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A mixed power-exponential-type potential is proposed for transition metals that overcomes two of the key
problems associated with the extended Rydberg potential formalism of the Rose binding-energy relation and
the Vinet equation of state. First, it includes naturally the hard-core repulsion at high pressures, and secondly
it avoids the convergency problems associated with the series expansion of the Rydberg potential about
equilibrium. This potential has been tested against an extensive first-principles database across the transition-
metal series. It should prove invaluable to experimentalists in the fitting of their high-pressure data and to
theorists in the development of robust interatomic potentials for atomistic simulations.
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Both the analysis of experimental high-pressure data and
the validity of theoretical atomistic simulations rely on mod-
els of the volume dependence of the energy. For example,
shortcomings in the parametrization of the binding-energy
relation �or energy versus volume curve� at high pressure
render the molecular-dynamics simulations of collision cas-
cades in radiation damage unreliable.1 Similar problems
would arise with the corresponding equation of state �or
pressure versus volume curve�. While today routine first-
principles simulations may be used to gauge the robustness
of the binding-energy relations or equations of state, physi-
cally based analytic representations are still lacking. In this
Rapid Communication, therefore, we analyze two popular
descriptions, based on the Rydberg potential,2 namely the
Rose binding-energy relation3 and the Vinet equation of
state,4 and contrast these with the more physically motivated
generalized Morse potential5 for the case of elemental tran-
sition metals. This will allow us to pinpoint the failures of
this wide class of equations of state, thereby leading to an
improved analytic representation.

The Rose binding-energy relation and the Vinet equation
of state were published about 20 years ago and made claims
of universality across a broad range of materials.3,4 The ex-
pressions of Rose and Vinet turned out to be two different
variants of the extended Rydberg potential,6 namely

Eer
* �x*� = Eer/E0 = − �1 + x* + �

n=2
c�n��x*�n�e−x*, �1�

where the explicit series expansion extended the original Ry-
dberg potential.2 E

er
* is the binding energy scaled by the co-

hesive energy at equilibrium E0, whereas x*= �V1/3−V0
1/3� / l

is a scaled distance measuring the difference in the cube root
of the volume per atom V1/3 from its equilibrium value V0

1/3.
Rose et al.3 fixed the scaling length l= lr of their binding-

energy relation by constraining Eq. �1� to satisfy the bound-
ary conditions E*�0�=−1, E*��0�=0, and E*��0�=1, fitting
the values of E0, V0, and K0, where K0 is the equilibrium
bulk modulus. The resultant Rose scaling length is found to
be

lr = V0
1/3/�9V0K0/E0, �2�

which is of a similar form to that given in the 1931 Rydberg
paper.2 Rose et al. included up to the cubic term in Eq. �1�,

assuming the coefficient cr
�3� to be independent of materials

so that their binding-energy relation remained “universal.”
Vinet et al.,4 on the other hand, fixed their scaling length

lv by constraining Eq. �1� to satisfy the three boundary con-
ditions that are appropriate for an equation of state, namely
V0, K0, and K0�, where K0� is the pressure dependence of the
bulk modulus at equilibrium. This led to an equation of state
of the form

Hv = Pvx2/�3�1 − x�� = K0e−�x−1��V0
1/3/lv� = K0e−x

v
*
, �3�

where x= �V /V0�1/3 and the Vinet scaling length is given by

lv = V0
1/3/�3�K0� − 1�/2� . �4�

In fact, this so-called Vinet equation of state had already
been written down five years earlier by Stacey,7 who had also
started from the Rydberg form for the potential.6 Equation
�3� gave a novel way for analyzing experimental pressure
data since plotting the logarithm of Hv against the Vinet
length x

v
* should result in a universal linear dependence with

the line having a slope of −1.
Unfortunately, numerous authors8–11 have pointed out that

most materials deviate from these so-called universal
binding-energy and pressure relationships. Not only is the
analytic coefficient cr

�3� in the Rose universal binding-energy
relation very material-dependent through K0�,

