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We derive the theory of the quantum �zero-temperature� superconductor to metal transition in disordered
materials when the resistance of the normal metal near criticality is small compared to the quantum of
resistivity. This can occur most readily in situations in which “Anderson’s theorem” does not apply. We
explicitly study the transition in superconductor-metal composites, in an s-wave superconducting film in the
presence of a magnetic field, and in a low-temperature disordered d-wave superconductor. Near the point of the
transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this
situation we employ a procedure which is similar to that introduced by Mott for description of the temperature
dependence of the variable-range hopping conduction. As the system approaches the point of the transition
from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law
is violated. In the case of d-wave �or other exotic� superconductors we predict the existence of �at least� two
sequential transitions as a function of increasing disorder: A d wave to s wave and then an s wave to metal
transition.
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I. INTRODUCTION

The quantum �zero-temperature� transition from a super-
conducting to a nonsuperconducting ground state is the
poster child of quantum phase transitions. This transition is
induced by changing external parameters at zero temperature
T.

In this paper we consider three representative problems in
which a direct quantum phase transition occurs from a super-
conducting to a metallic phase in which kFl�1: the case of a
composite of a superconducting and a nonsuperconducting
metal in which the effective interaction between electrons
changes sign as a function of position �Sec. II�, the case
when s-wave superconductivity is destroyed by an external
magnetic field �Sec. III�, and the case when d-wave �or other
exotic� superconductivity is destroyed by quenched disorder
�Sec. IV�. Here kF is the Fermi wave vector and l is the
electron mean-free path.

In three dimensions, there is no question concerning the
existence of both a superconducting and a metallic phase. In
two dimensions, the existence of a metallic phase is prob-
lematic. However, for kFl�1, single-particle localization oc-
curs on such large length scales that its effects are mostly
unobservable. Therefore, for most of this paper, we will ig-
nore the fundamental, but for our purposes purely academic
question of whether or not a two-dimensional �2D� interact-
ing system of electrons can ever exhibit a metallic state in
the asymptotic limit of zero temperature and infinite volume.

Before proceeding to discuss the findings of the present
study, it is worth commenting briefly on the broader context.
The central insight underlying the modern theory of critical
phenomena is that, due to the divergent correlation length at
criticality, the properties of the critical state are “universal.”
An important extension of this is the idea that, in systems
with quenched disorder, the variations in local environments

are self-averaging, so a near-critical system can be treated in
terms of an effective, translationally invariant field theory.1,2

While this approach has had notable successes for the theory
of classical phase transitions, it is more problematic in the
case of quantum critical phenomena. This is most dramati-
cally illustrated by the case3–5 of the quantum critical point in
the random transverse-field Ising model, where the physics
of “rare events” results in the existence of a “quantum Grif-
fith phase” in which, for a finite interval of parameters in-
cluding the critical point, the susceptibility diverges as T
→0. For somewhat analogous reasons, a generic feature that
characterizes the transitions in all three cases mentioned
above is that, at criticality, the spatial distribution of the su-
perconducting order parameter is highly inhomogeneous. It
is concentrated in “superconducting puddles” where, due to
randomness, superconducting order is locally anomalously
favorable, and the distance between “optimal” puddles is
parametrically large. The transition occurs when the Joseph-
son coupling between optimal puddles �which falls with a
power of the separation� times the exponentially large local
superconducting susceptibility on a puddle is strong enough
to stabilize a macroscopically phase-coherent state.

Near enough to the quantum phase transition and at low
enough temperatures, where the correlation length is large
compared to the distance between superconducting puddles,
there is still, presumably, universal behavior described by
appropriate critical exponents. However, a consequence of
the large distance between optimal puddles is that this uni-
versal quantum critical regime is parametrically narrow.
Conversely, there is an anomalously broad portion of the
phase diagram in which the correlation length is comparable
to or smaller than the distance between optimal puddles, but
large compared to the size of an optimal puddle, where quan-
tum fluctuations of the superconducting order parameter
dominate much of the physics. This broad quantum but not
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quantum critical regime is one of the characteristic signatures
of the inhomogeneous nature of the critical state.

