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We discuss the quantum transport of electrons through a resonant tunnel junction coupled to a nanomechani-
cal oscillator at zero temperature. By using the Green’s-function technique, we calculate the transport proper-
ties of electrons through a single dot strongly coupled to a single oscillator. We consider a finite chemical-
potential difference between the right and left leads. In addition to the main resonant peak of electrons on the
dot, we find satellite peaks due to the creation of phonons. These satellite peaks become sharper and more
significant with increasing coupling strength between the electrons and the oscillator. We also consider the
energy transferred from the electrons to the oscillator.
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I. INTRODUCTION

In recent years, there has been great interest in quantum
transport through both single1 electronic levels in quantum
dots and single molecules.2 Very interesting and significant
signatures of the electron-phonon interaction have been ob-
served experimentally3 in cases where the electron-phonon
coupling is beyond the validity of simple perturbation theory.
Single molecular electronics4 has also attracted much atten-
tion, motivated both by the scientific challenges and by their
potential applications in nanoelectromechanical systems
�NEMS�.5,6 The most interesting challenges are the verifica-
tion of the uncertainty principle,7 the study of the quantum
transport properties as atomic scale quantum effects8,9 be-
come more important and significant, and the fabrication of
devices on the nanoscale that are expected to be faster, more
reliable, and more sophisticated than existing technology. An
interesting aspect of NEMS is the interplay between elec-
trons, phonons, and the coupling of leads to the system.9,10

Inelastic tunneling spectroscopy11,12 is the most direct way of
observing the inelastic effects in the current-voltage �I-V�
characteristics of NEMS. NEMS can be used as ultrasensi-
tive detectors for mass,13 extremely weak forces,14 ultrasmall
displacements,15 and even in chemical16 and biological17 ap-
plications. At very low bias, voltage resonances occur with
the frequency of the nanomechanical oscillator. The charac-
teristic frequency associated with these systems is on the
order of 1 GHz.18 Such a high resonance frequency is suffi-
cient to enable the cooling19 of a nanomechanical resonator
to its ground state: a necessary condition for these measure-
ments and something on which experimental effort is now
under way. Moreover, the quantum transport requires very
highly sensitive measurements that are achievable such as
those using single electron transistors �SETs� or supercon-
ducting single electron transistors �SSETs�.

Most of the theoretical work on transport in NEMS has
been done within the scattering theory approach �Landauer�,
but it disregards the contacts and their effects on the scatter-
ing channel as well as effect of electrons and phonons on
each other.20 Very recently, the nonequilibrium Green’s-
function �NEGF� approach21 has been growing in importance
in the quantum transport of nanomechanical systems.22 An
advantage of this method is that it treats the infinitely ex-
tended reservoirs in an exact way, which may lead to a better
understanding of the essential features of NEMS. The pio-

neering work on NEGF was done by Datta and Lake.23

NEGF has been applied in the study of shot noise in chain
models24 and disordered junctions,25 while noise in Coulomb
blockaded Josephson junctions has been discussed within a
phase correlation theory approach.26 The case of an inelastic
resonant tunneling structure, in which strong electron-
phonon coupling is often considered, a very strong source-
drain voltage is expected for which coherent electron trans-
port in molecular devices has been considered by some
workers27 within the scattering theory approach. Inelastic ef-
fects on the transport properties have been studied in connec-
tion with NEMS and substantial work on this issue has been
done, again within the scattering theory approach.20 Phonon-
assisted tunneling of nonresonant systems has mostly been
shown by experiments on inelastic tunneling spectroscopy
�ITS�. With the advancement of modern technology, as com-
pared to ITS, scanning tunneling spectroscopy �STS� and
scanning tunneling microscopy �STM� have proved to be
more valuable tools for the investigation and characterization
of molecular systems28 in the conduction regime. Recently,
phonon-assisted resonant tunneling conductance has been
discussed within the NEGF technique at zero temperature.29

In the present work, we employ the Green’s-function
method in order to discuss the transport properties of NEMS.
This is a fully quantum-mechanical formulation whose basic
approximations are very transparent, as the technique has
already been used to study transport properties in a wide
range of systems. The main differences between existing
work and ours is that in most of the existing literature a very
large chemical-potential difference is considered, while we
consider ranges from the very small to the very large. In our
calculation the inclusion of the oscillator is not perturbative
as the STS experiments9,10 are beyond the range of perturba-
tion theory. Hence, an approach is required beyond the quan-
tum master equation22,30 or linear response. In addition, we
aim in the future to apply the same methodology to describe
more clearly nonperturbative systems such as a quantum
shuttle.22 Hence, our work provides an exact analytical solu-
tion to the current-voltage characteristics, conductance, cou-
pling of leads with the system, and very small chemical-
potential difference; and it includes both the right and left
Fermi-level response regimes. However, our theory does rely
on the commonly used wide-band approximation,31–33 where
the coupling between leads and dot is taken to be indepen-
dent of energy. This provides a way to perform transient
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transport calculations from first principles while retaining the
essential physics of the electronic structure of the dot and the
leads. Another advantage of this method is that it treats the
infinitely extended reservoirs in an exact way in the present
system, which may give a better understanding of the essen-
tial features of NEMS in a more appropriate quantum-
mechanical picture.

