1 0 0 − K1
�K2 0

0 − 1 0 0 1 �1 + K2
��

K1 0 − K1K2
� 1 0 1

0 − K2 0 �1 + K2� 1 0

� . �A3�

Here, we have defined K1=e2ik·a1 and K2=eik·a2.
The primitive vectors of the reciprocal lattice are chosen

to be b1 /2=��1,−1 /	3� and b2=2��0,2� /	3�. �Again, the
reciprocal-lattice primitive vectors for the underlying unit
cell are b1 and b2.� The Brillouin zone can be chosen, as
shown in Fig. 1. The two highest energy bands of H�k� are
completely flat with energy 2t. The lowest empty and highest
filled bands meet at Fermi points located at �Q; the Fermi
energy is �F= t�	3−1�.

We focus on the low-energy excitations near the Dirac
nodes and so confine our attention to the two bands that
touch at �F. We choose the following basis for eigenvectors
of H��Q� at the Fermi energy:

�e1
+�T =

1
	6

�− e−i�/24 	2e−11�i/24 ei�/8 e−i�/24 0 e−3�i/8 � ,

�A4�

�e2
+�T =

1
	6

�− ei�/24 0 e−5�i/8 − ei�/24 	2e11�i/24 e−i�/8 � ,

�A5�

�e1
−�T =

1
	6

�− e−i�/24 0 e5�i/8 − e−i�/24 	2e−11�i/24 ei�/8 � ,

�A6�

�e2
−�T =

1
	6

�ei�/24 	2e−13�i/24 − e−i�/8 − ei�/24 0 e−5�i/8 � ,

�A7�

so that H��Q�ei
�=�Fei

�. We want to write an effective
Hamiltonian for these states for small deviations of the mo-
mentum from the nodal points. This can be done using first-
order perturbation theory, which leads us to write down the
effective Hamiltonian

�H��ij = �ei
��†D��q�ej

�. �A8�

Here, D��q� is given by H��Q+q�−H��Q�, keeping only
terms first order in q. The result is

H��q� =
1
	2

�qx�
1 + qy�

2� , �A9�

which is nothing but the Hamiltonian for massless Dirac fer-
mions in two spatial dimensions. Note that the velocity of the
Dirac fermions is isotropic, i.e., it does not depend on direc-
tion in k space.

We can use these results to define continuum fermion
fields. Restoring the spin index �, we write

��,��q� � ��e1
��i

�f�Q+q,i,�

�e2
��i

�f�Q+q,i,�
� . �A10�

These fields obey the continuum second-quantized Dirac
Hamiltonian

HDirac = vF� d2q

�2��2��a
† �qx�

1 + qy�
2���a. �A11�

We remark that the sign of the spinon hopping t is unim-
portant for all of our results. From the point of view of the
projected wave function, this can be observed by noting that
t→−t under a particle-hole transformation of the lattice
spinons, fr�→ �i�2���fr�

† . Because this is an SU�2� gauge
transformation, it leaves the wave function invariant. To un-
derstand this from the effective field theory point of view, we
consider the lattice gauge theory Hamiltonian of Eq. �5� and
explicitly keep track of its dependence on t by writing Heff
=Heff�t�. Noting that both the electric field and vector poten-
tial are odd under particle-hole transformation, we have
Heff�t�→Heff�−t�. Let O be any combination of spin opera-
tors �it need not be a local operator in space or time�. O is
invariant under SU�2� gauge transformations and, in particu-
lar, is invariant under particle-hole transformation. Therefore
the expectation value of O will be identical if calculated
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using either Heff�t� or Heff�−t�, and we conclude there is no
physical distinction between these two effective Hamilto-
nians. For simplicity, therefore, we always choose t�0 as
we have done above.

APPENDIX B: SYMMETRIES

Here, we outline the procedure for calculating the realiza-
tion of microscopic symmetries for the continuum Dirac field
�. The basic idea is to diagonalize the mean-field Hamil-
tonian for a finite system and extract the needed information
from properties of the nodal wave functions. The necessary
manipulations are easily carried out with standard symbolic
or numerical packages for linear algebra computations.

