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Measurements on a film of silica on crystalline zinc using picosecond laser acoustics are theoretically
analyzed to quantitatively explain the generation and detection of picosecond shear and longitudinal-acoustic
waves. The theory encompasses the scattering of obliquely incident probe light of arbitrary polarization by a
depth-dependent anisotropic permittivity modulation in a multilayer, including terms arising from the photo-
elastic effect, interface displacements, and local rotations. Sound velocities, ultrasonic attenuation, and photo-
elastic constants are experimentally derived.
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I. INTRODUCTION

The absorption of ultrashort light pulses in a medium will
generate picosecond acoustic pulses therein.1 The acoustic
propagation can be measured with ultrashort light pulses
through transient reflectivity changes or surface displace-
ments caused by the acoustic strain field in the medium. This
technique, known as picosecond laser acoustics or picosec-
ond ultrasonics, has been widely used for the nondestructive
testing of thin metal, semiconductor, and dielectric films and
nanostructures.1–12

Studies with picosecond laser acoustics on thin isotropic
films of micron or nanometer scale thickness produce only
longitudinal-acoustic waves in the in-depth direction owing
to the symmetry of the generation conditions. However, the
range of measurable physical properties can be greatly in-
creased by the use of shear waves. With this goal in mind,
material anisotropy13–17 and three-dimensional propagation
involving mode conversion18,19 have been recently exploited
to optically generate and detect picosecond shear waves. For
the generation of high-frequency shear waves in thin films,
the use of material anisotropy is preferable because this
method generates plane shear waves propagating perpen-
dicular to the sample surface. Shear waves are generated in
this case by the use of crystals with a surface cut in a plane
off the axes of crystal symmetry. A rigorous quantitative
analysis of the detection theory for such geometries is, how-
ever, lacking. In previous related work17 involving a Zn sub-
strate coated with a ZnO film, the transient reflectivity
change caused by the strain field was analyzed for normally
incident probe light without accounting for the multiple op-
tical reflections in the film. Only the ratio of the photoelastic
tensor components for Zn, rather than the absolute values,
could be derived.

In this paper, we present a theory of light scattering ap-
propriate for shear strain detection in thin films and multi-

layers and apply it to experimental results for picosecond
shear acoustic generation and detection in a SiO2 /Zn sample.
The theory handles obliquely incident probe light and ac-
counts for the effects of the multiple optical reflections in the
multilayer structure. We demonstrate that the former feature
is essential for shear wave detection in isotropic media, and
that the latter feature allows the determination of absolute
values of the photoelastic constants.

We first present the theory of generation, propagation, and
detection of longitudinal and shear acoustic waves. The de-
tection theory is based on a Green’s function formalism ap-
plicable to multilayers. Then we describe the experimental
results and compare them with theory. We present the theory
in a general form for multilayers, while its demonstration in
the analysis of the experimental results is kept as simple as
possible. Details of the theory, such as the derivation of the
Green’s function, are described in Appendixes A–C.

II. THEORY

A. Background

Picosecond laser acoustics is typically applied to multi-
layers whose layer thicknesses are of nanometer to micron
order. The generation �pump� light pulses are usually focused
on the sample surface with a spot diameter Dpu of
�10–100 �m. In this case, the generated acoustic distur-
bance can be approximated as a superposition of plane waves
propagating in the depth �z� direction for propagation dis-
tances small compared to the acoustic diffraction length
Dpu

2 /�, where � is the characteristic acoustic wavelength. In
this paper, we consider samples in which laterally homoge-
neous thin layers are stacked in the z direction and assume
that the modulation caused by the acoustic wave depends
only on z.
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In the geometry we consider, the detection �probe� light
pulses are focused normally or obliquely onto the sample
surface with a spot size that is the same or somewhat smaller
than that of the pump light pulses. Within the focal depth of
the focused probe light we may regard the probe light as a
plane wave. As will be discussed in Sec. IV A, the use of
oblique probe incidence allows the detection of shear waves
propagating normal to the stacking direction in isotropic me-
dia. With these assumptions, both the electromagnetic and
the acoustic waves can be treated as plane waves. This is the
basis of the detection analysis described below.

B. Light scattering in inhomogeneously modulated multilayers

Consider the light scattering caused by an inhomogeneous
depth-dependent modulation in a multilayer.54 General opti-
cal polarization at oblique optical incidence is considered.
The medium itself and the modulation in refractive index
may be anisotropic. The theory is based on an extension of
previous work for normally incident light.3,20,21

Consider the multilayer shown in Fig. 1, consisting of N
layers on a substrate. The sample surface is located at z=z0
=0 when at rest, and the region z�0 is a vacuum or filled
with a uniform medium �air, glass, etc.�. The nth layer has
thickness dn and the interface between the nth and �n+1�th
layer is at zn. The final layer—the �N+1�th layer—is taken as
an infinite substrate �or possibly a surrounding medium�. The
sample and surroundings have translational symmetry in the
x-y plane. Each layer and the substrate are homogeneous in
the equilibrium state and may be transparent or opaque and
anisotropic or isotropic.

The incident light is assumed to be a monochromatic
plane wave with angular frequency �=ck, where k is the
vacuum wave number. The light may have arbitrary polariza-
tion �p, s, circular, etc.�. The x axis is taken so that the plane
of optical incidence is parallel to x-z plane so that the x
components of the incident light wave vector kx are positive.
Due to the translational symmetry in the x-y plane, the elec-
tromagnetic field depends on x according to exp�ikxx� every-
where.

The sample �and the surrounding medium� is perturbed by
the propagating acoustic wave, whose accompanying strain
field modulates the dielectric permittivity of the sample
through the photoelastic effect. Because we only consider
acoustic plane waves propagating in the z direction, the
modulation in permittivity �ε depends only on z. Since this
permittivity modulation may involve arbitrary anisotropy
�i.e., involving birefringence�, �ε should be expressed in
tensor form. The modulation is assumed to occur on a time
scale that is much slower than the optical period so that
quasistatic theories can be applied and no optical frequency
conversion occurs. Since an acoustic wave is a wave of elas-
tic displacement, the displacement of the surface or inter-
faces in the z direction must also be considered and can be
expressed as a modulation in �ε in the near-surface or near-
interface regions.3,21 In addition, the local rotation associated
with shear acoustic waves contributes to �ε in anisotropic
media. Using the above assumptions we shall derive the
change in �complex� reflectance and transmittance �provided
some light is transmitted� caused by �ε�z�.

From Maxwell’s equations, the general wave equation for
a monochromatic electric field E�r�exp�−i�t� is given by55

grad div E − �2E = �0�2D , �1�

where D�r�exp�−i�t� is the electric displacement field. In the
linear-response regime,

D = �0εE, �2�

where the relative permittivity tensor ε�r� may depend on
the position r. The wave equation then becomes

��2 − grad div + k2ε�E = 0. �3�

The lateral homogeneity of the sample allows further sim-
plification. Since the optical plane of incidence is the x-z
plane, the electric field is expressed as E�z�exp�i�kxx−�t��.
Equation �3� can be converted to

�L�kx� + k2ε�z��E�z� = 0, �4�

where the operator L�kx� is defined as

L�kx� ��
d2

dz2 0 − ikx
d

dz

0
d2

dz2 − kx
2 0

− ikx
d

dz
0 − kx

2 � . �5�

This is the equation that we shall solve.
The position dependent permittivity can be divided into

two parts, a homogeneous part εh�z� and an inhomogeneous
part �ε�z�,

ε�z� = εh�z� + �ε�z� . �6�

The homogeneous part is a staircaselike function of z repre-
senting the permittivity for each layer in the equilibrium state
of the piecewise homogeneous sample,

incident
light

transmitted
light

reflected
light

z
x z0 z1 z2 zN−1 zN

ε(0) ε(1) ε(2) ε(N) ε(N+1)

d1 d2 dN

ρ(0) ρ(1) ρ(2) ρ(N) ρ(N+1)

c(0) c(1) c(2) c(N) c(N+1)

FIG. 1. N layers on a substrate. The incident light comes from
z�0. Each layer is assumed to be homogeneous in its equilibrium
state. ε�n�, permittivity; ��n�, mass density; and c�n�, elastic stiffness
of nth layer.
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εh�z� = ε�n� for z � �zn−1,zn� , �7�

with z−1=−	 and zN+1= +	. The inhomogeneous part arises
from the propagating acoustic waves and will be discussed in
detail in Sec. II D.