II. FORMULATION

We consider a single quantum dot connected to two iden-
tical metallic leads. A single oscillator is coupled to the elec-
trons on the dot and an applied gate voltage is used to tune
the single level of the dot. In the present system, we neglect
the spin degree of freedom and electron-electron interaction
effects and consider the simplest possible model system. In
this initial work, we also neglect the effects of finite electron
temperature of the lead reservoirs and damping of the oscil-
lator. Our model consists of the individual entities such as a
single quantum dot and the left and right leads in their
ground states at zero temperature. The Hamiltonian of our
simple system29,31,32 is

Hdot-ph = ��0 + ��b† + b��c0
†c0 + �0b†b , �1�

where �0 is the single energy level of electrons on the dot
with c0

† ,c0 as the corresponding creation and annihilation op-
erators, � is the coupling strength between electrons on the
dot and an oscillator of frequency �0, and b† ,b are the rais-
ing and lowering operators of the phonons. The remaining
elements of the Hamiltonian are

Hleads = �
k=L,R

�kck
†ck �2�

Hleads-dot =
1

�N
�

k=L,R
Vk�ck

†c0 + c0
†ck� , �3�

where N is the total number of states in each lead. The total
Hamiltonian of the system is thus

H = Hdot-ph + Hleads + Hleads-dot. �4�

We write the eigenfunctions of Hdot-ph in a k-space represen-
tation as

�n�k,x0 � 0� = An exp�− 1
2k2�Hn�k�exp�− ikx0� , �5�

�n�k,x0 = 0� = An exp�− 1
2k2�Hn�k� �6�

for the occupied, x0�0, and unoccupied, x0=0, dots, respec-
tively, where x0 is the displacement of the oscillator due to
the coupling to the electron and Hn�k� are the usual Hermite
polynomials. Here we have used the fact that the harmonic
oscillator eigenfunctions have the same form in both real and
Fourier space.

In order to transform between the representations for the
occupied and unoccupied dots, we require the matrix with
elements

Amn =� �n
��k,x0 � 0��n�k,x0 = 0�dk , �7�

which may be simplified34 as

Amn =
l

��2m+nn ! m!
� exp�− k2�Hm�k�Hn�k�exp�ikx0�dk

=�2n−mm!

n!
exp�−

1

4
x0

2	�1

2
ix0	
n−m


Lm

n−m
�1

2
x0

2	 �8�

for m�n, where x0=� /�0, �=�2 /�0, and Lm
n �x� are the as-

sociated Laguerre polynomials. Note that the integrand is
symmetric in m and n but the integral is valid only for m
�n. Clearly the result for m	n is obtained by exchanging m
and n in Eq. �8� to obtain

Amn =�2
n−m
min�m,n�!
max�m,n�!


exp�−
1

4
x0

2	�1

2
ix0	
n−m


Lmin�m,n�

n−m
 �1

2
x0

2	 . �9�

III. GREEN’S FUNCTIONS AND QUANTUM
TRANSPORT

In order to calculate analytical results and to discuss the
numerical spectrum of the quantum transport properties of
nanomechanical systems, our focus in this section is to de-
rive an analytical relation for the current, as well as the dif-
ferential conductance, as a function of applied bias. In ob-
taining these results, we use the wide-band approximation
where the self-energy of the dot due to each lead is consid-
ered to be energy independent and is given by

�K
r = nD
VK
2�

−�

+� d�K

E − �K
= − 2�inD
VK
2 = − i

1

2

K, �10�

where nD is the constant number density of the leads, K
=L ,R represent the left and right leads, and 
K is the damp-
ing factor �
L=
R=
�. Similarly

�K
a = ��K

r �� = + i 1
2
K. �11�

We solve Dyson’s equation using Hdot-leads as a perturba-
tion. For the more general systems we aim to treat in the
future, this is a reasonable small parameter. In the present
case, however, we can find an exact solution. The retarded
and advanced Green’s functions on the dot, with the phonon
states in the representation of the unoccupied dot, may be
written as

Gnn�
r�a� = �

m

Anmgm
r�a�An�m

� , �12�

where gn
r�a� is the retarded �advanced� Green’s function on

the occupied dot,

gn
r�a� = �E − �0 − �n + 1

2��0 + � � i
�−1, �13�

with �=�2 /�0.
The lesser self-energy may be written as

�K
��E� = i
fK�E� , �14�

where fL�R� are the Fermi distribution functions of the left
and right leads, which have different chemical potentials un-
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der a voltage bias, including a contribution from the state of
the oscillator.