12 but higher-
order derivatives K0�, K0�, K0

IV , . . . can make significant con-
tributions to the Vinet equation of state above about
100 GPa.13 Although these can be included in principle
through the higher-order terms in extended Rydberg or ln H
series expansions,8–10 the higher-order coefficients are found
to oscillate with increasing amplitude13 reminiscent of a di-
vergent series.14

In this Rapid Communication, we address these problems
of the extended Rydberg potential and corresponding equa-
tion of state by discussing first the more physically motivated
generalized Morse potential5,15,16 and then suggesting an im-
proved analytic form that overcomes some of the inherent
difficulties with analytic potentials. It is widely accepted that
covalently bonded materials, whether sp-valent systems15

with saturated bonds or d-valent transition metals with un-
saturated bonds,16,17 can be described by a generalized Morse
potential with exponential form
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Egm�x� = Ae−p�x−1� − Be−q�x−1�, �5�

where the first contribution arises from the overlap repulsion,
and the second from the formation of covalent bonds.18 As-
suming that the overlap repulsion falls off with distance as
the square of the bond integral,19 Eq. �5� takes the simple
Morse form5 corresponding to p=2q.

Whereas the original Rydberg and Morse potentials con-
tain three fitting parameters, the generalized Morse potential
contains four parameters A, B, p, and q. They can be ob-
tained by fitting the three equilibrium properties V0, K0, and
K0� with the fourth input being either E0 for the binding-
energy relation or K0� for the equation of state. We find that
the arithmetic mean of the exponents p and q is given by

�p + q�/2 = 3�K0� − 1�/2 = V0
1/3/lv, �6�

whereas the geometric mean is dependent on whether E0 or
K0� is fitted, namely

�pq = 	�7 − 9�K0K0� + K0�� for K0�,

�9V0K0/E0 = V0
1/3/lr for E0.

�7�

The latter expression for the Rose length had been deter-
mined earlier by Spanjaard and Desjonquères20 in their
analysis of the link between the second-moment tight-
binding model and the Rose binding-energy relation.3 How-
ever, in practice the arithmetic mean is the natural inverse
scaling length for the generalized Morse potential with its
sum of two exponentials, as Eq. �5� can be rewritten as

Egm
* �xv

*� = − �sinh���xv
*�/�� + cosh���xv

*��e−x
v
*
, �8�

where

� = ��p − q�/�p + q��2 = 1 − �2�pq/�p + q��2. �9�

Let us first consider the case of the four-parameter gener-
alized Morse binding-energy relation where the cohesive en-
ergy E0 is used as an input fitting parameter. Then substitut-
ing Eq. �6� and the lower Eq. �7� into Eq. �9�, we have �
=1− �lv / lr�2. Thus, � will be positive or negative depending
on whether lv is less than or greater than lr. This reflects the
behavior of the cubic prefactor cr

�3� in the Rose binding-
energy relation since cr

�3�= �1 /�1−�−1� /3, which can be ob-
tained directly by expanding Eq. �8� in the Rose form. The
left-hand panel of Fig. 1 shows the variations of � and cr

�3�

across the 4d transition-metal series that is predicted by
density-functional theory �DFT�. We have used the VASP

package21 with projected augmented wave �PAW�
pseudopotentials22 within the local-density approximation
�LDA�.23 In order to obtain accurate data at high pressures,
the semicore electrons are treated as valence electrons.24 A
large cutoff energy of 430 eV is taken, and the k-point mesh
is chosen as �45 /2�� times the length of the reciprocal vec-
tor �e.g., 15�15�9 is used for hcp Y at equilibrium�.
Binding-energy curves are calculated for all three common
metallic structure types bcc, fcc, and hcp �with c /a fixed as
the equilibrium value�.

