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We demonstrate that in two-dimensional noncentrosymmetric s-wave superconductors under applied mag-
netic fields for a particular electron density, topological order emerges, and there exists a zero-energy Majorana
fermion mode in a vortex core, which obeys non-Abelian statistics, in analogy with px+ ipy superconductors,
the Moore–Read Pfaffian quantum Hall state, and the gapped non-Abelian spin liquid phase of the Kitaev
model.
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Recently, there is considerable interest in emergent topo-
logical states of many-body quantum systems characterized
by a topologically nontrivial structure of the Hilbert space,
i.e., “topological order.”1 In certain classes of topological
states in 2+1 dimension, quasiparticles are non-Abelian
anyons.2–10 The essential feature of the non-Abelian statistics
is that the exchange of particles is described by unitary op-
erations in the multidimensional space, which is spanned by
the basis of the degenerate many-body ground state. Thus,
the state depends on the order of the multiple exchange pro-
cesses of particles. The possible realization of non-Abelian
statistics in real systems has been extensively studied so far
in connection with the �=5 /2 fractional quantum Hall
�FQH� state and the vortex state of chiral px+ ipy supercon-
ductors �superfluids�.2–7,11,12 These topological states are of
interest also in the context of quantum computing, since the
non-Abelian anyon can be utilized as a decoherence-free qu-
bit and can be potentially applied to the construction of fault-
tolerant topological quantum computers.8,13–15 In this Rapid
Communication, we present another candidate of a topologi-
cal phase, allowing the existence of non-Abelian anyons,
which can be realized in strongly noncentrosymmetric �NC�
s-wave superconductors. This topological phase belongs to
the same class as those of the Moore–Read �MR� Pfaffian
FQH state,2 px+ ipy superconductors,6 and the gapped non-
Abelian spin liquid phase of the Kitaev model.9,10,16 In NC
superconductors, the asymmetric spin-orbit �SO� interaction,
which breaks inversion symmetry, plays important roles in
various exotic superconducting properties.17–21 In our pro-
posal, the asymmetric SO interaction combined with an ex-
ternal magnetic field yields the nontrivial topological state
for a particular electron filling.

We consider type II NC s-wave superconductors with the
Rashba-type SO interaction in two dimension. We neglect
the parity mixing of triplet components of Cooper pairs due
to the asymmetric SO interaction17 because the inclusion of
this effect does not change the essential part of our argument.
For concreteness, we define our model on the square lattice,
although the following consideration does not rely on the
particular choice of the crystal structure. Then the model
Hamiltonian is

H = �
k,�

�kck�
† ck� + � �

k,���

L0�k� · ����ck�
† ck��

− �
k

��ck↑
† c−k↓

† + h.c.� �1�

= �
�=�

��
k

�k�ak�
† ak� − �

k

����k�ak�
† a−k�

† + h.c.�	 . �2�

Here, ck�
† �ck�� is a creation �an annihilation� operator for an

electron with momentum k, spin �. The energy band disper-
sion is �k=−2t�cos kx+cos ky�−�. The second term of Eq.
�1� is the Rashba SO interaction with L0�k�= �sin ky ,
−sin kx ,0�. Equation �2� is expressed in terms of the chirality
basis, which diagonalizes the SO term. The energy band is
split into two parts by the SO interaction: �k�

=�k��
L0�k�
. The gap function in this basis is odd parity
and possesses the momentum dependence ���k�=�	
�k�
with 	��k�=−�L0x� iL0y� /�L0x

2 +L0y
2 , which is, importantly,

similar to that of px+ ipy superconductors. Thus, for ��EF,
we can exploit the same argument as that applied to p-wave
superconductors,22,23 and find that in the mixed state with
vortices parallel to the z axis, there is a zero-energy quasi-
particle state of a vortex core, which is described by a Ma-
jorana fermion. However, in this case, the existence of Ma-
jorana fermions in vortices does not directly lead to the non-
Abelian statistics of them because there are two bands
��k� ,�=��, each of which contributes to a zero-energy
mode with a different band index. The existence of two dif-
ferent species of Majorana fermions in a single vortex im-
plies that the sign change of the fermion operators under the
braiding of two vortices, which is a hallmark of the non-
Abelian statistics �see below�,2,6 is canceled. To eliminate
this unwanted multiplicity of Majorana fermions, we tune the
chemical potential as �=−4t for which the Fermi level
crosses the � point in the Brillouin Zone �BZ�. In this situa-
tion, there are still two bands near the Fermi level in the
model �Eq. �2��: one from �k− with a finite Fermi momentum,
and the other in the vicinity of the � point, which is given by
the Dirac cone. To generate the mass gap in the Dirac cone,
we introduce the Zeeman coupling �BHz�k�ck↑

† ck↑−ck↓
† ck↓�.

