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Dislocation and grain-boundary melting are studied in three dimensions using the phase field crystal method.
Isolated dislocations are found to melt radially outward from their core, as the localized excess elastic energy
drives a power-law divergence in the melt radius. Dislocations within low angle to intermediate angle grain
boundaries melt similarly until an angle-dependent first-order wetting transition occurs when neighboring
melted regions coalesce. High angle boundaries are treated within a screening approximation, and issues
related to ensembles, metastability, and grain size are discussed.
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I. INTRODUCTION

Freezing and melting transitions do not exhibit the range
of universal behavior associated with continuous phase tran-
sitions and largely for this reason have eluded a unified the-
oretical description. The nature of a given melting transition
may depend sensitively on the details of the system and ex-
periment and can involve many distinct processes both
within and between multiple forms of excitations. For ex-
ample, melting may occur abruptly and discontinuously at
the melting temperature Tm, or it may initiate well below Tm
at surfaces and/or internal defects and proceed up to Tm. This
process of premelting has been studied extensively for
surfaces1,2 and is relatively well understood, but limited and
inconsistent experimental evidence for melting at disloca-
tions and grain boundaries leaves a number of issues unre-
solved.

A recent study of colloidal crystals has verified that pre-
melting does occur at vacancies, dislocations, and grain
boundaries and has provided measurements of the localized
premelting behavior below Tm.3 The conditions which deter-
mine whether premelting will occur continuously or discon-
tinuously and whether the width of the premelted region di-
verges are not fully understood. Grain boundaries in Al have
been found to liquify very near Tm, and the width of the
melted layer appears to diverge.4 Discontinuous jumps in
grain-boundary diffusion coefficients,5,6 mobility,7 and shear
resistance8 have been found in other metals.

Theoretical studies have been based on either explicitly
atomistic methods such as molecular dynamics9,10 and Monte
Carlo11 or on continuum phase field models with uniform
phases.12–14 In this study, dislocation and grain-boundary
melting are examined using the phase field crystal �PFC�
method,15 which extends the phase field approach to the level
of atomistic resolution. This permits straightforward identifi-
cation of stable equilibrium and metastable nonequilibrium
atomic structures while inherently including crystal symme-
try and orientation, elasticity/plasticity, and the individual
dislocations which compose the grain boundaries. Our de-
scription will be most applicable to hard-sphere/colloidal
systems and possibly simple metals.

The melting behavior of dislocation pairs and symmetric
tilt grain boundaries of �=4°, 8°, 16°, 24°, 32°, and 44° are

examined numerically for a simple PFC model with bcc
symmetry. Analytic results are derived for isolated disloca-
tions and low � boundaries by combining the PFC equations
with continuum linear elasticity. A screening approximation
is outlined for high angle boundaries, though somewhat sur-
prisingly, the low � description is found to remain reasonably
accurate for high �.

It has been shown16 that the PFC free energy can be de-
rived from the Ramakrishnan-Yussouff17 free-energy func-
tional of classical density-functional theory.18 Here we give
the final dimensionless form,

F =� dr��B�
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where the relations between model parameters and material
parameters as well as their scaling can be found in previous
work.16 Here n= ��− �̄� / �̄ is the scaled time-averaged num-
ber density, where � is the local-density variable and �̄ is the
average number density. B� and Bs are determined from the
two-body correlation function of the liquid near freezing, and
w is related to three-body correlations. Classical density-
functional theory has been used to examine surface
melting,2,19 but not grain-boundary melting, presumably due
to the complexity of the solid-solid interface and the more
demanding system size requirements.