Suppose that we know the solution E0 of the wave equa-
tion for our piecewise homogeneous sample,

�L�kx� + k2εh�z��E0�z� = 0, �8�

as well as the 3
3 matrix of the Green’s function G�z ,z��,
satisfying

�L�kx� + k2εh�z��G�z,z�� = − ��z − z��I , �9�

where I is the 3
3 identity matrix. E0 is the solution for the
unperturbed medium, made up of a sum of incident, re-
flected, and transmitted light fields. The solution E for the
wave equation with an arbitrary inhomogeneous component,

�L�kx� + k2	εh�z� + �ε�z�
�E�z� = 0, �10�

can be rigorously expressed as22,23

E�z� = E0�z� + k2�
−	

	

dz�G�z,z���ε�z��E�z�� . �11�

When �ε is small, Eq. �11� can be expanded as

E�z� � E0�z� + k2�
−	

	

dz�G�z,z���ε�z��E0�z��

+ k4�
−	

	

dz��
−	

	

dz�G�z,z���ε�z��G�z�,z��


�ε�z��E0�z�� + ¯ . �12�

Here G and �ε are matrices and are thus not commutative.
When �ε is small, Eq. �12� can be truncated to first order
with high accuracy. Any disturbance other than strain that
modulates the permittivity, such as temperature changes or
excited electron distributions, can be treated in the same
manner. The derivation of E0 and G for our multilayer ge-
ometry are given in Appendixes A and B.

C. Acoustic wave generation and propagation in multilayers

In this section we describe the generation and propagation
of acoustic waves in our anisotropic multilayer.24,25 We
present the essential details required to calculate the inhomo-
geneous perturbation in strain. As discussed in Sec. II A, the
acoustic source is assumed to be laterally homogeneous. As a
consequence of this the acoustic waves propagate only in the
z direction, and the acoustic field depends only on the z
coordinate. We first consider the thermoelastic effect in the
absence of diffusion processes as the origin of the acoustic
source. The displacement field u�z , t� for z lying within the
nth layer satisfies the acoustic wave equation,

��n��
2ui

�t2 =
��iz

�z
,

�iz = cizkl
�n� 	
kl − �kl

�n��T�z,t�
 , �13�

where �ij is the stress field, 
ij is the strain field, and �T is
the transient temperature rise. Also ��n� ,cijkl

�n� ,�ij
�n� are the

mass density, elastic stiffness, and thermal-expansion coeffi-
cient of the nth layer, respectively. The summation conven-
tion for repeated subscripts applies to Eq. �13� and subse-
quent equations, unless otherwise stated.

We further simplify the problem by assuming a stepwise
temperature rise at t=0: �T�z , t�=�T�z���t�, where ��t� is
the Heaviside function. The initial condition is 
u�z , t�
t=0
=0 and 
�u�z , t� /�t
t=0=0 throughout the medium. We can
express the solution of Eq. �13� for t�0 as the sum of time
dependent and time independent parts,

u�z,t� = uA�z,t� + uB�z� . �14�

The displacements uA and uB are obtained from the solutions
of

��n��
2uAi

�t2 = cizjz
�n� �2uAj

�z2 , �15a�

0 = cizjz
�n� �2uBj

�z2 − cizkl
�n� �kl

�n�d�T�z�
dz

. �15b�

Physically uB corresponds to the final equilibrium state,
whereas uA corresponds to the propagating wave relative to
the final state.

Equation �15a� leads to three acoustic modes with veloc-
ity v�

�n� and displacement polarization u�
�n�, where �=1, 2,

and 3 is the mode label. These are obtained as the eigenval-
ues and eigenvectors of

��n��v�
�n��2u�

�n� = C�n�u�
�n�, �16�

where C�n� is a 3
3 matrix defined as

C�n� � �c55
�n� c54

�n� c53
�n�

c45
�n� c44

�n� c43
�n�

c35
�n� c34

�n� c33
�n� � . �17�

The abbreviated index notation cIJ for elastic constants is
used instead of cijkl here. The summation convention for �
does not apply to the left-hand side of Eq. �16�. The general
solution for Eq. �15a� is given by

uA
�n��z,t� = u�

�n��f�
�n��z − v�

�n�t� + g�
�n��z + v�

�n�t�� . �18�

Here f�
�n���� and g�

�n���� are arbitrary functions.
It is convenient to introduce a column vector

� � �
x


y


z
� � ��ux/�z

�uy/�z

�uz/�z
� = �2
xz

2
yz


zz
� = �
5


4


3
� . �19�

Note that 
x, 
y, and 
z should not be confused with the
abbreviated index notation of strain; 
1=
xx, 
2=
yy, 
3
=
zz, 
4=2
yz, 
5=2
zx, and 
6=2
xy. Similarly �A and �B
are defined as �uA /�z and duB /dz. Here �B can be termed as
a static strain: it is the nonpropagating component of the
strain for a material containing a static thermal expansion. At
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t=0, the two strain components cancel and �A+�B=0. Equa-
tion �18� gives

�A
�n��z,t� = u�

�n��f�
�n���z − v�

�n�t� + g�
�n���z + v�

�n�t�� , �20�

where f�
�n�����=df�

�n���� /d� and g�
�n�����=dg�

�n���� /d�.
Because the strain should vanish when �T→0, we find

cizjz
�n� 
Bj − cizkl

�n� �kl
�n��T�z� = 0 �21�

on integrating Eq. �15b� with respect to z. This is a set of
linear simultaneous equations and can be solved for �B for a
given �T. The quantity cizjz

�n� 
Bj =cizkl
�n� �kl

�n��T�z� at t=0 can be

interpreted as the thermoelastic stress. To obtain f�
�n����� and

g�
�n�����, we express �B as a linear combination of u�

�n�,

�B��� = u�
�n�h�

�n���� . �22�

From initial condition for u and �u /�t, one can show that

f�
�n����� = g�

�n����� = −
1

2
h�

�n���� �23�

for �� �zn−1 ,zn�.
Equations �18� and �20� require f�

�n����, etc., to be defined
for �� �−	 ,	�, whereas Eqs. �21�–�23� allow these func-
tions to be determined only for a limited range of �. To

extend the domain for f�
�n�� and g�

�n��, we require the reflection
and transmission coefficients for the propagating strain field
accounting for the effects of mode conversion. At each inter-
face, the stress components �xz, �yz, and �zz and displace-
ment ux, uy, and uz should be continuous. The continuity in
the displacement also implies the continuity in the time de-
rivative of the displacement. The boundary condition can
thus be expressed as

v�
�n�u�

�n��f�
�n���zn − v�

�n�t� − g�
�n���zn + v�

�n�t��

= v�
�n+1�u�

�n+1��f�
�n + 1���zn − v�

�n+1�t�

− g�
�n + 1���zn + v�

�n+1�t�� ,

C�n�u�
�n��f�

�n���zn − v�
�n�t� + g�

�n���zn + v�
�n�t��

= C�n+1�u�
�n+1��f�

�n + 1���zn − v�
�n+1�t�

+ g�
�n + 1���zn + v�

�n+1�t�� . �24�

Equation �24� consists of six linear equations that allow

g�
�n���zn+v�

�n�t� and f�
�n + 1���zn−v�

�n+1�t� to be obtained from

f�
�n���zn−v�

�n�t� and g�
�n + 1���zn+v�

�n+1�t�. In this way, the do-
main for strain propagation can be extended as much as one
needs.

The procedure mentioned above is easily extended for
general time dependence of �T�z , t�. Assuming �T�z , t�=0
for t�0, the relation

�T�z,t� = �
0

	 ��T�z,��
��

��t − ��d� �25�

holds. This implies that the time varying temperature rise can
be regarded as an infinite set of stepwise temperature rises
��T /�t distributed in temporal domain. Each temperature
rise at t additively generates acoustic waves at t.