It is obvious that the presence of significant superconduct-
ing correlations in the “metallic” state near to the supercon-
ductor �S� to metal critical point makes it highly anomalous:
Its zero-temperature conductivity diverges at the point of the
transition and can be much larger than the Drude value
“near” criticality. In the same regime, the Hall conductivity
decreases with respect to the Drude value and vanishes at the
point of the transition. The Wiedemann-Franz law in such
metals is also clearly violated.

One remarkable implication of the present analysis is that,
in the case when d-wave superconductivity is destroyed by
disorder, there are �at least� two quantum transitions: the first
from a globally d-wave to a globally s-wave �although, pos-
sibly, still locally d-wave� state and the second to the “nor-
mal” �N� metal. Another outcome of this picture is peculiar
temperature dependencies of the physical parameters of the
near-critical superconductor. Some of our findings are sum-
marized in the schematic phase diagrams shown in Figs. 1–3.

To conclude this section, we would like to discuss the
relation between our paper and those6–8 in which it has been
proposed that the quantum transition, especially in 2D, takes
place between the superconducting and an insulating state.
Several lines of reasoning led to the inference that near the
T=0 quantum critical point kFl�1, in which case localiza-
tion �which we neglect� would necessarily be a serious issue:

�1� Where Anderson’s theorem applies at the level of
mean-field theory, such as in the case in which s-wave su-
perconductivity is destroyed by increasing disorder, the lo-
calization length must be comparable to or shorter than the
coherence length in order for the disorder to have any sub-
stantial effect on Tc at all.9

�2� It has been shown that in a system of superconducting
grains linked by resistively shunted Josephson junctions,
quantum fluctuations of the order parameter6,10–12 are
strongly suppressed as long as G�eff��1, independently of
the strength of the Josephson coupling between puddles.
Here G�eff� is a dimensionless shunt conductance measured in
units e2 /h. An apparent implication of this result is that, as
long as a small portion of a highly conducting system is
superconducting, at low enough temperature the system will

FIG. 1. Schematic phase diagram for the case considered in Sec.
II B, in which a concentration N of superconducting grains with a
distribution of sizes is embedded in a metallic host. The solid line
represents a phase transition. The dashed line represents a crossover
where a “small fraction” of the sample first supports a mean-field
solution—although near this line, global phase coherence is de-
stroyed by quantum and thermal phase fluctuations, measurable
manifestations of local superconductivity onset below this line. The
dotted line represents the expected phase boundary in the Cooper
limit, where mesoscopic fluctuations are ignored and a single uni-
form effective interaction between electrons is assumed as in Eq.
�17�.

FIG. 2. Schematic phase diagram for the cases considered in
Secs. III A and III B in which superconductivity in a thin film of an
s-wave superconductor is destroyed, respectively, by application of
a perpendicular or a parallel magnetic field. The crossover scale H�

�indicated by the dot-dashed line� is described in the text. The
gauge glass refers to a zero-temperature phase in which the resis-
tance vanishes as T→0 but for which there is no finite temperature
phase transition. The mean-field phase boundary has a continuous
portion �indicated by the narrower dotted line� and a first-order
portion �indicated by the heavier line� separated by a tricritical point
�indicated by the solid circle�.

FIG. 3. Schematic phase diagram for the case considered in Sec.
IV in which a BCS �weak-coupling� d-wave superconducting state
�in three dimensions� is destroyed as a function of increasing dis-
order strength. The dotted line represents a transition between
d-wave superconductor and normal metal calculated by the conven-
tional theory. In the presence of disorder, the labels “s wave” and d
wave refer to the behavior of the system in a macroscopic phase-
sensitive measurement, as described in the text. �The negative slope
of the boundary which divides globally d- and s-wave global super-
conductors shown in the figure can be justified only in the case
when the electron interaction in the s channel is attractive, so that
the entropy of the s-wave superconductor is smaller than the en-
tropy of d wave. More generally, the slope of this boundary is to be
determined.�
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achieve global phase coherence as long as the dimensionless
effective conductance, G�eff�, is large compared to 1.