The dynamics are given in dimensionless form by

�n

�t
= �2�F

�n
+ � , �2�

where ���r�1 , t1���r�2 , t2��=M�2��r�1−r�2���t1− t2�. This form
imposes a constant density and is consistent with the canoni-
cal ensemble. The stochastic term � sets the time scale for
crossing free-energy barriers from dry to wet dislocation
configurations locally when the wet state has lower free en-
ergy. It may also shift the “equilibrium” melting behavior to
some degree since increasing the fluctuation amplitude M
can increase the preferred size of a dislocation core or pre-
melt radius and effectively lower the melting temperature.
We have chosen to use a relatively small M in the simula-
tions presented in this paper to minimize the effect of noise
on the free energy yet still allow for barrier crossing.
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A semi-implicit pseudospectral algorithm was used to
solve Eq. �2� for systems containing either a single disloca-
tion pair or a symmetric tilt grain-boundary pair with peri-
odic boundary conditions. The parameters used were �x
=0.976 031, �t=0.5, Bs=�3 /3, w=31/4 /2, and M =0.002.
These values were chosen because the model behavior has
already been well characterized at this set in previous stud-
ies. The qualitative melting behavior appears to be relatively
insensitive to the values used. A system size V= �512�x�3

= �56a�3 was used for the dislocation pair and 4° grain-
boundary pair, while V= �256�x�3= �28a�3 was used for all
other grain-boundary pairs, where a=8.9237 is the bcc lat-
tice constant. Finite-size effects increase as � decreases but
were found to be small for all grain boundaries studied.

The temperature is taken to be proportional to �B	B�

−Bs since the coefficient of the second-order term in F has
leading temperature dependence and controls proximity to
the critical point at B�=0 when w=0. For w�0 there is no
critical point, and instead varying �B passes the system
through a first-order liquid-solid transition at some �Bm
= f�w�.

II. SIMULATION RESULTS

The Gaussian width or mean-square displacement �D� of
each localized density peak was monitored as the tempera-
ture �B was increased toward the melting point. The local
crystallinity � has been defined as

��r�� =
D�r�� − DX

DL − DX
, �3�

where DX is the equilibrium D of the crystal phase and DL is
that of the liquid phase. �=1 /2 specifies a liquid-solid inter-
face.

The radius of the melted region around a dislocation core
Rm was first measured in this manner for an edge dislocation
pair as the temperature was raised toward the bulk melting
temperature �Bm. The results are shown in Fig. 1, where the
data are plotted as �Rm+R0�−2 vs �B to demonstrate that Rm
is consistent with a ��Bm−�B�−1/2 form which will be de-
rived later. R0 is an offset related to the finite size of the
dislocation core at zero temperature. The fit to this form
predicts a bulk melting temperature �Bm=0.0270 which is in
good agreement with the directly measured value of �Bm
=0.0278. The upper inset of Fig. 1 shows melting around an
edge dislocation as �B→�Bm.

Measurements of the radially and laterally averaged D
due to dislocations and grain boundaries, respectively, are in
qualitative agreement with those of Alsayed et al.3 for col-
loidal crystals. We find that the decay can be fit adequately
by either power law or exponential forms, with greater ex-
ponential character at large � and greater power-law charac-
ter at small �.

Figure 2 shows the progression of melting at 8° and 44°
grain boundaries. Low angle boundaries were found to first
melt radially at each dislocation core until the melted regions
of neighboring dislocations coalesce and a uniform wetting
layer is formed along the boundary. In high angle boundaries

individual dislocations cannot be distinguished and melting
in this case was found to proceed by uniform disordering
along the boundary rather than by local radial melting. Inter-
facial roughening due to thermal fluctuations was negligible
in all simulations.

The dependence of the width of the wetting layer �or the
liquid volume fraction of the system� on �B is shown in the
inset of Fig. 3 for various grain-boundary angles. In all cases
the width remains narrow and the boundary relatively dry
until above the solidus, at which point a discontinuous jump
is observed at some characteristic wetting temperature �Bwet.
The dependence of �Bwet on � is shown in the main plot of
Fig. 3. The fit lines will be discussed in the following, though
the axes reveal that our predicted form will be �Bwet
�sin2 �.

III. LOCAL MELTING EQUATIONS

Based on these simulation results, we have developed a
theory of dislocation-driven melting, which is easily ex-
tended to low angle grain boundaries. The low angle results
are shown to remain accurate for all but the highest � where
the dislocation spacing d reaches the order of the Burger’s
vector b. A screening approximation for the spatial grain-
boundary energy is found to be more applicable for very
large �, with a gradual crossover taking place between these
two regimes. Our approach to low angle grain boundaries
has similarities to the theory of Glicksman and Vold20 for
“heterophase” dislocations.