D. Permittivity modulation by acoustic waves in multilayers

The propagating acoustic waves modulate the permittivity
of the medium ��ε� through the photoelastic effect �pe�, the
surface or interface displacement �if�, and the local rotation
�rt� according to

�ε�z,t� = �ε�pe��z,t� + �ε�if��z,t� + �ε�rt��z,t� . �26�

The photoelastic contribution is proportional to the strain.
Using the abbreviated index notation, it can be expressed as

��I
�pe��z,t� = PIJ

�n�
J�z,t� , �27�

where n is the layer number in which z resides. The coeffi-
cients PIJ

�n� are components of the photoelastic tensor of the
nth layer.26 This tensor can be expressed as a 6
6 matrix,
but it is in fact a fourth rank tensor. In the case of anisotropic
media, it also depends on the orientation of the crystal axes.

The displacement is caused by propagating acoustic
waves as well as by the static thermal expansion. Because of
the lateral homogeneity of the medium, the x and y compo-
nents of the displacement have no effect on the effective
permittivity. However, the displacement normal to the sur-
face or interface �uz� is equivalent to one medium penetrating
into the other. The effective change in relative permittivity
can therefore be expressed as21

�ε�if��z,t� = �ε�n� − ε�n+1� for uz�zn,t� � 0 and zn � z � zn + uz�zn,t�
ε�n+1� − ε�n� for uz�zn,t� � 0 and zn + uz�zn,t� � z � zn

0 otherwise.
� �28�
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The local rotation is caused by the shear strain field. This
rotation can be expressed by a 3
3 rotation matrix,26

Rij = �ij + wij ,

wij =
1

2
� �ui

�xj
−

�uj

�xi
� . �29�

The change in crystal orientation modulates the permittivity
tensor according to27,28

�ij + ��ij
�rt� � RikRjl�kl � �ij + wik�kj − �ilwlj . �30�

or

�ε�rt� = wε − εw. �31�

The quantity �ε�rt� vanishes when ε is isotropic. In our par-
ticular geometry, the tensor w has the form

w =
1

2� 0 0 �ux/�z

0 0 �uy/�z

− �ux/�z − �uy/�z 0
� =

1

2� 0 0 
5

0 0 
4

− 
5 − 
4 0
� .

�32�

Substituting Eqs. �27�, �28�, and �31� into Eq. �26� and
making use of Eq. �12�, we can calculate the acoustically
induced perturbation in electric field. The term involving the
displacement contribution �ε�if� requires special care. Since
uz is much smaller than the optical wavelength, the integral
can be approximated as

�
−	

	

dz�G�z,z���ε�if��z��E0�z��

� �
n=0

N

G�z,zn�	ε�n� − ε�n+1�
E0�zn�uz�zn� . �33�

A problem arises when G�z ,zn� or E0�z� has a discontinuity
at z=zn: it is not clear which value, z=zn+0 or z=zn−0,
should be used. These values of z should be distinguished
because of discontinuities in the z component of the electric
field and in the Green’s function at the interfaces, a problem
that does not arise for normal optical incidence. Since the
solution is rigorously given by Eq. �11�, and since Eq. �12� is
obtained by approximating E in the integral with E0, one
should choose E0�zn� to be closest to the expected solution
E�zn�. Therefore, for uz�zn��0 one should use G�z ,zn+0�
and E0�zn−0�, whereas for uz�zn��0 one should use
G�z ,zn−0� and E0�zn+0�. However, we also know that the
change in the electric field E�z� caused by the surface or
interface displacements should be zero for uz�zn�=0, and also
that these changes should be linear in the displacements
uz�zn�. Therefore Eq. �33� can be evaluated in the following
form:

�
−	

	

dz�G�z,z���ε�if��z��E0�z��

� �
n=0

N

G�z,zn + 0�	ε�n� − ε�n+1�
E0�zn − 0�uz�zn� ,

�34�

even for the negative uz�zn�.

III. EXPERIMENT AND RESULTS

To demonstrate the proposed theory, we carry out a pico-
second laser acoustics experiment with obliquely incident
probe light on a relatively simple system consisting of an
isotropic transparent film on an anisotropic substrate. The
experiment involves the generation and detection of shear as
well as longitudinal-acoustic waves.

A highly anisotropic Zn single crystal �of the hexagonal
system� is used as an optoacoustic transducer.14 The crystal
is cut with a surface 45° off the �0001� plane.56 The mechani-
cally polished surface is trimmed with a diamond knife using
an ultramicrotome to remove a damaged and oxidized
layer.29 The surface is then coated with a SiO2 film of nomi-
nal thickness 1.1 �m by radio-frequency sputtering.

Figure 2 shows a schematic diagram of the experimental
setup. Pump light pulses from a mode-locked Ti:sapphire
laser with a repetition frequency of 76 MHz, a pulse duration
of 400 fs, and a wavelength of 814 nm are focused onto the
SiO2 coated sample surface with a spot diameter of �60 �m
and a fluence of �0.05 mJ cm−2 at normal incidence to gen-
erate the acoustic pulses. Probe light pulses from the same
laser are frequency doubled with a �-BaB2O4 crystal and are
focused onto the same region as the pump light with a spot
diameter �20 �m and fluence �0.005 mJ cm−2. The probe
angle of incidence is 45°.

The z axis is taken in the depth direction of the sample,
and the x axis lies in the incident plane of the probe light so
that kx is positive �Fig. 2�. The c axis of the Zn crystal is
directed along the vector �0,1,1� in the xyz space. In this
case, no 
5 �i.e., xz shear� component of strain is expected to
be generated.

photo-
detector sample

HWP

probe
light
λ=407 nm

pump
light
λ=814 nm

pol.

x

y

z

mode-locked
Ti-sapphire
laser

delay line SHGDM

AOM

lock-in
amplifier

function
generator

filter

FIG. 2. �Color online� Experimental setup and definition of
axes. SHG, second-harmonic generation crystal; HWP, half-wave
plate; DM, dichroic mirror; pol., polarizer; and AOM, acousto-optic
modulator.
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Using a half-wave plate, the incident probe light polariza-
tion is sequentially chosen as p, s, and at 45° to the plane of
incidence, corresponding to the polarization vectors
�1 /�2,0 ,−1 /�2�, �0,1,0�, and �1 /2,−1 /�2,−1 /2�,
respectively.57 The reflected probe light is analyzed with a
polarizer set to p or s polarization or with no polarizer �de-
noted as u� and is fed to the photodetector with 2 MHz
bandwidth. The transient reflectivity change �R /R is re-
corded as a function of the delay time between the pump and
probe pulse arrival at the sample surface using an optical
delay line. To detect �R /R�10−6, the pump light pulses are
chopped with an acousto-optic modulator at 1 MHz, and the
in-phase component of the photodetector output is detected
with a lock-in amplifier. By the use of different wavelengths
for the pump and probe light, one can avoid signal contami-
nation by the pump light using a colored glass filter before
the photodetector.

Figure 3 shows the results of the transient reflectivity
measurement. A high-frequency modulation is imposed on a
relatively slow-varying background that is mainly due to the
temperature decay arising from thermal diffusion. Assuming
a simplified single-exponential dependence, this background
is subtracted to leave the signals from the acoustic wave
propagation, as shown in Fig. 4. The polarization configura-
tion is labeled on each curve as a-b, where a is the incident
light polarization �p, s, and 45°� and b is the detected polar-
ization component of the reflected light �p, s, and u�.

IV. DISCUSSION

A. Qualitative analysis

The time-domain curves in Fig. 4 show the following fea-
tures: �1� a gigahertz oscillation is observed up to 400 ps, �2�
three echoes are observed around 400, 700, and 800 ps, and

�3� the oscillation and echoes lie on a background that shows
steplike behavior at 200 and 400 ps.