�3� It was found in several theoretical studies6–8 of 2D
bosonic models of the transition that there is a universal
value of G�eff�=Gc�O�1� at the point of superconductor-
metal transition. �These models assume the absence of gap-
less quasiparticle excitations and therefore ignore dissipation
of the sort that is represented by the shunt resistance in the
previously discussed models.�

�4� A large portion of the experimental realizations of
such transitions involve 2D systems, such as films. Here, the
transitions are often referred to as a “superconductor to in-
sulator transition”6 �SIT� on the basis of the widely held
theoretical belief that metallic phases are forbidden in two
dimensions due to single-particle localization13,14—any non-
superconducting phase is thus expected be insulating at zero
temperature.

Concerning point �1�, in the present paper, for the most
part, we consider problems in which Anderson’s theorem
does not apply, either due to the symmetry of the order pa-
rameter �e.g., d wave� or the breaking of time-reversal sym-
metry �e.g., by an applied magnetic field�. Concerning point
�3�, we consider cases in which gapless quasiparticles are
present near criticality, so the applicability of a bosonic
model is questionable. Concerning point �4�, as mentioned
above, 2D localization is negligible, and hence a nonsuper-
conducting phase is “effectively metallic,” whenever the pa-
rameter kFl is sufficiently large, since in this limit, the local-
ization length is exponentially large, �loc� l exp��2 G2D�. Here
G2D�kF

2 ld�1 is the dimensionless conductance per square
measured in units of e2 /h of a 2D film of thickness d �for a
review, see Ref. 15�. Finally, concerning point �2�, a large
portion of the discussion in the present paper follows from
the same considerations. The differences between the present
results and those of the earlier studies spring from the fact
that the effective model we develop from microscopic differs
in a subtle manner from the phenomenological Ohmic heat
bath considered in those earlier studies. This difference per-
mits a transition to a phase incoherent state even under con-
ditions in which G�eff��1; however, a residual consequence
of the same physics discovered in those earlier studies is that
this transition occurs when the superconducting puddles are
extremely dilute and so are weakly Josephson coupled to one
another. This is one of the central results of the present study.

A. Effective action for the quantum superconductor-metal
transition

In the present section, we develop the general features of
the effective actions that govern the quantum fluctuations of
the order parameter near criticality. Formally, such effective
actions are obtained by integrating out the fermionic degrees
of freedom, and all high energy collective modes, leaving us
with a set of degrees of freedom, �i= ��i�exp�i�i�, identified
as the phase and modulus of the order parameter on puddle i.
In detail, the various terms are sensitive to the specific physi-
cal circumstances, but the overall structure of the effective
action is the same in all cases studied in the present paper.

In the case of small puddles embedded in a normal metal,
where the value of the order parameter is small, the Andreev

reflection of quasiparticles from the metal-superconductor
boundary is ineffective and can be taken into account in per-
turbation theory. Then, the imaginary time effective action
that governs the superconducting fluctuations near criticality
is of the form

S = �
j
	� j
 d	�−

�
 − 
 jc�
2

�� j�2 +
1

4

�� j�4

�0
2 �

+
� j

2

 d	d	�

�� j�	� − � j�	���2

�	 − 	��2  +
 d	HJ����� + ¯ ,

HJ����� = − �1/2��
i�j

�Jij�i
�� j + c . c.� , �1�

where 	 is imaginary time, j labels the randomly distributed
superconducting puddles, 
 is the parameter that tunes the
phase transition �e.g., the magnetic field in units of the criti-
cal magnetic field�, 
 jc is the critical value of 
 in the jth
puddle, �0 is the magnitude of the order-parameter deep in
the superconducting state, � j and � j depend on the local
structure of the superconducting puddle �as discussed be-
low�, and Jij is the Josephson coupling between nearby
puddles. The ¯ symbol represents high order terms in � that
are negligible at the phase transition, including nonlocal
quartic terms involving the order parameter on more than
one puddle. �Some representative aspects of the derivation of
Eq. �1� are sketched in the Appendix.�

The first and the third terms in Eq. �1� reflect the dynam-
ics of the BCS Cooper instability,16–18 and hence

�i � �Vi, �i � �Vi/�0, �2�

where Vi is the volume of the ith puddle and � is the density
of states in the surrounding metal. �In two-dimensional
cases, naturally, Vi is the area of the puddle and �=�3Dd is
the two-dimensional density of states.� To illustrate this, set
Jij =0 and consider the dynamics of small amplitude fluctua-
tions of the order parameter on an isolated puddle that is on
the verge of becoming superconducting �1� �
ic−
�0� as
described by the linearized version of Eq. �1�,

�i��� � 
 dtei�t��i
��0��i�t�� =

1

2��� j��� + 1/	i�
,

1

	i
=
�i�
 − 
ic�

2�
. �3�

Comparing this with the usual calculation of Gaussian fluc-
tuations in the neighborhood of the superconducting transi-
tion leads to the expressions in Eq. �2�, i.e., Eq. �3� simply
describes the dynamical fluctuations which lead to the Coo-
per instability as 
→
ic. Here angular brackets � � signify
the quantum expectation value.

In the opposite limit, when the puddles are large with big
values of the order parameter, one can neglect quantum fluc-
tuations of the modulus of the order parameter and write the
effective action in terms of fluctuations of the phase only

S = �
j

Gi
�eff�
 d	d	�

�ei�j�	� − ei�j�	���2

�	 − 	��2 +
 d	HJ����� ,
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HJ����� = − �1/2��
i�j

J̃ij cos��i − � j� . �4�

The form of the effective action in Eq. �4� is familiar from
many earlier studies of the quantum dynamics of a system of
superconducting grains linked by resistively shunted Joseph-
son junctions �see, for example, Refs. 6, 7, 10, 12, and 19–
21�. In particular, the dynamical term proportional to Gi

�eff� in
Eq. �4� has the familiar Caldeira-Leggett22 form and de-
scribes the quantum dynamics of the order parameter of an
isolated puddle. In this case the origin of the dynamical term
in Eq. �4� is entirely different from that in Eq. �1�: it reflects
the interaction of the phase fluctuations of the superconduct-
ing order parameter with quantum fluctuations of the electro-
magnetic field. In this case Gi

�eff� is the dimensionless effec-
tive conductance defined by injecting current into the ith
superconducting puddle embedded in the metallic host �ig-
noring the effect of other puddles� and measuring the voltage
drop at infinity. There is a further subtlety in two dimensions,
as discussed in Refs. 23 and 24, associated with the fact that
Gi

�eff�, as so defined, vanishes logarithmically with the size of
the system. To handle this problem properly, one needs to
consider corrections to the dynamical term in the effective
action �Eq. �4��. When this is done, the result is equivalent to
identifying Gi

�eff���G2D. We will show below that in differ-
ent situations either electromagnetic fluctuations or the Coo-
per instability can make the dominant contribution to the
quantum dynamics of the order parameter.