The magnitude of the gap is of the order �BHz. Then, there is
only a single energy band �k−, which crosses the Fermi level.
To make our argument more precise, let us assume that Hz is
sufficiently smaller than the orbital depairing field Horb. The
Pauli depairing effect due to Hz is negligible for �
�BHz ,�.19 Also, for this condition, pairings between elec-
trons with finite Fermi momenta and electrons around the �
point are strongly suppressed because the Cooper pairs with
such large center-of-mass momenta are energetically un-
stable. The Zeeman coupling generally induces interband
pairings, in addition to the intraband pairings, resulting in the
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Hamiltonian expressed in terms of the chirality basis,

H = �
�=�

��
k

�k�� ak�
† ak� − �

k

�����k�ak�
† a−k�

† + h.c.�	
− �

k

��2�k�ak+
† a−k−

† + h.c.� . �3�

Here �k�� =�k+��
L�k�
, �v��k�=�	̃−��k�, and �2�k�
=−�BHz� / 
L�k�
 with 
L�k�
=�L0x

2 +L0y
2 +�B

2 Hz
2 /�2 and

	̃��k�=	��k�
L0�k�
 / 
L�k�
. The single-particle energy of Eq.
�3� is

Ek� = � ��k
2 + �2
L�k�
2 + �2

+ 2���k
2�2
L�k�
2 + �B

2 Hz
2�2�1/2. �4�

For �=−4t, low energy excitations of the Hamiltonian �3�
consist of two parts: one is the contribution from quasiparti-
cles of the band Ek− with the finite Fermi momentum kF
defined by �kF−� =0, and the other from quasiparticles of both
two bands Ek+ and Ek− around the � point. We first consider
the latter. As seen from Eq. �4�, the quasiparticles around the
� point have energy gaps �
���BHz
, which implies that in
the vortex core state, a quasiparticle energy gap ��BHz ex-
ists, and there is no zero-energy state associated with a Ma-
jorana fermion mode in the vicinity of the � point. There-
fore, we can neglect the contributions from the quasiparticles
around the � point for the discussion on the Majorana fer-
mion modes in the vortex cores. We now turn to the quasi-
particles with the finite Fermi momentum kF. For k�kF, the
band �k+� is separated from the Fermi level by an energy gap
��. In the case of ��BHz ,� with which we are mainly
concerned, the intraband pairs in the band �k+� are completely
negligible, and the interband pairs are strongly suppressed,
i.e., 
�2�kF�
� 
�−��kF�
. We can exactly integrate out the
high-energy contributions from the band �k+� , which merely
renormalize slightly the energy dispersion and the gap func-
tion of the band �k−� , and obtain the low energy effective
model

Heff = �
k

�̃k−ak−
† ak− − �

k

��̃−�k�ak−
† a−k−

† + h.c.� . �5�

Here the renormalized energy band is �̃k−=�k−+�0 with �0
=Hz

2�2 /�2
L�kF�
2m0 and m0= �4�2
L�kF�
4+�2
L0�kF�
2� /
2�
L�kF�
3. m0 is an energy gap of quasiparticles of the band

�k+� for k�kF. The gap function is �̃−�k�=a�	̃+�k�, where

a=1+Hz
2�2 /2�3
L�kF�
3m0. Note that the gap function �̃−�k�

still possesses the same momentum dependence as that of
px+ ipy superconductors. For the detection of non-Abelian
anyons and the potential application to topological quantum
computing, it is crucial that no other particles are excited in
the processes of braiding them. Therefore, the above argu-
ment is applicable only to the low energy scale ��BHz,

���BHz
, �2 /EF.

The topological order of the effective model
�Eq. �5�� clearly manifests in the Chern number,
which is for the Hamiltonian of the form Heff
=��=x,y,z�k�ak−

† ,a−k−���E��k��ak− ,a−k−
† �t, defined as5,16

N = d2k

8�
�ijÊ · � �Ê

�ki
�

�Ê

�kj
� , �6�

where Ê= �Ex�k� ,Ey�k� ,Ez�k�� / 
E�k�
. The integral of Eq. �6�
is taken over the whole BZ, while Eq. �5� is derived for k in
the vicinity of kF. Nevertheless, we can consider the Chern
number of model �5� by reinterpreting Eq. �5� as a lattice
regularized version of the low-energy effective theory and
extending the k-space in which the model �Eq. �5�� is defined
to the entire BZ. Then, the numerical evaluation of N for the
Hamiltonian �5� gives N=1. Therefore, model �5� is classi-
fied as the same topological class as those of the MR state,
spinless px+ ipy superconductors, and the gapped non-
Abelian phase of the Kitaev model. The existence of the
Zeeman field Hz in model �5� is important for this topologi-
cal characterization, because it does not only break time-
reversal symmetry, but also ensures the differentiability of
Ex,y�k� for Eq. �5�, which is singular at k=0 for Hz=0.