The gigahertz oscillation is caused by the interference be-
tween the light reflected at the sample surface or at the in-
terface and the light scattered by the strain pulse moving in
the transparent SiO2 layer. The relation vnk cos �=�f ap-
plies, where v is the sound speed, n is the refractive index of
the SiO2 layer, k is the probe light wave number in vacuum,
� is the angle between the probe light propagation direction
in SiO2 and the z axis, and f is the oscillation frequency.30

The Fourier transform of each curve up to 200 ps is shown
on the right-hand side of Fig. 4.58 For the p-u and s-u polar-
ization configurations, a single peak is observed at f
=35 GHz, corresponding to the oscillation noted above. This
frequency is consistent with a sound speed v=5.5 km s−1

�assuming n=1.47�. For the 45°-s and 45°-p polarization
configurations, an additional peak is observed at f
=20 GHz, corresponding to v=3.2 km s−1. Compared with
the literature values in bulk fused silica for longitudinal and
shear waves, 5.97 and 3.76 km s−1, respectively,31 one can
see that the 35 GHz signal corresponds to longitudinal waves
in the SiO2 layer, whereas the 20 GHz signal corresponds to
the shear wave therein. Similarly reduced values for the
sound velocity in thin silica films have been previously
observed.32,33

The fact that the shear wave is observed in the SiO2 layer
only with the 45°-s and 45°-p configurations can be under-
stood as a selection rule of Brillouin scattering.34,35,59 The
photoelastic tensor for an isotropic medium has the form
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FIG. 3. �Color online� Raw data for the transient reflectivity
change in the SiO2 /Zn sample. The polarization of the incident
light �p, s, and 45°� and the reflected light �p, s, and u� are specified
on each curve. The scales are common for all curves, which are
shifted vertically for clarity.
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FIG. 4. �Color online� Left: Transient reflectivity change in the
SiO2 /Zn sample with background variation subtracted. The polar-
ization of the incident light �p, s, and 45°� and the reflected light �p,
s, and u� are specified on each curve. The scales are common for all
curves. Right: Fourier transforms of the transient reflectivity change
up to 200 ps, revealing the shear acoustic wave components �ar-
rows� propagating in the SiO2 layer.
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�
P11 P12 P12 0 0 0

P12 P11 P12 0 0 0

P12 P12 P11 0 0 0

0 0 0 P44 0 0

0 0 0 0 P44 0

0 0 0 0 0 P44

� , �35�

with P44= �P11− P12� /2. Since the shear wave here only has a
nonvanishing 
4 strain component, the only modulated com-
ponent in the permittivity tensor is the off-diagonal compo-
nent �4=�yz. This has an effect on the electric field of the
incident and scattered light: the sample scatters the z compo-
nent to the y component and vice versa. In our configuration
with obliquely incident probe light, p-polarized light is scat-
tered into s-polarized light and vice versa.36 In the p-u or s-u
configurations, however, the scattered component has an in-
tensity proportional to 
4

2 and is too small to be detected. On
the other hand, in the 45°-p �s� configuration, the incident s
�p� component is scattered to a p �s� component, which in-
terferes with the reflected p �s� component to produce an
intensity modulation proportional to 
4. It is therefore fea-
sible to detect 
4 in the 45°-p and 45°-s configurations.
Normally incident probe light does not contain a z compo-
nent of the electric field and therefore does not interact with
the z-propagating shear strain in an isotropic medium.

The three echoes are mainly caused by the photoelastic
effect in the Zn substrate. The acoustic pulses generated near
the SiO2 /Zn interface propagate in SiO2 layer and are then
reflected at the SiO2 surface. We therefore attribute the ech-
oes at 400 and 800 ps to the first and second returns of
longitudinal-acoustic pulses to the Zn substrate. The polarity
of the strain is flipped on reflection at the surface but stays
the same on the reflection at the SiO2 /Zn interface. Hence
the first and second echoes have opposite polarity. The echo
at 700 ps does not occur at an integer multiple of 400 ps. It
can be attributed to the first return of the shear acoustic pulse
to the Zn substrate. The ratio of arrival times �700 and 400
ps� corresponds to the inverse ratio of the sound speeds
�5.5 and 3.2 km s−1�.

The selection rule for shear strain detection in Zn is less
restrictive compared to that in the SiO2 layer. For a Zn crys-
tal with its c axis inclined at 45° as in the experiment here,
the photoelastic tensor takes the form

�
P11 P12 P13 P14 0 0

P21 P22 P23 P24 0 0

P31 P32 P33 P34 0 0

P41 P42 P43 P44 0 0

0 0 0 0 P55 P56

0 0 0 0 P65 P66

� . �36�

In this case, the shear strain 
4 can modulate the diagonal
components of the permittivity tensor, such as �1 or �2, as
well as the off-diagonal components. In addition, the acous-
tic modes propagating in the z direction in the Zn substrate
are quasishear and quasilongitudinal modes containing domi-
nant shear and longitudinal components, respectively �see

Fig. 6�. For these reasons the arrival of shear acoustic pulses
from the SiO2 film at the Zn substrate is clearly seen in all
the polarization configurations used.

The steplike behavior at 200 ps and 400 ps is caused by
the motion of the surface and interface that affects the varia-
tions in optical reflectivity owing to multiple optical reflec-
tions in the SiO2 layer.20

B. Quantitative analysis

For quantitative analysis, we carry out a simulation con-
sisting of three parts: the generation, the propagation, and the
optical detection of the acoustic waves. For the acoustic gen-
eration, the simplest model assumes that the absorbed pump
light energy is instantaneously converted to thermal energy
in the absence of diffusion processes. In this case the initial
thermal stress distribution is determined by that of the ab-
sorbed pump light energy, implying that the acoustic pulse
width is determined by the pump light penetration depth.
However, for Zn at a pump wavelength of 814 nm, the opti-
cal penetration depth is �14 nm, which cannot explain the
observed relatively broad echo at 700 ps. One should there-
fore consider the effects of ultrafast electron and thermal
diffusion in Zn.37

Ultrafast nonequilibrium and equilibrium electron diffu-
sion �the latter being equivalent to thermal diffusion� can be
described by the two-temperature model that determines the
nonequilibrium energy relaxation of the electron system to
the lattice system.38 These systems are assumed to be inde-
pendently thermalized to temperatures Te and Tl, respec-
tively. The absorbed light first transfers its energy to the elec-
trons according to the source function S�z , t�, the deposited
energy per unit volume per unit time. The electrons diffuse
while the electron and lattice systems interact through the
electron-phonon interaction, mediated by the electron-
phonon coupling constant g. The coupled electron and lattice
temperatures satisfy the following equations:

Ce
�Te

�t
=

�

�z
��

�Te

�z
� − g�Te − Tl� + S�z,t� ,

Cl
�Tl

�t
= g�Te − Tl� , �37�

where Ce and Cl are the specific heat per unit volume of the
electron and lattice systems, respectively, and � is the ther-
mal conductivity. Ce is proportional to Te according to Ce
=�Te, and � depends on Te and Tl according to �=�0Te /Tl,
where �0 is the thermal conductivity when the electron and
lattice systems are in equilibrium.39,40 �In metals, it is appro-
priate to neglect the phonon contribution to the thermal con-
ductivity since it is small in comparison to the electronic
contribution. We also neglect the thermal conductivity of the
SiO2 film.� In Zn there is only a small anisotropy in the
thermal conductivity ��5%�, and so we use the polycrystal-
line average �0=116 Wm−1 K−1 at 300 K here.41,42 Equation
�37� is nonlinear and only solvable numerically. We used a
finite difference time-domain method with the parameters
given in Table I. We approximate the source function to the
form
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S�z,t� = S0��t�exp�− �z − z1�/�� for z � z1.

The pump light optical penetration depth � for Zn is taken as
14 nm �see Table II�. The electron-phonon coupling constant
g is adjusted for optimum agreement with experiment. The
maximum electron and lattice temperature rises are estimated
to be �300 and �1 K, respectively. The initial lattice tem-
perature reaches its maximum within 1 ps after the pump
pulse arrival, and then the temperature decreases slowly with
a rate no greater than 4
10−3 K ps−1. Although the theory
accounts for nonlinear effects, the acoustically induced re-
flectance changes are predicted to vary nearly linearly with
pump fluence up to the fluences used. This was verified in
experiment.

The sound velocity and acoustic polarization for the
modes in each layer are calculated from Eq. �16�. Equations
�21�–�23� are then used to find the thermoelastic stress for
each mode based on the lattice temperature rise �T�z , t� ob-
tained with the two-temperature model. The acoustic wave
propagation along both positive and negative z directions is
traced step by step21 in the time domain with a �t=1 ps time
step. The temporal variation of �T�z , t� is taken into account
using Eq. �25�, that is, at each time step, the temperature rise
within the latest step period adds propagating and static com-
ponents to the strain field. At the interface, the reflection and
transmission of each mode including mode conversion is cal-
culated using Eq. �24� �see also Appendix C�.