B. Josephson couplings between puddles

We will see that near criticality the typical interpuddle
distance is larger than their size. The other generically im-
portant aspect of the problem is the dependence of the Jo-
sephson couplings between puddles on their separation, ri
−r j, which is long ranged �power law� in the limit that the
temperature T→0. Specifically, the coupling between small
puddles in Eq. �1� is, up to logarithmic corrections which we
will discuss later, of the form

Jij � J�ri,r j� � Cij
�ViVj

�ri − r j�D
exp�−

�ri − r j�
LT

� , �5�

where � is the density of states in the normal metal, LT

=�Dtr /T is the coherence length of normal metal which di-
verges as T→0, Dtr is the electron diffusion coefficient, and
Cij�ri ,r j� is, generally speaking, a complicated �random� di-
mensionless function of the coordinates. In the cases consid-
ered in Secs. II and IV, the value of C is determined by the
average properties of the normal metal between puddles. In
particular, in Sec. II, Cij is mostly positive, and so can be
approximated by its average value, Cij, while for the d-wave
superconductor treated in Sec. IV, Cij has a random sign, but
at long distances, this sign is entirely determined by the char-
acter of the puddles, i and j, and is independent of the dis-
tance between puddles. By contrast, in the cases with a mag-
netic field considered in Sec. III, Cij is determined by the
random quantum interference between different paths
through the normal metal. As a consequence, Cij has a ran-
dom phase.

In the limit of large puddles, the functional dependence of
the Josephson coupling in Eq. �4�,

J̃ij � C̃ij
Dtr

R2

RD

�ri − r j�D
exp�−

�ri − r j�
LT

� �6�

on distance is the same as that in Eq. �5�. Here the random

function C̃ij has properties similar to Cij, and R is the typical
size of the puddles.

C. Susceptibility of an individual puddle

The susceptibility of an individual puddle can be ex-
pressed in terms of the correlation function �i��� �Eq. �3�� as
�i��i��=0�. Its value depends on the puddle size.

Let us start with the case when the puddle is large, so the
dynamics of the order parameter is determined by the effec-
tive action given by Eq. �4� with Jij =0. The implications of
this effective action are best appreciated by interpreting
imaginary time as a fictive spatial dimension, making the
single puddle problem equivalent to the classical inverse-
square X-Y model25,26 at an effective temperature Teff

=1 /Gi
�eff�. The long-time-correlation functions of the inverse

X-Y model have been calculated in various ways and are well
understood. The characteristic decay time depends exponen-
tially on 1 /Teff, and the dynamic correlation function has a
power-law fall off,27

��i
��0��i�	�� � �� j�2	�	 j/	�xj for 	 � 	 j

�	 j/	�2 for 	 � 	 j ,
 �7�

where xi is a nonuniversal exponent xi=Teff / �2��, the relax-
ation time

	i � exp�ZG�eff�� , �8�

and Z=2�2. The susceptibility is thus

�i � �0 exp�ZGi
�eff�� . �9�

However, in two dimensions, due to the dimension specific
subtlety23,24 discussed in Sec. I A, we must identify Gi

�eff�

��G2D, so that

�i � �0 exp�Z��G2D� , �10�

where Z� is another number of order 1.
Let us now turn to the case when the modulus of the order

parameter on a puddle is small and its dynamics are deter-
mined by Eq. �1�. There is a complicated and for our pur-
poses not terribly important crossover that occurs for puddles
which are right on the verge of a mean-field transition, �

−
ic��1. Ignoring such puddles, there are two distinct
asymptotic behaviors that are readily deduced:

�i �	��i�
ic − 
��−1 for �
ic − 
�  0

��i�exp�Z��i��i�2� for �
ic − 
� � 0,
 �11�

where, in this expression, ��i�=�0
�
−
ic is the mean-field

amplitude of the superconducting order on puddle i and Z� is
a renormalized relative of the same factor Z defined in Eq.
�9�. We now sketch the derivation of this result.