We see immediately that neither the generalized Morse
parameter � nor the Rose parameter cr

�3� is a universal pa-
rameter, since they range from negative to positive across the

series for all three structure types. Although this confirms
that the Rose universal binding-energy relation is very far
from universal, it also highlights a severe deficiency of the
generalized Morse potential when applied to the early tran-
sition metals, since negative values of � imply that �� in Eq.
�8� is imaginary. Thus we have lost the physical basis of the
generalized Morse potential because p and q will be complex
and we can no longer separate out the terms in Eq. �8� into
real repulsive and attractive contributions as in Eq. �5�. This
imaginary behavior of �� leads to the hyperbolic functions
in Eq. �8� being replaced by their trigonometric
counterparts,25 so that the generalized Morse binding-energy
curves for the early transition metals would oscillate at large
volume expansions.

The origin of this spurious oscillatory behavior appears to
be related to the s→d electron transfer under pressure, as the
logarithmic volume derivative of the number of valence d
electrons in the right-hand panel of Fig. 1 displays a similar
trend to that of � and cr

�3� in the left-hand panel28. Therefore,
for early transition metals, the four-parameter generalized
Morse potential �4-gm� with real values of p and q is unable
to reproduce simultaneously the values of V0, K0, and K0� at
equilibrium and E0, which depends on the total area under
the equation of state as the atoms are brought together from
infinity.

Let us now consider the case of the four-parameter gen-
eralized Morse �4-gm� equation of state where K0� rather than
E0 is used as an input fitting parameter. It follows from Eq.
�8� that the equation of state takes the compact form

Hgm
* =

Pgmx2

3K0�1 − x�
=

sinh���xv
*�

��xv
*

e−x
v
*
, �10�

where H*=H /K0 and � is given by Eq. �9� using Eq. �6� and
the upper Eq. �7�. We see immediately that we recover the
Vinet equation of state, Eq. �3�, in the limit as �→0, corre-
sponding to p→q.

Figure 2 compares the 4-gm binding-energy relation,
equation of state, and ln H* plots with the DFT curve for hcp
Y. The inset in the lowest panel shows that the predicted
value of the cohesive energy, namely E0�4-gm�=10.98 eV
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FIG. 1. Trend of Morse parameter �, Rose parameter cr
�3�, and

logarithmic volume derivative of number of valence d electrons at
equilibrium across 4d transition-metal series.
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�obtained by integrating analytically the pressure-volume
curve from equilibrium out to infinity�, is in poor agreement
with the DFT value of 5.10 eV. This reflects the sizeable
4-gm deviations from the equation of state and ln H* DFT
curves in Fig. 2 as the atoms are pulled apart to infinity, and
is responsible for the spurious oscillatory behavior found ear-
lier in the binding-energy relation when the cohesive energy
was constrained to take the DFT values. In addition, we see
that under compression for pressures greater than about
100 GPa there are sizeable differences between the 4-gm and
DFT curves due to the neglect of the hard-core repulsion in
this exponential-type potential. As stressed by Stacey26 and
Holzapfel,14 both the Rydberg and Morse potentials have
K�� = 2

3 at infinite pressure, whereas it is known experimen-
tally that the iron core of the Earth, for example, takes the
infinite pressure asymptote of K�� =3.0�0.1.25 Clearly the
expected divergence of the interatomic potential at high pres-
sures is not displayed by exponential functions.

We have, therefore, attempted to rectify these problems
within the 4-gm potential by fitting a six-parameter potential
with a mixed power-exponential �6-pe� form, namely

Epe = A
e−p�x−1�

xm − Bxne−q�x−1�, �11�

with m ,n�0. The first contribution takes care of the diver-
gence in the repulsive energy as x→0, whereas the second
attractive contribution has an additional degree of freedom
for fitting the binding-energy curve as the atoms are pulled
apart to infinity. This potential leads to the six-parameter
equation of state

Hpe
*

=
�p + m/x��q − n�x−me−p�x−1� − �p + m��q − n/x�xne−q�x−1�


�p + m��q − n���p + m� − �q − n�� + �pn + qm���1 − x�
,

where x= �V /V0�1/3 and H*= Px2 / �3K0�1−x�� are determined
by inputting the values of the equilibrium volume V0 and K0,
respectively. The remaining four parameters p, q, m, and n
will be determined in this Rapid Communication by fitting
the equation of state from 1000 GPa to 7V0.