For the present case of zero temperature, the lesser self-
energy may be recast in terms of the Heaviside step function
��x� as

�K
��E� = i
���FK + 1

2�0 − E��n,0, �15�

where �FK is the Fermi energy on lead K and the Kronecker
delta, �n,0, signifies that the oscillator is initially in its ground
state, n=0. Similarly one can calculate the greater self-
energy as

�K
	�E� = − i
�1 − fK�E�� . �16�

The lesser Green’s function is related to the density matrix
through

�nn� = − 2iGnn�
� . �17�

Here Gnn�
� is the full lesser Green’s function including the dot

and the leads. With the help of the density matrix formula-
tion, the current formula is

I = �Î� = Tr��Î� = i 1
2Tr�G�Î� , �18�

where Î is the current operator. Using this formula, we cal-
culate the current from the contact through both barriers and
the central region with the oscillator on the dot. The general
expression for the current is

I =
e

4�
� 
Tr���L

� − �R
���Gr − Ga��

+ Tr�„��L
a − �L

r � − ��R
a − �R

r �…G���dE . �19�

We can obtain the same result by calculating the current from
the dot into one of the leads, which gives

I =
e

4�
� 
Tr�− �R

��Gr − Ga�� − Tr���R
a − �R

r �G���dE , �20�

where the first term in the above expression vanishes for n
	0. The lesser Green’s function in the presence of the oscil-
lator is given by

G� = Gr��Ga with �� = �L
� + �R

�. �21�

Using the same damping factor in each lead �
L=
R
=
�, the final expression for the total current �I� reduces to

I =
e

4�
� Tr��L

� − �R
���Gr − Ga�dE . �22�

IV. AVERAGE ENERGY

To calculate the energy transferred from the electrons to
the oscillator, we return to Eq. �20� and note that the contri-
butions to the trace with n	0 may be identified with the
current due to those electrons which have been scattered in-
elastically with the creation of n phonons. As the lesser self-
energy factors in the first term are zero for n	0, the inelastic
contributions are solely contained in the second term. The

first term in Eq. �20� does contribute to the total current
calculated in Eq. �22� but does not contribute to the energy of
the oscillator. We may therefore use the lesser Green’s func-
tion �or density matrix� to calculate the energy transferred to
the oscillator to obtain

Eph = �
n

n�0Yn

I
where Yn =

1

2
i

e

4�
� Gnn

� dE . �23�

From Eq. �23� we may write the lesser Green’s function in
terms of the lesser self-energy and the retarded and advanced
Green’s functions as

Gnn
� = Gn0

r ��0,L
� + �0,R

� �G0n
a , �24�

where we note that as we work at T=0, the self-energy terms
are nonzero only for the zero-phonon state. Hence we have

Yn =
1

2
i

e

4�
�
m,k
�

−�

� � AnmA0m
�

E − �0 − �m + 1
2��0 + � + i


�

 �i
���FL +

1

2
�0 − E	 + i
���FR +

1

2
�0 − E	�


 � A0kAnk
�

E − �0 − �k + 1
2��0 + � − i


�dE . �25�

We note, however, that this expression is nonzero even when
�FL=�FR and �0��F due to the dot being permanently occu-
pied in these circumstances. To remove this term, we subtract
the contribution when the two Fermi levels are equal. This
reduces the expression for Yn to

Yn = −
1

2


2e

4�
�

�FR

�FL ��
m

AnmA0m
�

E − �0 − �m + 1
2��0 + � + i


�2

dE .

�26�

After integrating the above expression,35 we arrive at the
final result,

Yn = −
1

2


2e

4�
�
m,k

An,mA0,m
� A0,kAn,k

�

�k − m��0 + 2i



 �ln� �FL − �0 − m�0 + � − i


�FL − �0 − k�0 + � + i

�

− ln� �FR − �0 − m�0 + � − i


�FR − �0 − k�0 + � + i

�� . �27�

Hence, the average energy transferred to the oscillator may
be calculated using Eq. �23�.