Isolated dislocations

According to continuum elasticity,21 the radially averaged
elastic energy density per length of dislocation line in a

three-dimensional isotropic solid is F̄el=	
 /R2, where 
 is

FIG. 1. Numerically measured local melt radius Rm around an
edge dislocation in a bcc crystal as a function of temperature 
units
of lattice constant a, �B�0.025 values obtained by extrapolation of
��r���. R0=0.2812a is the radius at �B=0, determined by best fit.
Inset: cross-sectional images of the time-averaged number density
field n�x ,y ,z� from simulations at �B=0.021 65, 0.025 11,
0.025 69, 0.026 27, 0.026 56, and 0.026 85 from �a�–�f�, showing
melting at a dislocation core.
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the shear modulus. For a screw dislocation 	s=b2 /4�2 and
for an edge dislocation 	e=	s / �1−
�, where 
 is the Pois-

son ratio. If we assume this result to hold for an isolated
dislocation in the PFC model, at distances approaching the
core region, then Rm can be directly calculated by determin-

ing the distance at which F̄el is sufficiently large to destabi-
lize the crystalline phase, melting the dislocation core.

It will be assumed that n can be represented in a one mode
approximation for a bcc lattice, i.e., n�r��=A�cos qx cos qy
+cos qx cos qz+cos qy cos qz�. Substituting n into Eq. �1�
and minimizing with respect to q gives

�fX =
3

8
�BA2 −

w

8
A3 +

45

256
A4, �4�

where �fX	�F−FL� /V, FL is the free energy of the liquid,
V= �2� /q�3, and qmin=�2 /2. The shear modulus can be esti-
mated in the one mode approximation by setting n�x ,y ,z�
→n�x+�y ,y ,z� and expanding F in � such that F=F��=0�
+
�2+¯. This procedure gives 
 /kBTL2�̄=A2Bs /8. The to-
tal �dimensionless� free energy of the system with a disloca-

tion is then �fX+ F̄el /kBT�̄Ld, which can be written as

�f =
3

8��B +
E

R̄2
A2 −
w

8
A3 +

45

256
A4, �5�

where Es	Bs / �12�2� and Ee	Es / �1−
� for screw and edge

dislocations, respectively, and R̄	R /b. Equation �5� indi-
cates that the elastic energy “shifts” the effective temperature

�B by an amount E / R̄2. The implication is that the liquid-
solid transition is shifted and instead of occurring when

�B=�Bm occurs when �B+E / R̄2=�Bm. Thus the premelt
radius can be written as

R̄m = �E/��Bm − �B� �6�

or 1 / R̄m
2 = ��Bm−�B� /E. A more detailed analysis consider-

ing the global F condition for melting, rather than this local
condition, gives essentially the same result in the limit of
zero liquid-solid surface tension.

As shown in Fig. 1, this form is consistent with the simu-
lation results for edge dislocation pairs, though the predicted
slope �−1 /Ee� is smaller in magnitude by a factor of nearly 5.
A more definitive test would require additional data very
near �Bm, a region increasingly difficult to access due to
system size requirements. The primary source of error in the
slope is likely to be overestimation of the strain energy very
near the core or premelt radius in the linear elastic approxi-
mation, which directly reduces the magnitude of the slope
−1 /Ee. Additional strain energy, independent of the disloca-
tion energy, may also be generated if the cylinder of liquid
and the surrounding crystalline matrix have differing densi-
ties, an effect neglected in our calculations. This Eshelby
strain energy varies as 1 /R2 and can therefore be absorbed
into the prefactor E, though our findings suggest that its con-
tribution is relatively small.