The result is a longitudinal-acoustic pulse in the SiO2 with
an initially generated frequency of �50 GHz and a shear
acoustic pulse with a initially generated frequency of
�20 GHz. The effect of the much higher frequency strain
generation from the electron system �dependent on �Te /�t� is
ignored because of the relatively strong ultrasonic attenua-
tion at terahertz frequencies.37

Although the above procedure is sufficient for numerical
calculation of the strain generation and propagation, it is also
useful to make rough estimates of the acoustic pulse spatial
extent using analytical expressions. According to the
�700 fs electron energy relaxation time ��e�Ce /g with pa-
rameters in Table I at the maximum electron temperature 600
K�, the electron and lattice temperatures become nearly equal
within time �e as the electron energy becomes distributed
over a depth ze���e� /Ce�1/2= �� /g�1/2�70 nm in the Zn.8,37

Nonequilibrium electron diffusion thus ceases for times
greater than ��e, when Te and Tl are approximately equal.
As shown in Eq. �25�, the acoustic thermoelastic stress gen-
eration depends on ��T /�t. The acoustic sources arising

from this term for times ��e set up an initial stress within a
depth �ze determined by nonequilibrium electron diffusion.
Then, for times ��e, the slow varying �T governed by ther-
mal diffusion will produce further stresses. In the case of
zinc, the contributions for t��e are dominant.60

The ultrasonic attenuation in the SiO2 layer is also in-
cluded. For each acoustic mode, the acoustic absorption co-
efficient �ac is assumed to be

�ac = bf2, �38�

where b is a constant that we term the ultrasonic absorption
constant and f is the acoustic frequency. This type of fre-
quency dependence is common to many materials at giga-
hertz frequencies.24 Because of this frequency dependence,
the high-frequency components of the strain pulses are pref-
erentially lost as the strain propagates. This f2 attenuation is
also included in the time-domain simulation.44 The ultrasonic
attenuation in the Zn is negligible for the small acoustic pen-
etration distances experimentally probed �i.e., the optical
penetration depth� and is not included.

TABLE II. Parameters taken from the literature for the simula-
tion shown in Fig. 7.

Mass densitya �kg /m3�
SiO2 film 2.203
103

Zn 7.134
103

Electrical permittivity of Znb

Perpendicular to c axis

�11 at 407 nm −8.27+2.56i

�11 at 814 nm −5.87+36.9i

Parallel to c axis

�33 at 407 nm −7.05+1.77i

�33 at 814 nm −7.25+33.3i

Thermal expansion coefficient of Znc �1/K�
a11 1.3
10−5

a33 6.4
10−5

Elastic stiffness of Zna �GPa�
c11 163.7

c12 36.4

c13 53.0

c33 63.5

c44 38.8

Thermal conductivity of Znb �Wm−1 K−1�
�0 1.16
102

Lattice specific heat of Znb �Jm−3 K−1�
Cl 2.77
106

Constant for electron specific heat of Znc

�Jm−3 K−2�
� 6.98
101

aReference 31.
bReference 42.
cReference 26.
dReference 43.

TABLE I. Parameters for Zn used in the two-temperature model.
Values are taken from literature except g which is obtained by
fitting.

Thermal conductivitya �0 �W m−1 K−1� 1.16
102

Lattice specific heata Cl �J m−3 K−1� 2.77
106

Constant for electron specific heatb � �J m−3 K−2� 6.98
101

Electron-phonon coupling constant g �W m−3 K−1� 6
1016

aReference 42.
bReference 43.
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Figure 5 shows the calculated strain distribution at 100 ps
after the pump light pulse arrival. The static �St� component
corresponds to �B and does not propagate. In the SiO2 layer
pure longitudinal �L� and shear �S� pulses can propagate,
whereas in Zn quasilongitudinal �QL� and quasishear �QS�
pulses can propagate with corresponding velocities vQL
=4.2 km s−1 and vQS=1.8 km s−1, respectively.

First ignoring the effects of ultrasonic attenuation, we
show in Fig. 5�a� the calculated strain in the presence of
nonequilibrium electron diffusion, and Fig. 5�b� in the ab-
sence of diffusion processes 	equivalent to the case of �=0
in Eq. �37�
. In Fig. 5�b� the static strain component St is
defined to correspond to the pump light absorption profile. In
accordance with the significant electron diffusion depth ze,
the generated acoustic pulses are spatially broadened by a
factor of �5 compared to those in the absence of diffusion
processes. The rounded shape of the shear pulses in SiO2
compared to that of the longitudinal pulses has been ex-
plained by Pezeril et al.17,61 as being caused by the separa-
tion of the shear strain into two components of opposite sign
at t=0 associated with the QL and QS modes. The nonequi-

librium electron diffusion theory predicts that the spatial ex-
tent of the generated longitudinal pulses in the SiO2 is
�zevl /vQL�90 nm, whereas that of the shear pulses is
�zevt /vQS�120 nm, in reasonable agreement with Fig.
5�a�.

Now including the effects of ultrasonic attenuation, we
show in Figs. 5�c� and 5�d� the calculated strain in the pres-
ence and absence of nonequilibrium electron diffusion, re-
spectively. The effect of the frequency dependent ultrasonic
attenuation in the SiO2 layer is to slightly reduce the fre-
quency of the acoustic pulses.

Figure 6 shows the spatiotemporal evolution of the strain
components 
3 �longitudinal� and 
4 �shear�, which are used
in the calculation of the optical reflectivity change. The com-
ponent 
5 is zero owing to the symmetry of the system. The
SiO2 longitudinal pulse flips its polarity at the surface but not
at the SiO2 /Zn interface.

The electric field of the reflected probe light is calculated
using the procedure given in Sec. II D,
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FIG. 5. �Color online� Calculated strain distribution obtained at
a time 100 ps after the arrival of a pump light pulse at the sample.
�a� 
3 and 
4 according to the theory including nonequilibrium
electron diffusion and ignoring ultrasonic attenuation. �b� The same
quantities in the absence of diffusion processes and ignoring ultra-
sonic attenuation. �c� The same quantities according to the theory
including nonequilibrium electron diffusion and ultrasonic attenua-
tion. �d� The same quantities in the absence of diffusion processes
but including ultrasonic attenuation. L, longitudinal wave in SiO2;
S, shear wave in SiO2; St, static strain component; QS, quasishear
wave in Zn; and QL, quasilongitudinal wave in Zn. The sample
surface is at a position corresponding to 0, whereas the SiO2 /Zn
interface is at 1.07 �m.
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E�z,t� = E0�z� + k2�
0

	

G�z,z���ε�pe��z�,t�E0�z��dz�

+ k2�
0

	

G�z,z���ε�rt��z�,t�E0�z��dz� + �
n=0

1

k2uz�zn,t�


 G�z,zn + 0�	ε�n� − ε�n+1�
E0�zn − 0� . �39�

The first, second, and third terms are caused by the photo-
elastic effect, by local rotations, and by surface or interface
displacements, respectively.