V. DISCUSSION OF RESULTS

The differential conductance is shown graphically in Fig.
1 as a function of applied voltage for different values of
coupling strength, using the following parameters:29,31,32,36–38

the single energy level of the dot �0=0.5, the characteristic
frequency of the oscillator �0=0.3, the damping factor 

=0.3�0, and the chemical potentials 0��FL�1 and �FR=0.
These are chosen to illustrate the physics of such systems
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rather than to represent a specific implementation. The oscil-
lator induced resonance effects are clearly visible in the nu-
merical results. It must be noted that we have obtained these
results in the regime of strong and zero or weak coupling of
the oscillator with the electrons on the dot. The coupling
between the leads and the dot is considered to be symmetric
and we assume that the leads have constant density of states.
With increasing coupling strength, the number of satellite
peaks also increases, while for zero or weak coupling we find
only the basic resonance. This confirms the effect of the cou-
pling between the electrons on the dot and the single oscil-
lator mode where higher-energy electrons are able to drop to
the dot energy by creation of phonons. We note the similarity
of Figs. 1–3�a� of Ref. 39, which refers, however, to the
transmission amplitude of an interference device, albeit us-
ing a similar Hamiltonian. Transport processes involving cre-
ation or annihilation of phonons are a common feature of
NEMS.

Closer analytical examination of the expression for differ-
ential conductance �26� shows that the main resonance peaks
occur when the applied voltage �FL is equal to the energy
eigenvalues of the coupled dot electron and oscillator. The
main peak �n=0� is given by the Lorentzian form with its
center at �FL=�0−�, known as a Breit-Wigner36,40,41 reso-
nance. The satellite peaks due to the emission of phonons
can be seen on the positive energy side with �FL=�0−�
+n�0, where �0 is the characteristic frequency of the oscil-
lator.

The main or basic resonance peak is the elastic or zero-
phonon transition. The amplitude of the satellite peaks or
steps is much smaller than the basic resonance peak. The
electrons that tunnel into the dot can excite only the oscilla-
tor mode as at zero temperature there are no phonons avail-
able to be absorbed. Moreover, we have seen that with in-
creasing coupling strength, the number and intensity of the
satellite peaks increases but their intensity always remains
much smaller than the main peak. The peaks or steps in the
current characteristics vanish if the upper electrochemical
potential is smaller than the dot energy plus the oscillator
frequency.

The differential conductance as a function of gate voltage
�0 is shown in Fig. 2 for various coupling strengths at T=0.
The main peak at �0=�FL+� corresponds to elastic or zero-
phonon transition and the satellites peaks are due to emission
of phonons corresponding to n=1,2 ,3 ,4 , . . .. This shows
more and more satellites corresponding to every multiple of
�0.

With increasing coupling strength at constant zero tem-
perature, we see that the energy transferred to the oscillator
increases, while the amplitude of the satellite peaks is much
smaller than the main peak, which is shifted toward the right
by a factor of �. The amplitude of the main peak is also
affected: its magnitude decreases with increasing coupling
strength.

In Fig. 3, we plot the average energy that is transferred to
the oscillator per transmitted electron as a function of applied
bias and gate voltage. At zero temperature the oscillator can
only gain energy from the electrons. We note that there is
some structure as individual phonons are excited but there is
also a saturation level ��4. The peak just below �0��FR in
the figure at right is due to the fact that there is no elastic
transmission in this regime and all transmitted electrons re-
sult in the creation of phonons. Note that this is the average
energy transferred when the system starts in its ground state
and should not be confused with the energy transferred after
many electrons have interacted with the oscillator. We con-
sider T=0 in this work for simplicity and will consider finite
temperature effects later. Moreover, the phonon energy of the
oscillator on the dot and the level width are both typically
larger than the experimental temperature. Our theory is in
good agreement with the growing body of
theoretical29,31,32,36 and experimental37,38 works in this area.

VI. SUMMARY

In this work, we analyzed the dynamics of a nanome-
chanical oscillator coupled to a resonant tunnel junction by
using the Green’s-function approach without treating the
electron-phonon coupling as a perturbation. We have derived
an expression for the current and differential conductance
and discuss it in detail for different values of the coupling
strength. We have found steps/peaks in the current spectrum
as a function of the chemical-potential difference in addition
to the main resonant step, due to the transfer of energy from
electrons on the dot to the oscillator. We have also studied
the effect of gate voltage. We have also derived an expres-
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sion for the average energy transferred from the electrons to
the oscillator. We have shown that the steps grow with in-
creasing coupling strength of electrons on the dot and the
oscillator. This confirms that the additional satellite peaks or
steps in the spectrum of numerical results are due to the

transfer of energy from the electrons to the oscillator.
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