We see from Fig. 2 that the comparisons between this
analytic 6-pe potential and DFT are excellent, with the 6-pe
curves passing straight through all the DFT points. This is
reflected by the good agreement between the predicted value
of the cohesive energy, namely E0 �6-pe�=5.00 eV, and the
DFT value of 5.10 eV. We have performed similar calcula-
tions across the 3d, 4d, and 5d transition-metal series, find-
ing corresponding levels of agreement for the binding-energy
curves and equations of state to those displayed in Fig. 2 for
Y.27 The one exception is Sc, where the ln H* plot first shows
a small softening under pressure before the hard-core contri-
bution kicks in. This requires extending the present 6-pe po-
tential to include a further two parameters and will be dis-
cussed elsewhere.27

Figure 3 shows the predicted variation of the six param-
eters A, B, p, q, m, and n across the 4d series. We see that

FIG. 2. Shifted binding energy, pressure, and normalized ln H*

plots for hcp Y. Open circles: DFT reference data; solid line: six-
parameter power-exponential potential �6-pe�; dashed line: four-
parameter generalized Morse potential �4-gm�; dotted line: six-
parameter extended Rydberg potential �6-er�. The predicted
cohesive energies E0, which are obtained by integrating analytically
the different equations of state, are given �in eV� in the inset of the
lowest panel.

FIG. 3. Trend of 6-pe parameters across 4d transition-metal
series.
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both A and B reflect the well-known parabolic behavior of
the cohesive energy across the transition-metal series as first
the bonding and then the antibonding d states are filled with
valence electrons.18 This is not unexpected given that at
equilibrium E0=B−A from Eq. �11�. Interestingly, we also
observe that for pressures less than 1000 GPa, the repulsive
part of the potential is either a pure power law �p=0, m
�0� for the early transition metals or a pure exponential law
�p�0, m=0� for the middle and late transition metals. The
attractive part of the potential, on the other hand, is either
pure exponential �q�0, n=0� for the middle and late tran-
sition metals or of mixed power-exponential form �q�0, n
�0� for the early transition metals. Thus, for P less than
1000 GPa, the middle and late transition metals are well de-
scribed by the 4-gm potential, with the hard-core contribu-
tion only becoming noticeable at much higher pressures.27

We can also compare the predictions of the six-parameter
extended Rydberg potential �6-er� against the DFT and 6-pe
potential in Fig. 2. Retaining contributions up to n=5 in Eq.
�1�, the resultant six independent parameters in the equation
of state can be determined from the 6-pe values for V0, K0,
and the analytic derivatives K0�, K0�, K0�, and K0

IV that are
implicit in the six potential parameters in Fig. 3. We see that
the dotted curves in Fig. 2 that represent this 6-er potential
fail to reproduce both the hard-core contribution to the ln H*

plot at high pressures and the behavior of the binding-energy

curve at large volumes. This failure results in a predicted
value of the cohesive energy that is 40 times larger than that
of DFT. Thus, a Taylor expansion about equilibrium is not a
mathematically sensible way to proceed if one also wishes to
reproduce the binding-energy curve at large volumes or the
equation of state at high pressures.

In conclusion, we have proposed an analytic potential for
transition metals that overcomes two of the key problems
with the extended Rydberg formalism of the Rose binding-
energy relation and the Vinet equation of state. First, by hav-
ing a mixed power-exponential form, it naturally includes the
hard-core repulsion that is observed in the early transition
metals under high pressure. Secondly, by comprising physi-
cally motivated repulsive and attractive contributions, it
avoids the convergency problems at either high pressures or
large volumes that are associated with the series expansion
of the Rydberg potential about equilibrium. This mixed
power-exponential-type potential has been tested against an
extensive DFT database across the transition-metal series. It
should prove invaluable to experimentalists in the fitting of
high-pressure data and to theorists in the development of
robust interatomic potentials for atomistic simulations.
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