We work with the six-site unit cell and consider a system
with periodic boundary conditions in the 2a1 and a2 direc-

tions so that R� , R� +2L1a1, and R� +L2a2 are all identified. We

label sites by r or, equivalently, by the pair �R� , i�. The num-
ber of sites is then Ns=6Nc=6L1L2, and the Hamiltonian is a
Ns	Ns matrix defined by �H�rr�= "1 for r and r� nearest
neighbors, and zero otherwise. The negative �positive� sign is
taken for the thick �thin� bonds in Fig. 2. L1 and L2 must be
chosen so that the nodal wave vectors �Q are in fact present
in the Brillouin zone of the finite-size system.

The spin plays no role in these manipulations, so we drop
the spin index, and we can then think of the continuum Dirac
field as a four-component object. We write

�ap�q = 0� = �
r

#ap
� �r�fr, �B1�

where a= + ,− is the nodal index and p=1,2 is the index in
the two-component Dirac space. The #a are the nodal wave
functions, satisfying H#a=�F#a, and are given by

#ap�R� ,i� =
eiaQ·R�ep

a�i�
	Nc

. �B2�

Now consider a symmetry operation S, with the following
action on the fermion fields:

S:fr → �rfS�r�, �B3�

where in the present case we can take the gauge transforma-
tion �r= �1. This induces the following action on the wave
functions:

�S#a��S�r�� = �r#a�r� . �B4�

This allows us to define the matrix of the symmetry opera-
tion by

�S�S�r�,r = �r �B5�

for all r, with all other elements zero.
Next, we can express the action of the symmetry on the

nodal wave functions as

S#a = cab#b, �B6�

where the coefficients cab can be explicitly computed by tak-
ing inner products. Translating this into the action on the
fermion field, we have

S:�a → cab
� �b, �B7�

which gives us the desired result.

APPENDIX C: GROUP THEORY OF THE KAGOME
LATTICE

1. Outline

Here, we work out some details of the group theory and
representation theory of the kagome lattice space group. The
goal is to understand the action of the space group on objects
invariant under translations by 2a1 and 2a2, which is true of
the competing orders within the ASL, and to that end we
define a “reduced” space group. We use these results to clas-
sify all possible site and bond ordering patterns invariant
under T2a1

and T2a2
.

TABLE II. Character table for D6 �Ref. 55�. The first column labels the representation, and the following
columns give the values of the character on each conjugacy class.

Rep. C1 C6
3 C6

2 C6 Ca Ca�

A1 1 1 1 1 1 1

A2 1 1 1 1 −1 −1

B1 1 −1 1 −1 1 −1

B2 1 −1 1 −1 −1 1

E1 2 −2 −1 1 0 0

E2 2 2 −1 −1 0 0

c’

c

b’

b

a’

a

FIG. 15. Twofold rotation axes for the symmetries of the hexa-
gon. Equivalently, these can be thought of as mirror symmetries in
the plane.
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2. Point group

The point group of the kagome lattice is D6, which is the
symmetry group of a regular hexagon. The group D6 has 12
elements. We define the elements of D6 by operations on the
hexagon shown in Fig. 15. D6 is generated by C6=R�/3,
which is a counterclockwise rotation by � /3 about the z axis
piercing the center of the hexagon, and Ca=Ry, which is a �
rotation about the a axis, as shown in Fig. 15 �this is equiva-
lent to a mirror symmetry in the plane�. The group is com-
pletely specified by the relations C6

6=Ca
2= �C6Ca�2=1.55

The 12 elements of D6 are

D6 = �1,C6,C6
2,C6

3,C6
4,C6

5,Ca,Ca�,Cb,Cb�,Cc,Cc�� . �C1�

Here, Ca�, Cb, etc., are rotations by � about the axes shown
in Fig. 15. D6 has the six conjugacy classes C1= �1�, C6
= �C6 ,C6

5�, C6
2= �C6

2 ,C6
4�, C6

3= �C6
3�, Ca= �Ca ,Cb ,Cc�, and Ca�

= �Ca� ,Cb� ,Cc��. The character table is given in Table II.55

The faithful representation E1 is obtained by straightfor-
wardly representing D6 in terms of 2	2 rotation and reflec-
tion matrices. A2 can be obtained from this representation by
taking the determinant—it distinguishes rotations from mir-
ror symmetries in the plane. Note that E2=B1 � E1=B2 � E1.

