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We discuss the effects of anisotropy on superconducting critical temperature and order parameter in a
strongly coupled regime. The multiband representation is used as a model for anisotropy. We show that
strong-coupling effects in multiband superconductors lead to pair breaking due to interband coupling because
soft phonon modes play the same role as static impurities. This effect makes the order parameters in different
bands equal to each other and limits the upper bound on critical temperature.
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I. INTRODUCTION

Effects of anisotropy on superconducting critical tempera-
ture and energy gap become of primary importance by ap-
proaching the strong-coupling regime when transition tem-
perature Tc becomes of the order or even larger than the
characteristic energy � of a boson mode, which mediate su-
perconductivity. This issue received little attention up to
now. In the weak-coupling limit, the effects of anisotropy
were investigated shortly after the Bardeen–Cooper–
Schrieffer �BCS� theory �see, e.g., Ref. 1�, and for multiband
systems �Refs. 2 and 3�. Following the paper by Markowitz
and Kadanoff,4 different authors �references can be found in
the review5� introduced the so-called separable interaction

Vkk� = �1 + ak�V�1 + ak�� , �1�

where ak is an anisotropy parameter with the Fermi surface
averaging �ak� being equal to zero. The result is the enhance-
ment of the effective coupling constant

�eff = �N�0�Vkk�� = N�0�V�1 + �ak
2�� � N�0�V ,

and corresponding rising of the Tc according to the standard
BCS expression

Tc = 1.14�D exp�− 1/�eff� , �2�

where �D is the phonon cutoff.
For multiband clean systems in the weak-coupling limit,

the effective coupling constant in Eq. �2� is determined by
the maximum eigenvalue of the matrix ���, where � and �
are band indices. Intraband impurity scattering does not af-
fect superconducting properties �Anderson’s theorem� while
the interband one averages out the order parameters 	� and
�eff �and Tc�, and corresponds to the average value

��� =
���

N��0����

��
N��0�

, �3�

�see, e.g., Refs. 6 and 7�. For positively defined matrix ���,
the maximum eigenvalue is bigger than ���, and we have the
enhancement of Tc for multiband systems in comparison
with the averaged value. This result does not depend on the
sign of the nondiagonal matrix elements which determine the
anisotropic contribution.8

Recent theoretical studies of superconductivity in the two-
band superconductor MgB2 �Ref. 9�, and calculations of co-
valent metals as the hypothetical hexagonal LiB and boron-
doped diamond renewed the interest on the problem of an
upper bound on superconducting critical temperature in
strongly coupled anisotropic systems. Some estimates pro-
vide values of � in anisotropic superconductors as large as
four �Ref. 10� or even 25 �Ref. 11�.

Let us first recall the result for the strong-coupling ap-
proach to isotropic systems. In the present paper we do not
discuss effects of the strong electron–phonon interaction on
phonon frequencies �see Ref. 12�. For the case of �
2�Tc
�which can occur for large ��, real phonons give the pair
breaking contributions to the superconducting pairing, as
well as to the quasiparticle renormalization. The largest
terms corresponding to pair breaking and quasiparticle
damping �see Appendix A� cancel each other out �Refs. 13
and 14�, and, as the result, one arrives at the following
strong-coupling expression �see Ref. 15�

Tc = const���2, �4�

where in the simplest approximation const= �2��−1�0.15
�numerical calculations give 0.1827�. There are interpolation
expressions connecting strong- and weak-coupling limits
�see reviews5,16,17�.

Moussa and Cohen10 have imposed two possible upper
bounds on a maximal critical temperature of multiband su-
perconductors: the lower one is determined by the averaged
coupling constant �Eq. �3�	 while the upper one is governed
by the maximal �positive� eigenvalue of the matrix for the
first momentum of the Eliashberg functions ���

2 ���F�����,

���2	�� = M���1� = 2

0




d�����
2 ���F����� �5�

�for the Einstein spectrum, this value is equal to ����2�.
The purpose of this work is to analyze self-consistently

the effects of anisotropy on the upper bound on Tc. We show
that the low-frequency phonons play a role similar to intra-
band and interband static impurities. The latter can lead to
the suppression of the anisotropy and, as a result, the upper
bound on Tc is determined by the averaged coupling con-
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stant. We consider in more detail the applications to the
multiband systems.