The result for a puddle that does not support a mean-field
solution, i.e., for 
ic
, is easily obtained by evaluating Eq.
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�3� at �=0. In the opposite limit, �
−
ic�0, there is a
well-developed mean-field value of the order parameter on
the puddle,

� j = �0
�
 − 
 jc exp�i� j� , �12�

which has an arbitrary phase � j. To the extent that modulus
fluctuations can be ignored, this problem is precisely equiva-
lent to the large puddle problem, with the role of Gi

�eff� played
by � j� j

2 on each grain. Although large amplitude modulus
fluctuations are relatively costly, because the resulting ex-
pression for the susceptibility depends exponentially on �� j�2,
they cannot be neglected. However, since the modulus of the
order parameter appears exponentially in the expression for
�i, it is clear that the neglect of modulus fluctuations is not
reasonable. However, they do not alter the asymptotic quali-
tatively but rather result in a renormalization �reduction� of
the factor Z� in Eq. �11�. The most important feature of Eq.
�11� is that the susceptibility increases exponentially as a
function of 
−
ic and of the volume, Vi, of the puddle, �
�exp�Z���0Vi�
−
ic��.

D. Determination of the quantum critical point

We now outline the procedure for determination of the
location of the quantum critical point under these circum-
stances. Quantum fluctuations necessarily destroy the super-
conducting order in an isolated puddle. Thus, although the
superconducting susceptibility of an individual puddle, �i,
can, under some circumstances, be large, the transition to the
globally phase-coherent superconducting state is ultimately
triggered by the Josephson coupling between puddles. Let us
introduce a dimensionless coupling between two puddles, i
and j,

Xi,j � �iJi,j� jJj,i. �13�

Two puddles fluctuate essentially independently of each
other if �Xi,j��1, and they are phase locked to each other if
�Xi,j��1. The transition to a globally phase-coherent state
occurs as a function of 
 at the critical value, 
=
c, at which
an infinite cluster of puddles is coupled together by links
with Xi,j �1. For an ordered array of puddles, the quantum
superconductor-metal transition was discussed in this
light.16,23,24

In disordered systems, the nature of the phase transitions
described by the effective action in Eq. �1� depends on the
distribution of the parameters, 
ic, � j, Gi

�eff�, and Jij, and
these in turn are somewhat different in the various cases we
treat below. However, what is common to the cases we will
analyze is that according to Eq. �11� the susceptibilities of
the puddles depend exponentially on the parameters of the
action �Eq. �1��. Thus in a generic situation in the neighbor-
hood of the transition, the distribution of �i is extremely
broad, and at criticality, rare puddles with exponentially large
susceptibilities play a special role. In this case, the critical
point can be identified by finding the set of “optimal
puddles” which lie on the critical links of “the percolating
cluster.” This will be done in a way analogous to Mott’s
approach to the theory of the variable-range hopping conduc-
tivity �see, for example, Ref. 28�.

Specifically, the optimal puddles are those in which 
ic
lies in an interval, 
opt−�
opt�
ic�
opt+�
opt. Here both
the optimal value, 
opt, and the width of the interval, �
opt,
are determined by maximizing the quantity Xopt=�opt

2 Jopt
2

with respect to these parameters, where �opt is the suscepti-
bility of a puddle with 
ic=
opt and Jopt is the typical value
of the Josephson coupling between two nearest-neighbor op-
timal puddles. Finally we find the critical value of 
=
c
from the requirement that, after maximizing, max�Xopt��1.
In Secs. II and IV we consider several examples of this pro-
gram.

II. RANDOM MIXTURE OF METAL
AND SUPERCONDUCTOR

As a first case, we consider that a random set of s-wave
superconducting grains is embedded in a normal-metal host
with no magnetic-field or magnetic impurities. We identify
the superconducting grains as regions in which the effective
interaction between two electrons in the Cooper channel is
attractive ��S0�, while in the normal metal the interaction
is repulsive ��N�0�. This system exhibits a metal-
superconductor transition when the appropriate average
value of ��r� changes sign, although the parameter kFl can
still be arbitrarily large.16,23,24 Some aspects of various
closely related problems have been previously analyzed us-
ing a variety of approaches.16,23,24,29–32 However, we are able
to obtain a much complete picture than has been obtained
previously. Moreover, this problem serves as a useful
warm-up as it provides a simple explicit example of how the
character of the optimal puddles and the nature of the quan-
tum phase transition are determined from the present
quantum-percolation analysis.