3. Space group

The space group of the kagome lattice is generated by
translations, and the D6 point-group operations preserving
the center of a particular hexagon. A general element of the
space group can by represented by the Seitz operator �
R
t�,
where R�O�2�, and t=n1a1+n2a2 is a lattice translation

vector. This operator is defined in terms of its action on a
lattice point r,

�
R
t�r = Rr + t . �C2�

The entire space group can be generated by �
C6
0�=R�/3,
�
Ca
0�=Ry, and �
1
a1�=Ta1

.
We now recall some general facts about space groups.

Denote the space group by Gs. The translation group Gt is a
normal subgroup �i.e., gGtg

−1=Gt for all g�Gs�. The factor
group Gp=Gs /Gt is the point group.

4. Reduced space group

Suppose we are interested in the transformation properties
of some object invariant under translation by a certain num-
ber of lattice vectors, say, by m1a1 and m2a2. So, acting on
this object, we have Ta1

m1 =Ta2

m2 =1. Let us suppose m1=m2

=m and define the group of translations leaving our object
invariant by

Gtm = ��
1
m�n1a1 + n2a2��;n1,n2 � Z� . �C3�

Because this set of vectors is invariant under the kagome
space group, Gtm forms a normal subgroup of Gs. �Note this
would not be the case if m1�m2.� Therefore we can define
the reduced space group as the factor group Gsm=Gs /Gtm.
The reduced space group completely describes the action of
the space group on our object of interest.

The enhanced fermion bilinears in our kagome algebraic
spin liquid are invariant under translation by 2a1 and 2a2. So,
to understand their transformations under the space group,

TABLE III. Conjugacy classes of Gs2, shown with their sizes and a representative element.

Conj. class C1 Ct C6
3 C6t

3 C6
2

Number elts. 1 3 1 3 8

Representative 1 �
1
a1� �
C6
3
0� �
C6

3
a1� �
C6
2
0�

Conj. class C6 Ca C̃a
Ca� C̃a�

Number elts. 8 6 6 6 6

Representative �
C6
0� �
Ca
0� �
Ca
a2� �
Ca�
0� �
Ca�
a1�

TABLE IV. Character table of Gs2.

Rep. C1 Ct C6
3 C6t

3 C6
2 C6 Ca C̃a

Ca� C̃a�

A1 1 1 1 1 1 1 1 1 1 1

A2 1 1 1 1 1 1 −1 −1 −1 −1

B1 1 1 −1 −1 1 −1 1 1 −1 −1

B2 1 1 −1 −1 1 −1 −1 −1 1 1

E1 2 2 −2 −2 −1 1 0 0 0 0

E2 2 2 2 2 −1 −1 0 0 0 0

F1 3 −1 3 −1 0 0 1 −1 1 −1

F2 3 −1 3 −1 0 0 −1 1 −1 1

F3 3 −1 −3 1 0 0 1 −1 −1 1

F4 3 −1 −3 1 0 0 −1 1 1 −1
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we consider m=2 and Gs2. Gs2 can be interpreted as the
kagome space group, acting on objects with crystal momen-
tum lying at the 
 point �q=0�, or one of the three M points.
Alternatively, Gs2 gives the action of the space group on any
ordering pattern on the kagome lattice with the 12-site 2
	2 unit cell �i.e., 2 unit cells by 2 unit cells� invariant under
T2a1

and T2a2
.

We shall work out some properties of Gs2 and determine
its character table. Elements of Gs2 can be represented again
by Seitz operators �
R
t�, where now we restrict t
=0,a1 ,a2 ,a1+a2. The Seitz operators multiply by the usual
rules, except that if one obtains a vector t violating the re-
striction above, we add and subtract integer multiples of 2a1
and 2a2 so that the restriction is satisfied—this is just the
usual way to multiply elements of a factor group. Gs2 has 48
elements. There is a translation subgroup of Gs2, which we
denote by T2= ��
1
t� , t=0,a1 ,a2 ,a1+a2�. T2 is a normal sub-
group, and clearly T2�Z2	Z2. The factor group Gs2 /T2 is
just the point group D6 again. Gs2 has ten conjugacy classes;
each class is listed in Table III, together with its size and a
representative element.