The polarization of the incident light determines the form
of E0. With the procedure described in Appendix A, we cal-
culate the amplitude coefficient of reflectance rj for the po-
larization configuration j out one of the following, p-p, s-s,
p-s, and s-p, which each refers to the incident and reflected
light polarizations, respectively. The polarization vectors are
chosen as �1 /�2,0 ,−1 /�2� for p incident, �0,1,0� for s inci-
dent, �1 /�2,0 ,1 /�2� for p reflected, and �0,1,0� for s re-
flected. Then we calculate the modulation in amplitude re-
flectance �rj for the polarization configuration j using Eq.
�39�. The intensity reflectivity change �Rj /Rj for polarization
configuration j is given by

�Rp−u

Rp−u
= 2 Re

rp−p�rp−p
� + rp−s

� �rp−s

rp−prp−p
� + rp−srp−s

� ,

�Rs−u

Rs−u
= 2 Re

rs−s�rs−s
� + rs−p

� �rs−p

rs−srs−s
� + rs−prs−p

� ,

�R45−s

R45−u
= 2 Re

�rs−s − �rp−s

rs−s − rp−s
,

�R45−p

R45−p
= 2 Re

�rp−p − �rs−p

rp−p − rs−p
. �40�

These can be directly compared with the experimental
results.62

Each expression in Eq. �40� consists of two types of
terms, one linear in the photoelastic constants and one inde-
pendent of them �related to the surface and interface dis-
placements and to the local rotation�,

�R�t�
R

= �
n=1

2

PIJ
�n�FnIJ�t� + F0�t� . �41�

The first term corresponds to the photoelastic contribution. It
consists of the sum of contributions from the nth layer �n
=1,2�. Each contribution PIJ

�n�FnIJ�t� is linear in the photo-
elastic tensor component PIJ

�n�, and the coefficient FnIJ�t� is
obtained from Eqs. �39� and �40� by setting PIJ

�n� to unity and
all other P’s to zero. F0�t� corresponds to the interface and
rotation contributions. The form of Eq. �41� is convenient for
the automatic determination of each independent photoelas-
tic tensor component using standard least-squares fitting �in-
volving a linear regression method� to the complete experi-
mental data set. Tensor rotation rules,26 which determine the
photoelastic constants of Eq. �27�, can be incorporated into
FnIJ in Eq. �41� for convenience so that we directly obtain

PIJ
�n�’s defined for any convenient crystal orientation. The re-

flectivity change caused by the photoelastic effect is propor-
tional to the photoelastic constants, whereas that caused by
the surface and/or interface displacement or local rotation is
independent of them. The proper inclusion of the effects of
multiple optical scattering results in a nonzero value of F0�t�
in Eq. �41� and thus allows the determination of the absolute
value of the photoelastic constants.20,21,63

Figure 7 shows a comparison of the experimental data
with the optimal fits. The parameters taken from the litera-
ture are shown in Table II, whereas the fitted parameters are
shown in Table III. We obtain good agreement between the
experiment and the fits. The tensor components �ij, �ij, cIJ,
and PIJ are given for the conventional crystalline orientation.

The photoelastic constants for the SiO2 film can be com-
pared with the literature values,45 P11=−0.57 and P12=
−1.26.64 Although the fitted value of P12 is close to the lit-
erature value, P11 is not. This might be due to a decrease in
the generated shear strain amplitude due to degradation of
the Zn surface. The Zn photoelastic constants obtained here
are also strongly dependent on the assumed spatiotemporal
form and the relative amplitudes of the strain field compo-
nents �that are affected by the Zn surface condition�. We do
not know of any other measurements of PIJ in Zn at our
optical probe wavelength of 407 nm. Pezeril et al.17 deter-
mined a different set at 800 nm. Their values represent ratios
with respect to a single tensor component rather than abso-
lute values. For a precise determination of the single-crystal
photoelastic constants, one should evaluate the shear strain
amplitude independently and precisely for a defect-free
sample. The use of a variety of optical incidence angles for
the probe light would be an advantage. Our method is ca-
pable of determining absolute values of photoelastic con-
stants, thanks to the presence of the SiO2 top layer �provided
that the correct strain distribution is known�. The presence of
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FIG. 7. �Color online� Each pair of curves correspond to experi-
ment �upper� and fits �lower� for the transient reflectivity change in
the SiO2 /Zn sample. The polarization of the incident light �p, s, and
45°� and the reflected light �p, s, and u� are specified on each curve.
Scales are common for all curves, which are shifted vertically for
clarity. All fits are obtained with common fitting parameters.
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the oscillating component and the underlying steps in the
signals from the transparent layer are an advantage for the
determination of PIJ.

Figure 8 shows the separate photoelastic, surface and in-
terface displacements, and local rotation contributions to the
transient reflectivity for the four experimental configurations.
The oscillations arise from the photoelastic contribution in
the SiO2 layer. The echoes �corresponding to the acoustic
pulse arrivals at the Zn interface� are also mainly determined
by this contribution. The steplike variation arises from the
surface or interface displacements induced by the acoustic
propagation near these discontinuities. The local rotation
contribution has a shape that mimics the acoustic strain
variation in the region of the interface. Its amplitude is much
smaller than the other contributions.

The parameters other than the photoelastic constants in
Table III are chosen by iterative search using a least-squares
method. �The photoelastic constants are determined by a no-
niterative least-squares method as discussed before.� This fit-
ting procedure is complicated by the interrelation between
parameters. A brief discussion of this is given here.

The sound velocity, refractive index, and thickness of the
SiO2 layer are mutually related. The arrival time of the first
echoes for longitudinal and shear waves traveling in the SiO2
layer �400 and 700 ps� correspond to the traversed thickness
divided by the relevant sound velocity. The frequency of the
oscillations caused by the photoelastic effect in the SiO2
layer �20 and 35 GHz� is determined by the sound velocity
and refractive index. As mentioned previously, the derived
sound velocities are close to literature values. The refractive
index of the sputtered SiO2 layer is also close to the literature
value at our probe wavelength �n=1.46 for bulk fused
silica,42 and n=1.51 for sputtered films of silica46�. We esti-

mate that the error in our sound velocities, thicknesses, and
refractive index here is no more than 1%.

The ultrasonic absorption constant b for longitudinal and
shear waves in the SiO2 layer has a strong effect on the echo
shape at 400 and 700 ps �corresponding to the longitudinal
and shear wave arrival at the Zn�. A larger value of b tends to
give a more rounded echo. The ultrasonic absorption coeffi-
cients in bulk vitreous silica obtained by Brillouin
scattering47 are 7200 dB cm−1 at 35 GHz for longitudinal
waves and 3700 dB cm−1 at 16 GHz for shear waves, which
correspond to amplitude absorption coefficients �ac=8.3

104 and 4.3
104 m−1, respectively. The latter gives b
=170 m−1 GHz−2 for shear waves, which is very close to the
value in Table III, whereas the former gives b
=70 m−1 GHz−2 for longitudinal waves, which is signifi-
cantly smaller than the value in Table III. Picosecond acous-
tics measurements30 for bulk vitreous silica for longitudinal
waves at 30 GHz give a similarly reduced value b
=110 m−1 GHz−2. The reason for the difference between
these bulk and thin-film values is not clear. We estimate that
the error in our determination of b is no more than 10%.

The electron-phonon coupling constant g for Zn deter-
mines the duration of the generated strain pulses as described
in Sec. IV B. The predicted duration of the shear wave echo
at 700 ps �corresponding to the shear wave arrival at the Zn�
is �ze /vQS=40 ps. The duration of the longitudinal wave
echo at 400 ps is �ze /vQL=20 ps. �These estimates are a
little smaller than the experimental durations because of the
effects of the ultrasonic absorption, and one should bear in
mind that they are only order-of-magnitude estimates.� For
the case of no ultrafast diffusion �g=	 or �=0�, the echoes
become unreasonably short �as is clear from Fig. 5�. The
fitted value of g=6
1016 W m−3 K−1 agrees very well with
the literature value48,49 g=6.4
1016 W m−3 K−1. We esti-
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FIG. 8. �Color online� The contributions from photoelasticity
�pe�, surface and interface displacements �if�, and local rotations �rt�
to the simulated transient reflectivity shown in Fig. 7.

TABLE III. Parameters determined by the simulation shown in
Fig. 7. The refractive index and photoelastic constants correspond
to the optical probe wavelength of 407 nm.

Sound velocity in SiO2 film

Longitudinal vl �m/s� 5.46
103

Shear vt �m/s� 3.22
103

Refractive index of SiO2 film 1.47

Thickness of SiO2 film �nm� 1.07
103

Ultrasonic absorption constant in the SiO2 layer

Longitudinal bl �m−1 GHz−2� 4.3
102

Shear bt �m−1 GHz−2� 2.0
102

Photoelastic constants

SiO2 film, P11 −1.1

SiO2 film, P12 −1.5

Zn, P11 30+60i

Zn, P12 9−40i

Zn, P13 27−38i

Zn, P31 100−200i

Zn, P33 200+300i

Zn, P44 120+150i

Electron-phonon coupling constant of Zn

g �Wm−3 K−1� 6
1016
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mate that the error in our determination of g is no more than
20%.