To be concrete, we will assume that the diameters of the
grains, Ri, are random quantities characterized by the Gauss-
ian distribution,

P�Ri� =
N

�2��RR̄
exp�−

�Ri − R̄�2

2�R
2R̄2

� , �14�

where the average radius is R̄, the dimensionless variance
�R�1, and the total concentration of grains is N. In the
notation of Sec. I, we can identify 
i−
=Ri /Rc−1, where
Rc��0 is the critical radius for the existence of a mean-field
solution and �0 is zero-temperature coherence length in the
superconductor.

Expressions for the susceptibilities of individual grains, in
various limits, are given in Eqs. �9�–�11�. The value of the
Josephson coupling between two superconducting grains em-
bedded in a normal metal depends on whether the Andreev
reflection on the N-S boundary is effective or not. When the
puddles are larger than the coherence length determined by
the magnitude of the order parameter in the puddle, one finds

J̃ij � Geff
Dtr

R̄2

V̄

�ri − r j�D�1 + 2�N�ln2��ri − r j�/R̄���

�exp�−
�ri − r j�

LT
� �15�

by solving the Usadel equation35 �see, for example, Ref. 36�.
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Here V̄ is the volume of a grain, V̄� R̄D. In the opposite
limit, when the value of the order parameter on the puddle is
small and Andreev reflection is ineffective, the coupling can
be computed from perturbation theory,

Jij �
�V̄2

�ri − r j�D�1 + 2��N�ln2��ri − r j�/R̄��
exp�−

�ri − r j�
LT

� .

�16�

The basic power-law dependence of the Josephson cou-
pling between puddles can be derived ignoring all interaction
effects. The factor of 1 / �1+2��N�ln2���ri−r j� / R̄��� has been
derived in Ref. 33. For D2, as the notation suggests, the
coefficient �N is proportional to the �assumed weak� repul-
sion between electrons in the normal metal. In D=2 there is
an additional subtlety, which has been explored in Ref. 34:
Because a diffusing electron returns frequently to the origin
in D=2, multiple Andreev scattering from a single puddle
results in a logarithmic factor of the form shown in Eqs. �15�
and �16�, but with a coefficient �N�1 which does not vanish
in vanishing interactions in the normal metal.

Equations �15� and �16� are valid as long as there are no
other puddles intervening between puddles i and j. Even in
the presence of other puddles, these equations remain valid
as long as the distance between puddles, �ri−r j�, is smaller
than the “Andreev length,” LA, i.e., the mean distance an
electron at the Fermi energy propagates before Andreev scat-
tering off another puddle. However, ultimately the direct Jo-
sephson coupling between two far separated puddles falls
exponentially with correlation length LA �see, for example,
Ref. 16�.

None of the subtleties associated with the logarithmic fac-
tor in Eqs. �6� and �16� are of major significance to the
present discussion. We have invoked the logarithmic term as
a convergence factors for certain integrals. However, at
worst, these integrals are logarithmically divergent, and even
with �N set to zero, they would be cutoff by other effects,
such as the Andreev scattering, alluded in the previous para-
graph.

Due to the s-wave character of the superconducting order
and the fact that the system is time-reversal invariant, and as
long as certain effects of strong correlations in the metal37

can be ignored, Jij is always real and positive. Moreover, if
kFl�1, the mesoscopic fluctuations of the magnitude of Jij
are small compared to the average and can thus be neglected.