II. GENERAL DESCRIPTION OF MULTIBAND SYSTEMS

The gap functions 	���n� can be calculated within an
extension of the Eliashberg formalism to multiple bands;

	���n�Z���n� = �T�
�

�
��m���c

���� − ���
� �	���m�

��m
2 + 	�

2��m�
, �6�

Z���n� = 1 +
�T

�n
�
�

�
�m

���

�m

��m
2 + 	�

2��m�
, �7�

where

��� = 2

0




����
2 ���F�����d�/��2 + ��m − �n�2	 ,

Z���n� are the Migdal renormalization functions, �n
=�T�2n−1�, standard Eliashberg functions define the super-
conducting properties, and thermodynamical properties are

���
2 ���F����� =

1

N��0� �
k,k�,�

�gk,k�
��,��2���k

�����k�
� �

���� − �k−k�
� � , �8�

where � ,�= �1,2 , . . .
, N��0� is the partial density of states
per spin at the Fermi energy, gk,k�

�� is the electron–phonon
interaction �EPI� matrix element, ���

� is the renormalized
Coulomb pseudopotential matrix element, and �k

� and
�k

� are the quasiparticle energies. Defining ���

=2��−1���
2 ���F�����d�, we obtain the partial EPI con-

stants. The values of 	���n� enter to the expression for the
superconducting density of states18

N��� = �
�

N��0�Re�� �n

��n
2 + 	�

2��n��
i�n→�+i�

� . �9�

The Eliashberg functions satisfy the following symmetry
relations

N��0����
2 ���F����� = N��0����

2 ���F����� . �10�

For T=Tc, we have �neglecting the Coulomb pseudopo-
tential�

	���n�Z���n� = �T�
�

�
�m

���	���m�
��m�

,

Z���n� = 1 +
�T

�n
�
�

�
�m

��� sign �m,

or

	���n��1 +
�T

�n
�
�

�
�m

��� sign �m� = �T�
�

�
�m

���	���m�
��m�

.

Finally

	̃��n���Tc� = �
�

�
n��1

B���n,n��	̃��n�� , �11�

where for n ,n��1, the matrix B���n ,n�� has a form
�we have used the symmetry of the gap function 	���n�
=	��−�n�	

B���n,n�� =
����n − n�� + ����n + n� + 1�

��2n − 1��2n� − 1�
− ����nn�S��n� ,

�12�

where

S��n� =
1

2n − 1�
�
�����0� + 2�

m=1

n−1

����m�� , �13�

	̃��n�=	��n� /�2n−1, and ��Tc� is the maximum eigenvalue
of the matrix B���n ,n��.

Here for the simplest Einstein spectrum with the fre-
quency �, we have ����m�=����2 / ��2+4�2Tc

2m2�.
The value of Tc is determined by the equation

��Tc� = 1. �14�

III. STRONG COUPLING

The simplest way to estimate ��Tc� for superstrong cou-
pling is to put in Eq. �11� n=n�=1. In this case, we have

	̃����Tc� + �
�

���� = �
�

�����2/�2�Tc�2 + 1		̃�.

�15�

In the isotropic system ���=����, the last two terms in both
sides of the equation cancel each other out and we have a
standard expression for superstrong coupling �see Refs. 5
and 17�,

Tc,iso =
�

2�
�� . �16�

For the nondiagonal matrix ���, this cancellation does not
occur and the large ��� terms play the role of pair breaking
�see Appendix A�.

Let us consider, for the sake of simplicity, the two-band
system. The solution of Eq. �14� has a form

Tc,2b =
�

2�
�A + �B2 + 4CD

2C

with the eigenvector

�	̃1,	̃2
 = �A� + �B2 + 4CD

2�21C
,1� , �17�

where A=�21�11+�11+2�12�21+�12�22+�22, A�=�11�1
+�21�−�22�1+�12� B=�21�11+�11+2�12�21+�12�22+�22, C
=1+�12+�21, and D=�12�21−�11�22.

In this case, in the order of O�1 /�� �we suppose �11

��12��21��22���1�, 	̃1= 	̃2 and

O. V. DOLGOV AND A. A. GOLUBOV PHYSICAL REVIEW B 77, 214526 �2008�

214526-2



Tc,2b �
�

2�
���� , �18�

where ��� means averaging over both bands, and

��� =
��11 + �12�N1�0� + ��22 + �21�N2�0�

N1�0� + N2�0�
,

and N��0� are the partial densities of states. In the case of
multiple band system, we recover the general Eq. �3�. For the
non-Einstein spectrum, we have ����2⇒ ����2	���
= �M���1��= �2�0


d����2���F���	���. This means that
strong coupling leads to washing out the effects of aniso-
tropy.