The character table for Gs2 is given in Table IV. The first
six representations are obtained from those of D6, exploiting
the fact that D6�Gs2 /T2. To work out the properties of the
remaining four representations, first note that the sum of the
squares of their dimensions must add up to 36. The only
possibilities of dimensions consistent with this are �3,3,3,3�
and �5,3,1,1�. Suppose the second possibility occurs, and F1
is a one-dimensional representation. Now it must be the case
that UF1�t�=s for all translations t�T2, where s= �1. This is
because one-dimensional representations must be constant
on conjugacy classes and because the translations all satisfy
t2=1. Now we cannot have s=1 because then we would have
obtained a distinct irreducible representation of D6. There-
fore s=−1. However, we have

− 1 = UF1�Ta1+a2
� = UF1�Ta1

�UF1�Ta2
� = 1, �C4�

a contradiction. So it must be the case that all Fi are three
dimensional.

We can construct the representation F1 explicitly—it is
made up of the 3	3 matrices Uij

F1�S� describing the action of
the space group on NA

i and NC
i , which was introduced in Eq.

�30�. These matrices can be determined using the symmetry
transformations of Sec. II B, and the character of F1 is then
easily obtained. Finally, we obtain the remaining representa-
tions by taking tensor products of F1 with the d=1 irreduc-
ible representations. Specifically, F2=A2 � F1, F3=B1 � F1,
and F4=B2 � F1.

5. Site and bond ordering patterns

We can use the above group-theoretic results to classify
all possible ordering patterns with the 12-site unit cell shown
in Fig. 16. Such patterns are invariant under translations by
2a1 or 2a2 and thus transform under the reduced space group
Gs2.

We first focus on patterns of order that can be visualized
in terms of a real field residing on the lattice sites. We are
primarily interested in collinear spin ordering patterns, and,
in this case, the real field should be associated with �Sr

z�. We
define a 12-dimensional vector space, where basis vectors
are labeled by 
r�, and r is one of the 12 sites in the unit cell.
The action of the space group on this vector space is given
by S
r�= 
S�r��, and we have thus constructed a �reducible�
representation of the space group, which we shall call Vs.
The matrices for this representation can be explicitly con-
structed, and the character is as shown in Table V. The de-
composition of Vs into irreducible representations is

Vs = A1 � E2 � F1 � F3 � F4. �C5�

An ordering pattern of the type we consider here is asso-
ciated with a real linear combination of the 
r�,


site order� = �
r

cr
r� , �C6�

where the coefficients cr��Sr
z� are the values of the ordering

field. For each irreducible representation in Eq. �C5�, if we
find a basis of vectors in the form Eq. �C6�, then we have
found the site-ordering pattern transforming in that represen-
tation. We are particularly interested in the site-ordering pat-
tern transforming as the F1 representation because this trans-
forms identically to some of the competing orders in the
Hastings ASL �the NA

i and NC
i fermion bilinears�. The pat-

terns transforming in this representation are depicted in Fig.
16.

We now carry out the same analysis as above, but for
ordering patterns that can be visualized in terms of a real

1 M2

M3

M

FIG. 16. Depiction of the three patterns of site order transform-
ing according to the F1 representation. Each lies within the 12-site
unit cell used to construct all possible site and bond ordering pat-
terns. Each pattern’s crystal momentum lies at one of the M points
of the Brillouin zone Mi �see Fig. 1�. In each case the coefficients cr
are zero or �1. The circles represent cr=1, the squares cr=−1.

TABLE V. Characters of Vs and Vb representations of Gs2.

Rep. C1 Ct C6
3 C6t

3 C6
2 C6 Ca C̃a

Ca� C̃a�

Vs 12 0 0 4 0 0 2 0 2 0

Vb 24 0 0 0 0 0 0 0 4 0
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field residing on nearest-neighbor bonds. There are 24 bonds
in the unit cell—to each of these we associate a vector 
b�,
and bond ordering patterns correspond to real linear combi-
nations of the form


bond order� = �
b

cb
b� . �C7�

As before, the action of the space group on this vector space
is given by S
b�= 
S�b��. We refer to the resulting 24-
dimensional representation of Gs2 as Vb; its character is
given in Table V. The decomposition into irreducible repre-
sentations is

Vb = A1 � B2 � E1 � E2 � F1 � F1 � F2 � F3 � F4 � F4.