The photoelastic constants of the SiO2 layer and the Zn
crystal affect the sign and magnitude of the oscillatory and
echo signals. Owing to the large number of photoelastic con-
stants for Zn, some of our values are not precisely deter-
mined. The values of P12 for the SiO2 layer are relatively
well determined to within 20%. However, the only photo-
elastic constants that are known within 30% are P11 for SiO2,
P13 for Zn, and P44 for Zn. As for the other components for
Zn, P12 and P33 are known to within 100%, and P11 and P31
within 300%. These poor accuracies indicate that the infor-
mation from the observed signals at our single angle of probe
incidence is not sufficient for a more precise determination.

V. SUMMARY

We have described in detail experiments at oblique optical
incidence using ultrashort optical pulses to generate and de-
tect picosecond acoustic pulses in a thin layer of silica on a
crystalline zinc substrate. The results are analyzed with a
light-scattering theory for arbitrary optical incidence angle
and polarization in thin multilayers of isotropic or aniso-
tropic media containing an inhomogeneous perturbation in
the permittivity tensor in the depth direction. The theory is
applied to a sample of SiO2 on an angle-cut Zn substrate in
which both longitudinal and shear acoustic waves can be
optically generated. Fitting the theory to experiment allowed
us to derive acoustic and optical constants to varying degrees
of accuracy.

The method we have presented can be applied to a variety
of samples. We and other investigators17 have barely scraped
the surface of this interesting mixture of anisotropic optics
and acoustics. Partially transparent anisotropic layers, in-
cluding ferroelectric or piezoelectric multilayers, should
prove to be extremely interesting for similar future studies.
We also look forward to a range of experiments at different
angles of optical incidence and different wavelengths to bet-
ter characterize the optoacoustic response of not only metals
and insulators but also of semiconductor multilayers.
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APPENDIX A: TRANSFER MATRIX METHOD

Light propagation in a piecewise homogeneous medium
can be described using the transfer-matrix method.50–52 Since
it is also important to derive the Green’s function, we de-
scribe in detail how to obtain solutions of the electromag-
netic wave equation 	Eq. �8�
 in such a medium. We first

discuss Eq. �4� in the homogeneous case, for which ε takes a
constant value. The solution can be expressed as a plane
wave in the form

E�z� = e exp�ikzz� , �A1�

where e is a constant polarization vector. Substituting Eq.
�A1� into Eq. �4�, we get

��− kz
2 0 kxkz

0 − kz
2 − kx

2 0

kxkz 0 − kx
2� + k2ε�e = 0. �A2�

The secular equation

��− kz
2 0 kxkz

0 − kz
2 − kx

2 0

kxkz 0 − kx
2� + k2ε� = 0 �A3�

gives four possible values of kz for a given set of kx and k �or
��. Two out of the four propagate �or decrease� in the +z
direction and the other two propagate �or decrease� in the −z
direction. We denote the former two as k1 and k2, and the
latter two as k3 and k4. By substituting k� ��=1, . . . ,4� into
Eq. �A2�, the corresponding optical polarization vector e� is
obtained.

We now consider the solution for a medium with piece-
wise homogeneity, as shown in Fig. 1. Within the nth layer,
the solution is expressed as

E�z� = a�
�n�e�

�n� exp�ik�
�n���n�� , �A4�

where a�’s are the amplitudes of each mode and ��n� is de-
fined as

��n� � �z − zn−1 for n � 1

z for n = 0.
� �A5�

Superscripts �n� are used to specify the layer. The summation
is taken for �=1, . . . ,4.

At each interface, we must have continuity in the tangen-
tial components of the electric field E and magnetic field H
and in the normal components of electric displacement D and
magnetic-flux density B. Taking the magnetic permeability
as unity throughout the medium, this leads to four indepen-
dent conditions for the continuity of Ex, Ey, Bx, and By. These
four conditions at the interface between the nth and �n
+1�th layers are conveniently expressed in a matrix form,

AnPnan = An+1an+1. �A6�

The components of the 4
4 matrices An and Pn as well as
the column vector an are defined as

	An
1� � ex�
�n�,

	An
2� � ey�
�n�,

	An
3� � k�
�n�ex�

�n� − kxez�
�n�,

	An
4� � k�
�n�ey�

�n�,

	Pn
�� � exp�ik�
�n�dn���� for n � 0,
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	P0
�� � ���,

	an
� � a�
�n�, �A7�

where ��� is Kronecker’s delta and ej� denotes the jth com-
ponent of vector e�. No summation on � is required here.
For a medium with N layers on a substrate, there are 4N+8
amplitude components and 4N+4 boundary conditions. If we
specify four arbitrary amplitude components out of 4N+8,
the remaining amplitude components are uniquely deter-
mined by Eq. �A6�. For example, the reflectivity and trans-
mittivity of the medium can be obtained by setting a3

�N+1�

=a4
�N+1�=0 and a1

�0�=a ,a2
�0�=b for the incident light polariza-

tion. We use the notation

E�z;kx;a1
�0� = a,a2

�0� = b,a3
�N+1� = a4

�N+1� = 0� �A8�

to express this particular solution. The lateral component of
the wave vector �kx� is explicitly shown.

APPENDIX B: DERIVATION OF THE GREEN’S
FUNCTION

Here we solve Eq. �9� for given kx and �. We use the
notation G�z ,z� ;kx� to specify kx explicitly. As shown in Eq.
�11�, we need G�z ,z�� for z�� �−	 ,	� with z at the observa-
tion point. On the other hand, as shown later, it is easier to
solve Eq. �9� for z� �−	 ,	� rather than for z�� �−	 ,	�.
This turns out not to be a problem because of the reciprocity
of the Green’s function,

�
−	

	
tG�z,z�;− kx�	�L�kx� + k2εh�z��G�z,z�;kx�
dz

− �
−	

	
t	�L�− kx� + k2εh�z��G�z,z�;− kx�
G�z,z�;kx�dz

= G�z�,z�;kx� − tG�z�,z�;− kx� = 0. �B1�

The calculation starts with Eq. �9�. This is evaluated by par-
tial integration, making use of the symmetry εh= tεh and an
infinitesimal absorption in G�z ,z� ; �kx� that assures that G
vanishes at z→ �	. One therefore needs to solve

�L�− kx� + k2εh�z��G�z,z�;− kx� = − ��z − z��I �B2�

for z� �−	 ,	�. Equation �B1� is then used to obtain
G�z ,z� ;kx� for z�� �−	 ,	�.

Equation �B2� is equivalent to

�L�− kx� + k2�h�z��E0�z;− kx� = 0 �B3�

at z�z�. The general solution for Eq. �B3� is readily ob-
tained by the procedure described in Appendix A involving
the substitution kx→−kx. The � function on the right-hand
side of Eq. �B2� arises from the singularity in G�z ,z� ;−kx� at
z=z�, which may be a delta function, a discontinuity, or a
discontinuity in the first z derivative.53 Therefore the possible
form of G�z ,z� ;−kx� is given as

G j�z,z�;− kx� = G j��z,z�� + � j�z����z − z�� ,

G j��z,z�� = � g1j�z��E1�z� + g2j�z��E2�z� for z � z�

g3j�z��E3�z� + g4j�z��E4�z� for z � z�,
�
�B4�

where G j is the jth column of G. The quantities � j and glj
depend only on z� and are determined below. The quantities
El�l=1, . . . ,4� are the particular solutions of Eq. �B3� in the
form

E1�z� � E0�z;− kx;b1
�0� = b2

�0� = b4
�0� = 0,b3

�0� = 1�

� b1�
�n�e�

�n� exp�ik�
�n���n�� ,

E2�z� � E0�z;− kx;b1
�0� = b2

�0� = b3
�0� = 0,b4

�0� = 1�

� b2�
�n�e�

�n� exp�ik�
�n���n�� ,

E3�z� � E0�z;− kx;b1
�N+1� = 1,b2

�N+1� = b3
�N+1� = b4

�N+1� = 0�

� b3�
�n�e�

�n� exp�ik�
�n���n�� ,

E4�z� � E0�z;− kx;b2
�N+1� = 1,b1

�N+1� = b3
�N+1� = b4

�N+1� = 0�

� b4�
�n�e�

�n� exp�ik�
�n���n�� , �B5�

where n indicates the layer in which z is involved, and bl�
�n� is

the amplitude of mode � in the nth layer. This amplitude is
determined for the boundary conditions stated in the paren-
theses of E0 using the procedure given in Appendix A. The
modes �=1,2 correspond to Re�k���0 or Im�k���0, and
the modes �=3,4 correspond to Re�k���0 or Im�k���0.
Note that k� and e� in this appendix are for −kx, and slightly
different from those for kx in Appendix A. By denoting the
latter as k�� and e�� , we can write k1=−k3�, k2=−k4�, k3=−k1�,
k4=−k2�, e1=e3�, e2=e4�, e3=e1�, e4=e2�.