Similar statements were made in Refs. 19 and 20 where
the authors have considered the momentum dependent
interaction. In the former paper, the separable interaction
similar to Eq. �1� ��2���F���	pp�=�2���F���g�p�g�p��
with �g�p��=1 was used. They got the result that the
expression for Tc in the superstrong limit reduces to the iso-
tropic one while the “pairing potential” is proportional
to g�p�. This contradicts the more general statement in the
latter article where the positive �attractive� interactions
�2�k ,k� ,��F�k ,k� ,�� for all k ,k� was investigated and it
was shown that the gap function becomes k independent,
which leads to the isotropic expression for Tc. The detail
inspection of the situation in Ref. 19 also shows that the real
order parameter, which enters to the density of states �see Eq.
�9�	, is isotropic for large �.

The exact behavior of Tc depends on the structure of the
matrix ���

2 ���F����� but qualitative results remain. We have
investigated numerically the evolution of Tc and eigenvectors
	� as functions of the coupling strength ��� for the model
matrix of the Eliashberg functions

���
2 ���F����� = �2���F���� 1 1/5

1/10 0
� . �19�

We suppose, for simplicity, 2N1�0�=N2�0� and �22=0
�i.e., no intrinsic superconductivity in the second band�. The
average EPI constant ��� is equal to 0.467�. Results for Tc
are presented in Fig. 1. We see that for weak and intermedi-
ate couplings, there is an enhancement of Tc due to aniso-
tropic effects, in comparison to the averaged value. For small
EPI, the result coincide with the weak-coupling expression
for �eff=�max=1.02�, where �max is a maximal eigenvalue of
the matrix �Eq. �19�	. This enhancement, however, vanishes
for large values of � when phonons lead to isotropization of
the superconducting order parameter.

We have to note that the result �Eq. �18�	 is obtained
under the condition of nonvanishing ��� and in the Born
approximation21 for the spin-independent interaction.

Recently the model for the system with strong-coupling
anisotropic interaction was considered in Ref. 22. It was sup-
posed that the difference between the interaction in the qua-
siparticle channel ��2�k ,k� ,��F�k ,k� ,���FS and in the Coo-
per channel �	�k��2�k ,k� ,��F�k ,k� ,��	�k���FS / �	2�k��FS
is independent of the coupling strength. The above analyses
�as well as Ref. 19 and 20� show that this difference vanishes

for strong coupling. This removes unphysical results for Tc
obtained in this limit in the mentioned paper.

In Appendix B, the sensitivity of Tc to different phonon
modes is considered by calculating the variational deriva-
tives. It is shown that the negative �divergent at small fre-
quencies� contribution to the nondiagonal variational deriva-
tive of Tc vanishes in the strongly coupled regime.

IV. CONCLUSIONS

We have shown that strong-coupling effects in the multi-
band superconductors lead to the appearance of strong damp-
ing, which results from pair breaking due to interband cou-
pling.

For systems with attractive interaction, this effect leads to
averaging of order parameters in different bands. As a result,
asymptotic behavior of Tc is described by the well-known
single-band expression Tc�����2�=�2�0


d����2���F����.
This means that the upper bound on Tc in the superstrong
coupling regime is determined by the averaged coupling con-
stant while the higher upper bound corresponding to the
maximal eigenvalue of the matrix ���2	�� is never reached.
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APPENDIX A

We extend the results of Ref. 14 for effects of low-
frequency intermediate boson modes ���2�Tc� on the criti-

FIG. 1. �Color online� Critical temperature �a� and the gap ratio
�c� in the two-band case as a function of intraband coupling con-
stant � in the first band. The panel �b� shows that Tc in the strongly
coupled regime is determined by the average coupling constant. The
panel �c� shows the ratio of the order parameters in the two bands.
The gap function becomes isotropic in the strongly coupled regime.
The numerically calculated ratio 	1 /	2 is very accurately described
by the expression Eq. �17� in a broad range of �.
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cal temperature of the multiband superconductors. On the
real frequency axis, the equations for the complex order pa-
rameter 	���� and the renormalization function Z���� have
forms �neglecting the Coulomb contribution�

Z����	���� = �
�



−





dzK���z�,��Re
	��z��

z�
, �A1�

�1 − Z����	� = − �
�



−





dzK���z�,�� , �A2�

where K���z� ,�� is a kernel of the interelectron interaction
via intermediate bosons with the spectral function
���

2 ���F�����,

K���z�,�� =
1

2



0




d����
2 ���F�����

�� tanh z�
2Tc

+ coth �
2Tc

z� + � − � − i�
− �� → − �
� .