�C8�

It should be noted that F1 occurs twice; this is tied to the fact
that the Hastings state has three inequivalent bonds in its unit
cell, as discussed below.

The first F1 irreducible representation of bond orders �F1
A�

consists of the patterns shown in Fig. 17, the second �F1
B� of

the patterns shown in Fig. 18. The F1
A bond orders can be

superposed to form the pattern shown in Fig. 19�a�, and the
F1

B orders to form that shown in Fig. 19�b�. Formally, this
superposition is achieved by taking linear combinations in
the vector space defined by Eq. �C7�. The Hastings state can
be viewed as a superposition of the two patterns in Fig. 19,
together with the uniform state where all bonds have the
same amplitude. Depending on the relative weights of these
three states, one constructs Hastings states with different
strengths of the three inequivalent bonds in its unit cell �see
Sec. III B�.

APPENDIX D: ORDER PARAMETER FOR q=0 STATE

Here, we construct the order parameter for the q=0 mag-
netically ordered ground state of the kagome lattice in terms
of the complex vector n=nr+ ini. The q=0 state is a coplanar
ordering formed by choosing the vector sum of the ordered
moments on a single up-pointing triangle to be zero and then

translating this triangle to fill the rest of the lattice. The q
=0 state is thus completely specified by the orientations of
spins on a single up-pointing triangle. We choose nr to be
equal to the ordered moment on the “top” site of the up-
pointing triangle, as shown in Fig. 20. The remaining mo-
ments are specified by the chirality vector c, where c ·nr=0.
Moving counterclockwise around the triangle, the spin on
each site is rotated 120° from the previous one about the axis
given by c. This is illustrated in Fig. 20. We choose the
imaginary part ni=c	nr.

The action of various symmetry operations on the order
parameter n is now easily worked out. We have

Ta1
:n → n , �D1�

R�/3:n → e2�i/3n , �D2�

Ry:n → n�, �D3�

T:n → − n�. �D4�
M2

M3

M1
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FIG. 17. Depiction of the three FA
1 bond orders. The patterns are

labeled by their crystal momenta �Fig. 1�. The coefficients cb are
zero or �1. Crosshatched bonds represent cb=1 and gray-shaded
bonds cb=−1.
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FIG. 18. Depiction of the three F1
B bond orders. The patterns are

labeled by their crystal momenta �Fig. 1�. The coefficients cb are
zero or �1. Crosshatched bonds represent cb=1 and gray-shaded
bonds cb=−1.
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FIG. 19. Patterns of bond order formed by superposing �a� the
three FA

1 patterns and �b� the three FB
1 patterns. The coefficients cb

are zero or �1. The crosshatched bonds represent cb=1 and the
gray-shaded bonds cb=−1. These two patterns can in turn be super-
posed with the uniform state �all cb=1� to form the Hastings state
with different strengths of the three inequivalent bonds in the unit
cell.
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APPENDIX E: FULLY SYMMETRIC PROJECTED WAVE
FUNCTIONS

In this section we discuss how to construct a Gutzwiller-
projected wave function which is fully symmetric under the
space group. First, we show that a simple projected wave
function on a finite system may break lattice symmetry. Two
projected wave functions are identical �up to a phase� if one
can be transformed into another by a gauge transformation.
Therefore a projected wave function is completely deter-
mined by the hopping magnitudes on all the bonds and the
fluxes through all closed loops �assuming there is no pair-
ing�, which are both gauge invariant. On a torus the fluxes
through all loops are reduced into the fluxes inside all
plaquettes, and two global loops going across the two bound-
aries �for instance, loop 1 and loop 2a in Fig. 21�.