It is convenient to express L�−kx� as

L�− kx� � L0 + L1
�

�z
+ L2

�2

�z2 , �B6�

where

L0 � − kx
2�0 0 0

0 1 0

0 0 1
�, L1 � ikx�0 0 1

0 0 0

1 0 0
�,

L2 � �1 0 0

0 1 0

0 0 0
� . �B7�

With this notation, Eq. �B2� is rewritten as

�L0 + L1
�

�z
+ L2

�2

�z2 + k2εh�z��G j�z,z�;− kx�

= ��L0 + k2εh�z���� j + L1�G j��z� + 0,z��

− G j��z� − 0,z��� + L2� �

�z
G j��z� + 0,z��

−
�

�z
G j��z� − 0,z����
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��z − z�� + 	L1� j + L2�G j��z� + 0,z�� − G j��z� − 0,z���




�

�z
��z − z�� + L2� j

�2

�z2��z − z�� = − I j��z − z�� , �B8�

where I j is the jth column of I. By comparing the coeffi-
cients for the second z derivative of the � function on both
sides of the equation, we obtain

�1j = �2j = 0, �B9�

where �ij denotes the ith component of vector �j. The quan-
tities Gij� and Iij are similarly defined as the ith component of
vector G j� and I j, respectively. By comparing the coefficients
for the first z derivative of the � function, we find

ikx�3j + G1j� �z� + 0,z�� − G1j� �z� − 0,z�� = 0, �B10a�

G2j� �z� + 0,z�� − G2j� �z� − 0,z�� = 0. �B10b�

Finally by comparing the coefficients for the � function, we
obtain

k2	εh�z��
xz�3j + ikx�G3j� �z� + 0,z�� − G3j� �z� − 0,z���

+ � �

�z
G1j� �z� + 0,z�� −

�

�z
G1j� �z� − 0,z��� = − I1j ,

�B11a�

k2	εh�z��
yz�3j + � �

�z
G2j� �z� + 0,z�� −

�

�z
G2j� �z� − 0,z���

= − I2j , �B11b�

− kx
2�3j + k2	εh�z��
zz�3j + ikx�G1j� �z� + 0,z��

− G1j� �z� − 0,z��� = k2	εh�z��
zz�3j = − I3j .

�B11c�

For the transformation in Eq. �B11c�, Eq. �B10a� is used.
From Eqs. �B9� and �B11c�, � j can be found,

�ij�z�� = �−
1

k2�zz
�n�� for i = j = 3

0 otherwise,
� �B12�

where n� indicates the layer in which z� is involved. With the
explicit expression for El’s, Eqs. �B10a�, �B10b�, �B11a�, and
�B11b� are transformed into

Q�
g11 g12 g13

g21 g22 g23

g31 g32 g33

g41 g42 g43

� =�
0 0

ikx

k2�zz
�n��

0 0 0

− 1 0
�xz

�n��

�zz
�n��

0 − 1
�yz

�n��

�zz
�n��

� . �B13�

Here Q is a 4
4 matrix in the form

Q1j = � jbj�
�n��e1�

�n�� exp�ik�
�n����n��� ,

Q2j = � jbj�
�n��e2�

�n�� exp�ik�
�n����n��� ,

Q3j = i� jbj�
�n���kxe3�

�n�� + k�
�n��e1�

�n���exp�ik�
�n����n��� ,

Q4j = i� jbj�
�n��k�

�n��e2�
�n�� exp�ik�

�n����n��� , �B14�

where

� j = �− 1 for j = 1,2

1 for j = 3,4.
� �B15�

Summation on � is required but not on j. By solving Eq.
�B13� for glj, we obtain the Green’s function G�z ,z� ;kx�
through Eqs. �B1�, �B4�, and �B12�.

APPENDIX C: REFLECTION AND TRANSMISSION
COEFFICIENT FOR ACOUSTIC WAVES

Equation �24� can be transformed into another convenient
form

As = BsCs, �C1�

where 6
6 matrices As, Bs, and Cs are defined as

As =�
v1

�n�u1x
�n� v2

�n�u2x
�n� v3

�n�u3x
�n� v1

�n+1�u1x
�n+1� v2

�n+1�u2x
�n+1� v3

�n+1�u3x
�n+1�

v1
�n�u1y

�n� v2
�n�u2y

�n� v3
�n�u3y

�n� v1
�n+1�u1y

�n+1� v2
�n+1�u2y

�n+1� v3
�n+1�u3y

�n+1�

v1
�n�u1z

�n� v2
�n�u2z

�n� v3
�n�u3z

�n� v1
�n+1�u1z

�n+1� v2
�n+1�u2z

�n+1� v3
�n+1�u3z

�n+1�

Cxi
�n�u1i

�n� Cxi
�n�u2i

�n� Cxi
�n�u3i

�n� − Cxi
�n+1�u1i

�n+1� − Cxi
�n+1�u2i

�n+1� − Cxi
�n+1�u3i

�n+1�

Cyi
�n�u1i

�n� Cyi
�n�u2i

�n� Cyi
�n�u3i

�n� − Cyi
�n+1�u1i

�n+1� − Cyi
�n+1�u2i

�n+1� − Cyi
�n+1�u3i

�n+1�

Czi
�n�u1i

�n� Czi
�n�u2i

�n� Czi
�n�u3i

�n� − Czi
�n+1�u1i

�n+1� − Czi
�n+1�u2i

�n+1� − Czi
�n+1�u3i

�n+1�

� ,
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Bs =�
v1

�n+1�u1x
�n+1� v2

�n+1�u2x
�n+1� v3

�n+1�u3x
�n+1� v1

�n�u1x
�n� v2

�n�u2x
�n� v3

�n�u3x
�n�

v1
�n+1�u1y

�n+1� v2
�n+1�u2y

�n+1� v3
�n+1�u3y

�n+1� v1
�n�u1y

�n� v2
�n�u2y

�n� v3
�n�u3y

�n�

v1
�n+1�u1z

�n+1� v2
�n+1�u2z

�n+1� v3
�n+1�u3z

�n+1� v1
�n�u1z

�n� v2
�n�u2z

�n� v3
�n�u3z

�n�

Cxi
�n+1�u1i

�n+1� Cxi
�n+1�u2i

�n+1� Cxi
�n+1�u3i

�n+1� − Cxi
�n�u1i

�n� − Cxi
�n�u2i

�n� − Cxi
�n�u3i

�n�

Cyi
�n+1�u1i

�n+1� Cyi
�n+1�u2i

�n+1� Cyi
�n+1�u3i

�n+1� − Cyi
�n�u1i

�n� − Cyi
�n�u2i

�n� − Cyi
�n�u3i

�n�

Czi
�n+1�u1i

�n+1� Czi
�n+1�u2i

�n+1� Czi
�n+1�u3i

�n+1� − Czi
�n�u1i

�n� − Czi
�n�u2i

�n� − Czi
�n�u3i

�n�

� ,

Cs =�
t11 t21 t31 r11� r21� r31�

t12 t22 t32 r12� r22� r32�

t13 t23 t33 r13� r23� r33�

r11 r21 r31 t11� t21� t31�

r12 r22 r32 t12� t22� t32�

r13 r23 r33 t13� t23� t33�

� . �C2�

Here Cij
�n� �i , j=x ,y ,z� are the components of C�n� in Eq. �17�, and u�i

�n� is the ith component of displacement vector u�
�n� �mode

� in layer n�. In this form the transmittivity and reflectivity for strain at the interface is given as follows: t��, transmittivity
from mode � in the nth layer to mode � in the �n+1�th layer; r��, reflectivity from mode � in the nth layer to mode � in the
nth layer; t��� , transmittivity from mode � in the �n+1�th layer to mode � in the nth layer; and r��� , reflectivity from mode �
in the �n+1�th layer to mode � in the �n+1�th layer.
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