Now let us separate the functions ���
2 ���F����� on to

low-energy part ����
2 ���F�����	� and the high-energy one

���
2 ���F����� = ����

2 ���F�����	���2�Tc − ��

+ ����
2 ���F�����	���� − 2�Tc� .

The same procedure can be done for the kernel K���z� ,��,

K���z�,�� = K��
� �z�,�� + K��

� �z�,�� . �A3�

In the first term on the right-hand side of Eq. �A3�, we can
neglect the frequency � in the denominator. In this case,

K��
� �z�,�� =

���
�

�

1

z� − � − i�
, �A4�

where

���
� = �


0




d�����
2 ���F�����	�coth��/2Tc� � 2����

� Tc

�A5�

is the matrix of the electron scattering on the low-energy
excitations. Now we use the dispersion relation for the order
parameter 	����,

i
	����

�
= −

1

�



−



 dz�

� − z� + i�
Re

	��z��
z�

, �A6�

which is a consequence of the dispersion relation for the
electron Green function in the Nambu representation. Com-
bining Eqs. �A1� and �A2� with Eqs. �A3�–�A6�, we get

	�����1 + �
�

i���
�

�
+ �

�



−





dzK��
� �z�,���

= �
�

i���
�

�
	���� + �

�



−





dzK��
� �z�,��Re

	��z��
z�

.

We see that the low-frequency excitations play a role of in-

traband and interband static impurities. Intraband ���
� ones

drop out from the above equation �so-called Anderson’s
theorem�. It is interesting to note that the famous cancella-
tion of the largest terms proportional to �� �see, e.g., Ref. 5�
comes not from the strong renormalization of the quasiparti-
cle energy �Re Z� but from the damping ������T.

APPENDIX B

In Ref. 23, the sensitivity of Tc to different phonon modes
was considered by calculating the variational derivatives
�Tc /���2���F���	��. For the diagonal elements ��=��, the
result for small ���
2�Tc� coincides with the one ob-
tained by Bergmann and Rainer,24 �Tc /���2���F���	��,
for the isotropic single-band system. This corresponds to the
enhancement of Tc by adding low-frequency phonons
�bosons�.

In the multiband case, the interband derivative has the
following form

�Tc

���2���F���	���

�
N��0�

�
�
n�1

	���n��	���n� − 	���n�	
�n

2

+ O��� ,

and �Tc /���2���F���	12 and �Tc /���2���F���	21 have
different signs. This contradicts to the symmetry relation
�Eq. �10�	. If we change the function ��2���F���	12,
the counterpart ��2���F���	21 has to be changed automati-
cally. Only the symmetrized off-diagonal combination
�Tc /��2���F���o.d. has physical meaning. Here

�2���F���o.d.

=
N1�0���2���F���	12 + N2�0���2���F���	21

N1�0� + N2�0�
.

As a result, we obtain

�Tc

��2���F���o.d.
� −

N��0�
�

�
n�1

�	2��n� − 	1��n�	2

�n
2 + O��� .

�B1�

In contrast to the single-band case �see Ref. 17�, the
off-diagonal derivative has different behavior in the
weak-coupling and strong-coupling regimes. For the
former case, one can suppose 	���n�=	���− ��n�� and

�Tc /��2���F���o.d.�−
�	2−	1�2

� . This means that the addition
of nondiagonal interaction with low-frequency phonons
leads to strong suppression of the critical temperature in
weak-coupling anisotropic superconductors. This result was
obtained in Ref. 25 for the anisotropic separable interaction.
In the strong-coupling limit, as it was shown above, 	1⇒	2,
then the first term in Eq. �B1� vanishes and
�Tc /��2���F���o.d.���0, similar to the intraband contri-
bution. This result can be directly obtained from the Eq. �18�.
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