The Chern number N=1 implies the existence of zero-
energy Majorana fermion modes in vortices, which obey the
non-Abelian statistics, as in the case of px+ ipy
superconductors.5,6,16 To demonstrate this, we proceed to
solve the Bogoliubov de-Gennes �BdG� equations for model
�5� with a single vortex inserted parallel to the z axis. For
simplicity, we switch to the continuum model, replacing the
energy band �k of Eq. �1� with �k�=k2 /2m−�, and L0 with
L0�= �ky ,−kx ,0�. Furthermore, we assume that the gap ampli-
tude ��r� vanishes inside of the vortex core and is equal to a
constant � outside of the core, and ��EF. Then, in the
vicinity of the Fermi surface, the BdG equations correspond-
ing to model �5� with a single vortex are

� − ivF · � + �0 �0ei�/2P̂ei�/2

�0e−i�/2P̂†e−i�/2 ivF · �− �0
�� = �� , �7�

where �t= �u�r� ,v�r��, P̂=−��x+ i�y�, P̂†=−P̂�, and �0
=a��r� / 
L�kF�
. The BdG �Eq. �7�� are equivalent to those of
spinless px+ ipy superconductors except that there are the �0
terms in the diagonal components, which can be formally
absorbed into the shift of the Fermi momentum kF→kF
−�0 /vF. Thus, the solution of Eq. �7� is given by �
=e−i�0/vF�p+ip with �p+ip the eigenfunction of the BdG equa-
tions for spinless px+ ipy superconductors, and there exists a
zero-energy mode inside the vortex core, which is separated
from the first excited state by a gap of energy size �2 /EF.22,23

The Bogoliubov quasiparticles for this zero-energy state are
described by a Majorana fermion field �=�dr�u�r�a−

†�r�
+v�r�a−�r��, since �v��r� ,u��r��= �u�r� ,v�r�� for �=0. Here
a−

†�r�=�kak−
† e−ikr.

To confirm the above prediction, we apply numerical
analysis directly to the BdG equations for the tight-binding
model �Eq. �1�� under an applied magnetic field without re-
ferring to the low-energy effective theory �Eq. �5��. The en-
ergy spectrum and the eigenfunctions of the BdG equations
were calculated for model �1� with a vortex located at the
center of the system on the square lattice with open bound-
aries. In this calculation, we assume that the GL parameter is
so large that the Zeeman field Hz is approximated to be uni-
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form, and the spatial dependence of the superconducting gap
function due to the vortex is taken into account only in its
phase for simplicity. The topological properties with which
we are concerned are not sensitive to these approximations.
We set parameters as �=−4t, �= t, �=0.05t, and �BHz
=0.04. Figure 1 shows the spatial distributions of the density
of Bogoliubov quasiparticles for several low-energy states
calculated for the lattice size 37�37. The lowest energy
state with �=4.136�10−4t is dominated by a vortex core
state, which cannot be the Caroli–de Gennes–Matricon mode
of the conventional s-wave superconductors, because for our
choice of the parameters, the Fermi energy is EF=0.25t, and
�2 /EF=0.01t. Also the lowest energy level decreases toward
zero as the system size increases. Thus, we identify the low-
est energy state with the zero-energy mode. Furthermore, we
find the low-energy edge states at the boundaries, e.g., for
�=1.289�10−3, 1.579�10−3. The edge state with energy
�� is a concomitant of the zero-energy vortex core state,
which is in accordance with the Chern number N=1.9 Taking
these observations into account, we can conclude that the NS
s-wave superconductor with a magnetic field for the particu-
lar electron filling is in the topological state.

As was proved by Ivanov, vortices with zero-energy Ma-
jorana modes obey non-Abelian statistics.3,6,8,9 Two Majo-
rana fermion fields �i and � j in two vortices can be fused
into a complex fermion field �= ��i+ i� j� /2. The fermionic
state described by � is occupied or unoccupied. The fusion
rules for three particle states— a vortex �denoted as ��, a
fermion occupied state ���, and an unoccupied vacuum state
1—are analogous to the operator product expansions of the
Ising conformal field theory: ���=1+�, ���=�, and �
��=1. The braiding of vortices at i and j is described by the
unitary operation R��=�� exp� �

4 � j�i�. Here �� is a phase
factor called a topological spin, which is associated with the
conformal spin of the chiral Ising spin field ��=ei�/8. Under
the exchange of two vortices, the Majorana fermion opera-
tors are transformed as �i→R���i�R���†=� j and � j
→R��� j�R���†=−�i. The minus sign in the second transfor-
mation rule is essential for non-Abelian statistics. When two
vortices are fused into �, the braiding of them yields the
phase factor R�

��=ei3/8�, while when the fusion gives the
topological charge 1, the phase factor due to the braiding is
R1

��=e−i�/8. The braiding rules for the other particle types are
R��=−i and R��=−1.
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FIG. 1. �Color online� The
density of quasiparticles on the
37�37 xy plane for �=4.136
�10−4t �top�, �=1.289�10−3t
�middle�, and �=1.579�10−3t
�bottom�. The left and right panels
are, respectively, the plots of

u�r�
2 and 
v�r�
2.
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We now discuss the feasibility of the experimental detec-
tion of the non-Abelian statistics. One promising approach is
to use the two-point-contact interferometer proposed in the
context of the FQH state.4,11,12 In the superconducting state
considered here, this experiment is applicable only to the
thermal transport. According to Refs. 11 and 12, the interfer-
ence term of the edge heat current Jint depends on the parity
of the total number of vortices n in the bulk. Jint for odd n is
much smaller than Jint for even n although both of them do
not exhibit the dependence on a magnetic flux � because the
� particle is neutral. This parity dependence characterizes the
non-Abelian statistics. Another possible experiment is a bit
indirect but simpler. It uses a disk-shaped system with which
two heat baths with different temperatures are attached at the
boundary. For this geometry, as in the case of px+ ipy
superconductors,24 the energy spectrum of the edge state de-
pends on the parity of the total number of vortices n in the
bulk. For even n, the lowest energy state has a gap of the
order � /kFL, where L is the length of the boundary. Al-
though the gap is small for a sufficiently large system size, it
is nonzero, and thus the quasiparticle corresponding to this
edge mode is a complex fermion interacting with �. This
Bogoliubov quasiparticle is categorized as the same particle
type as the � fermion in the bulk because in the limit that the
two vortices merge together at a position r, the resulting �
particle is nothing but the Bogoliubov quasiparticle with a
nonzero energy.8 For odd n, the low-energy edge state is a
Majorana fermion mode and can be fused with an unpaired
Majorana fermion in the bulk, resulting in the � state or the
1 state. The phase accumulated by the current flow of the
edge � or � particles encircling the bulk n vortices are ob-
tained from the square of the braiding operator �Rab�2 �a ,b
=� ,��. We denote the shorter path between two heat baths
on the closed boundary as C1 and the longer path as C2; we
assume that the path C2 encloses all vortices in the bulk and
the path C1 encircles no vortex. When the temperature dif-
ference between two heat baths is such that the chiral-edge
heat current flows mainly in the path C2, the edge heat cur-
rent carried by the � particles exhibits a usual dependence on
� for even n, i.e., Jeven

int ��m=1
� Am cos�2�me� /hc�, while for

odd n, using the fusion rules and the braiding rules men-
tioned above, we obtain Jodd

int ��m=1
� B4m cos �m, where the

B4m term corresponds to a trajectory winding around the
boundary loop 4m times. Thus Jodd

int is much suppressed.

These observable effects can be utilized for the detection of
the non-Abelian statistics.

An advantage of NC s-wave superconductors over px

+ ipy-wave superconductors and the �=5 /2 FQH state is that
the gap energy scale of the former can be typically much
larger than that of the latter. Note that the superconductivity
in NC systems does not need to be a bulk phenomenon. Let
us consider the junction between an s-wave superconductor
and a metallic thin film placed on an insulating substrate.
The thin film must be sufficiently clean so that the mean free
path is larger than its thickness. In this system, inversion
symmetry is broken, and an asymmetric potential gradient
perpendicular to the interface is introduced. We can use a
material with a high transition temperature such as MgB2
�Tc�39 K� for the superconductor.25 Then, the proximity
effect induces s-wave superconductivity in the two-
dimensional NC system realized in the thin film. If the Fermi
energy of the film EF is much smaller than that of the bulk
superconductor, the energy gap in the vortex core �2 /EF for
the proximity-induced NC superconductor can be consider-
ably large. The strength of the asymmetric SO interaction
can be controlled by changing the substrate or applying a
perpendicular voltage on the film. Although electrons should
experience strong SO scatterings at the interface, the transi-
tion temperature and the gap of the s-wave pairing state are
not affected by them. Also, note that the Majorana fermions
in vortices of the NC superconductors do not require the
existence of half quantum vortices, i.e., textures of the d
vector, because our system is essentially regarded as spin-
less. In this sense, zero-energy Majorana states in NC s-wave
superconductors are more realizable than in spinful p-wave
superconductors.

In conclusion, NC s-wave superconductors under mag-
netic field exhibit a topological order for a particular electron
filling and can be playgrounds for the non-Abelian anyons.
Although we consider only the Rashba SO interaction here,
our argument can be easily generalized to other asymmetric
SO interactions.
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