Low angle boundaries

This description for isolated dislocations can be extended
to low angle grain boundaries since an isolated dislocation is

FIG. 2. Laterally averaged crystallinity parameter � and cross
sections of the time-averaged number density field n�x ,y ,z� for 8°
�upper� and 44° �lower� grain boundaries. �B=0.021 65, 0.026 27,
0.026 56, and 0.026 85 and �B=0.024 25, 0.024 68, 0.025 40, and
0.026 56 from left to right, respectively.
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FIG. 3. Grain-boundary wetting temperature vs sin2 �. The fit
lines are discussed in the text. Inset: liquid volume fraction vs �B
for various grain boundaries. The dashed line corresponds to the
liquid volume fraction predicted for the 8° boundary based on Eq.
�6� only �ignoring coexistence�.
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simply the d→� or �→0 limit of a grain boundary. For �
�5° –10° the stress and strain fields of the individual dislo-
cations within the boundary can be shown to be modified
only slightly near their cores when the superposition of fields
due to all other dislocations in the array is carried out. There-
fore one may reasonably expect the melting behavior of dis-
locations within low angle grain boundaries to be well ap-
proximated by the isolated dislocation limit. Exploiting this
fact, we can proceed to estimate the grain-boundary wetting
temperature �Bwet where neighboring dislocations coalesce

in low angle boundaries by setting R̄m=d /2=1 / �2 sin ��.
Substituting Eq. �6� for R̄m gives

�Bwet = �Bm − 4E sin2 � , �7�

which is in good agreement with the data shown in Fig. 3. As
�→�max this approximation loses validity due to the gradual
deviation of the dislocation energies from the isolated dislo-
cation result. The observed agreement up to ��32° is some-
what unexpected as the superposition generally loses accu-
racy for ��10°. The best fit line predicts �Bm=0.0272,
again near the measured value.

The solid line in Fig. 3 corresponds to the fit line from
Fig. 1 set equal to 1 / �2 sin �� and solved for �Bwet. The
agreement here clearly indicates that the wetting of low
angle and intermediate angle grain boundaries is accurately
described by the coalesence of radially melted regions
around nearly isolated dislocations.

High angle boundaries

In the limit of large � �d→0�, the grain-boundary energy
becomes increasingly uniform along its length �see Fig. 2�
and can no longer be described linearly in terms of indi-
vidual dislocations. We expect that elastic fields at long dis-
tances are screened by closely spaced “dislocations,” giving
rise to exponentially decaying spatial grain-boundary energy.
Indeed, direct analysis of free-energy data from simulations
indicates that such an exponential form is qualitatively cor-

rect. Solving for �Bwet using F̄el� f1���e−R̄f2��� / R̄2 rather than

F̄el�1 / R̄2 gives �Bm−�Bwet� f1���e−f2���. This is the form
of the wide dashed line in Fig. 3 when f1����sin2 � and
f2����sin2 �, which more accurately captures the behavior
for large �.

IV. COEXISTENCE AND THE CANONICAL ENSEMBLE

Some comments concerning the influence of liquid-solid
coexistence and the canonical ensemble �i.e., conserved den-
sity� on grain-boundary melting may be helpful at this point.
The equilibrium state for a simple system with a grain

boundary is most generally either dry if Fgb�2Fls+��F̄L

− F̄X� or wet if Fgb�2Fls+��F̄L− F̄X�, where Fgb is the grain-
boundary energy, Fls is the energy of a liquid-solid interface,
and � is the width of the liquid region in the wet state. If the
wet state becomes favorable below the melting temperature,
then a grain-boundary wetting transition occurs. In the ca-
nonical ensemble as examined here, the effects of liquid-
solid coexistence and the subsequent shifts in density of the

two phases above the solidus �Bsol modify this heuristic ar-

gument. Now �Bm, the temperature at which F̄L= F̄X, is
straddled by a coexistence region. As �B→�Bm the system
first encounters a solidus above which some volume fraction

of liquid will minimize the overall F̄. For the grain-boundary
pair geometry, the equilibrium state above �Bsol is one with
a uniform volume of liquid occupying each boundary region.
Therefore, an equilibrium first-order wetting transition will
occur at �Bsol as long as the grain size is not excessively
small. Above �Bsol, the liquid layer width will be controlled
by coexistence rather than local defect energies, since the

elastic fields of the grains largely decouple �F̄el→0� upon
wetting.