Consider the projected wave function for the ASL on a
kagome lattice torus with L2 odd; that is, an odd number of
unit cells in the a2 direction. In Fig. 21 we show two global
loops, loop 2a and loop 2b, which are separated by one unit-
cell spacing. That is, they are related by the translation Ta1

.
Accordingly there are L2 unit cells contained in the cylinder
between loop 2a and loop 2b. Because there is � flux
through each unit cell, in total we have �L2=� mod 2� flux
through the cylinder. As a result, the fluxes through loop 2a
and loop 2b differ by �. This means the translation symme-
try along the a1 direction is broken in the projected wave
function.

To avoid this problem, we focus on lattices with even L1
and L2. Repeating the analysis above, we conclude that trans-
lation symmetry along both a1 and a2 directions is preserved.
However, there are still two issues that need to be addressed.
First, we shall see that, in order to construct a symmetric
wave function, we need to ensure that the mean-field Hamil-
tonian does not have fermion states lying precisely at the
Dirac nodes. Second, even if nodal states are not present, the
point-group symmetry may still be broken. Both these issues
are resolved by noting that one still has the freedom to
choose the fluxes through the two holes of the torus. The two
choices preserving time-reversal and translation symmetry
are 0 and �. For L1=L2=4N, 0 flux corresponds to periodic
boundary conditions and � flux to antiperiodic boundary
conditions. On the other hand, for L1=L2=4N+2, 0 flux cor-

responds to antiperiodic boundary conditions in the a1 direc-
tion and periodic boundary conditions in the a2 direction. �
flux corresponds to periodic boundary conditions in the a1
direction and antiperiodic boundary conditions in the a2 di-
rection.

If there are nodal states in the mean-field Hamiltonian,
there is a ground-state degeneracy arising from the different
ways to fill these states, and the resulting wave functions
transform nontrivially under microscopic symmetries. Fur-
thermore, we find the ground-state energy is usually in-
creased in such situations. Therefore, we always choose the
boundary conditions to avoid the nodal fermions. We intro-
duce the notation �P ,A�, for example, to denote the state
with periodic boundary condition in a1 direction and antipe-
riodic boundary condition in a2 direction. We find that for
L1=L2=4N, �P ,A�, �A , P� and �A ,A� lack nodal fermions,
and �P , P� has nodal fermions. For L1=L2= �4N+2�, �P , P�,
�P ,A�, and �A , P� lack nodal fermions, and �A ,A� has nodal
fermions.

We find that in both bases, the three states avoiding nodal
fermions transform into one another other under point-group
symmetry, thus forming a three-dimensional representation
of the point group. Because the D6 point group only has one
and two-dimensional irreducible representations �see Table
II�, this three-dimensional representation is reducible. In par-
ticular, for L1=L2= �4N+2�, the three-dimensional represen-
tation is A2 � E2, and therefore, it is impossible to use it to
construct a symmetric wave function. However, for L1=L2
=4N, we find the representation is A1 � E2, and we are able
to construct a symmetric wave function because A1 is the
trivial representation. This symmetrized wave function,
which is a linear superposition of �P ,A�, �A , P�, and �A ,A�
states, is the projected wave function that we used to study
the spin and bond correlations in Sec. VI B and Sec. VI C.

The fact that it is impossible to construct a fully symmet-
ric wave function for L1=L2= �4N+2� from the
�P ,A� , �P , P� , . . . wave functions does not mean it is impos-
sible to construct a fully symmetric projected wave function
at all. For example, one may be able to use states with
twisted boundary conditions and obtain a linear combination
invariant under both time-reversal and space-group symme-
tries. This possibility remains to be studied. Finally, we re-
mark that the procedure described here cannot construct fully
symmetric wave functions on the 36-site cluster that has
been extensively studied using exact diagonalization.15,18–20

z

(a)

n = yr

(b)

y

x

FIG. 20. Spin configuration on up-pointing triangles for two
inequivalent q=0 ground states. In both triangles, nr=y. In triangle
�a�, the chirality vector c=z, while in triangle �b�, c=−z.

a2

a1

loop−1

loop−2b

loop−2a

FIG. 21. We plot the global loops on a torus. To demonstrate the
kagome lattice problem in text, we plot loop 1 which is along a1

direction and loop 2a and loop 2b which are along the a2 direction.
Loop 2a and loop 2b are separated by one unit-cell spacing.
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