The results presented here show no wetting or strong pre-
melting for �B��Bsol, and the equilibrium wetting transi-
tion is not observed. Instead, a �-dependent discontinuous
transition from the metastable dry boundary state to the equi-
librium wet state occurs at �Bsol��Bwet��Bm, as shown in
the inset of Fig. 3. This is because the wetted state is not
nucleated in observable times until Rm has grown sufficiently
large to coalesce and the free-energy barrier approaches zero.
The dislocations and/or grain boundaries act as nucleation
sites for the liquid above �Bsol, creating well-defined non-
equilibrium paths from the metastable dry state to the F
minimizing wet state �which all must conserve ��.

The condition for wetting in the canonical ensemble in-
volves the grain size Lg, such that wetting can be suppressed
to temperatures above �Bsol when Lg is finite. The condition
can be written as Fgb+Lg�FX�2Fls+��FC, where �FX

= F̄X
�̄�− F̄X
�X� and �FC= F̄L
�L�− F̄X
�X�. Here �= ��X
− �̄� / ��X−�L�, �̄ is the conserved system density, and �X and
�L are the shifted coexistence densities of the solid and liquid
phases, respectively. For �B��Bsol, if we assume that
�FX=0 and �L=�X= �̄ �this is not the case when premelting
is strong below �Bsol�, we recover the original inequality

Fgb�2Fls+��F̄L− F̄X� and Lg is not a significant factor. In
the limit Lg→�, the wetting condition will always be satis-
fied for �B��Bsol and the equilibrium transition occurs at
�Bsol. As Lg decreases, the equilibrium wetting transition is
shifted to higher �B.

V. GRAND CANONICAL ENSEMBLE

Three-dimensional simulations have also been conducted
in the grand canonical ensemble, i.e., nonconserved density,
where the complications due to liquid-solid coexistence are
avoided. In this scenario the dynamics are given by

�n

�t
= − ��F

�n
+ 
0
 + � , �8�

where ���r�1 , t1���r�2 , t2��=M��r�1−r�2���t1− t2�. As the average
chemical potential 
0 is increased, rather than temperature,
we find in general for the parameter values chosen that the
equilibrium behavior for fixed grain boundaries of all angles
is to remain essentially dry up to the melting point 
0

�, above
which the free energy is minimized by complete melting of
the solid. This corresponds to a very weakly increasing
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grain-boundary width and discontinuous melting at 
0
�. The

energy barrier to melt the crystal is sufficiently large that
considerable superheating is instead observed in the simula-
tions.

The melting behavior at grain boundaries is also influ-
enced by whether the equilibrium bulk melting transition is
weakly or strongly first order. For large w the bulk melting
transition is strongly first order and the energy of a liquid-
solid interface is prohibitively large to allow any boundary
wetting below 
0

�. Thus the grain-boundary melting transi-
tion is also strongly discontinuous. As w is lowered and the
bulk transition becomes more weakly first order, both the
grain boundary and the liquid-solid interface become in-
creasingly diffuse or “soft,” as shown in Fig. 4. This allows
greater growth in the width of the grain boundary and poten-
tially a weak divergence in width very near 
0

� before com-
plete melting occurs. Thus, a more weakly discontinuous
grain-boundary melting transition is observed. This diverging
width for small w may reflect increasing delocalization of the
“soft” solid phase rather than the emergence of a fully liquid
layer.

It is also apparent from the simulations that many states
from dry to varying degrees of wet become metastable for
long times near 
0

�, such as those shown in Fig. 4. The states
obtained near the melting point may therefore depend on the
initial state of the system and the waiting time and may not
correspond to the state of lowest free energy. In our simula-
tions, the dry states were found to have lowest free energy up
to 
0

� for all parameter values examined.
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(a) dry (b) wet

(c) dry (d) wet

(e) dry (f) wet

FIG. 4. Cross sections of the time-averaged number density field
n�x ,y ,z� for dry and wet 44° grain boundaries simulated with non-
conserved density. The images illustrate the increase in boundary/
interface diffuseness and loss of distinction between wet and dry
states as the transition becomes more weakly first order. 
�a� and
�b�� w=1.167, �B=0.051 82, and 
0=0.175 85, 
�c� and �d�� w
=0.658, �B=0.027 42, and 
0=0.063 39, and 
�e� and �f�� w
=0.174, �B=0.001 77, and 
0=0.015 96.
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