Our goal is to determine the critical concentration of
grains Nc at which the superconductor-metal transition oc-
curs. We can identify various regimes depending on values

of the parameters �R, �R̄−Rc� /Rc, Geff, and the Ginzburg
parameter g��Rc

D�0. �g is roughly the number of electrons
within energy window �0 on an individual superconducting
grain. Notice that, in the cases of interest here, where Rc
��0, it is always the case that g�1.� We analyze some rep-
resentative cases:

A. Monodispersed superconducting grains

Let us start with the case where �R→0, so that all puddles

are essentially the same size Ri� R̄. At T=0, it is simple to
see that the following hold true:

�i� If �Rc− R̄��0, individual puddles are not supercon-
ducting, even at mean-field level. In this case, which corre-
sponds to the uniform “Cooper limit,” the superconducting
transition is, to first approximation, mean-field-like and it
occurs when the average interaction strength

�̄ � NV̄�N − �1 − NV̄���N� �17�

changes sign �from attractive to repulsive�. Thus, the critical

concentration is NcV̄���N� / ��S+ ��N��. This estimate ne-
glects the spatial variations in the local concentration of su-
perconducting grains; even when N is, on average, smaller
than this mean-field critical value, there occur regions in
which the concentration of grains exceeds this critical value.
These regions act as the superconducting puddles of a new
level of analysis, which gives results similar to those dis-
cussed below in the case of larger �R.

�ii� If 1� �R̄−Rc� / R̄1 /g, there is a well-developed

mean-field order, �=��R̄−Rc� /Rc�0 on each grain, but the
order parameter has a magnitude small compared to �0. In
this case, Eq. �1� governs the dynamics, and we can make
use of expressions �11� and �16� for � and Jij, respectively.
Since the grains are typically a distance of order N−1/D apart,
the dimensionless coupling between two neighboring grains
is

X � �gR̄DN��R̄ − Rc�/Rc exp�Z�g�R̄ − Rc�/Rc��2. �18�

This coupling is larger than 1 when N exceeds the critical
density,

Nc �
1

gR̄D
� R̄ − Rc

Rc
�1/2

exp�− Z�g� R̄ − Rc

Rc
�� at T = 0.

�19�

�iii� If �Rc− R̄� / R̄�1, the grains act, more or less, like
pieces of bulk superconductor. Here, the dynamics of the
quantum fluctuations are governed by electric-field fluctua-
tions as in Eq. �4�, and consequently the same analysis leads
to

Nc �	R̄−2 exp�− Z��G2D� in D = 2 at T = 0

R̄−3 exp�− ZGeff� in D = 3 at T = 0.


�20�

Let us turn now to the temperature dependence of Nc�T�.
Conventional arguments suggest that at low enough tempera-
tures, and arbitrarily close to the zero-temperature critical
point, there is a universal quantum critical regime,38,39

where, for example, �Nc�T�−Nc��NcT
x, where x signifies an

appropriate universal critical exponent. This regime, if it ex-
ists, applies only as long as LT�Nc

−1/D and so is exponen-
tially narrow. Beyond the quantum critical regime, there is a

broad range of temperatures in which Nc
−1/D�LT� R̄, where

the fluctuations are highly quantum mechanical in the sense
that one can still neglect the T dependencies of ��T�. In this
case there are two sources of the T dependence of Nc�T�: �a�
the classical fluctuations which destroy the coherence be-
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tween puddles when Jij��i��� j��T and �b� the T dependen-
cies of Jij�T�, given by Eq. �16�. The relative importance of
these two effects depends on the dimensionality of space D
and the value of the parameter g. The second mechanism
dominates the T dependence of Nc�T� in the 2D case at arbi-
trary T and in the three-dimensional �3D� case in the wide

interval of temperatures where LT / R̄g. Then the criterion
Xopt�1 corresponds to a typical distance between puddles of
order LT, and hence

Nc�T� �
1

�LT�D , R̄ � LT � Nc�0�−1/D, �21�

�In this paper we will ignore relatively small temperature

interval LT R̄ where in three dimensions the temperature
dependence Nc�T� is determined by the first mechanism.�
Note that subtleties, such as whether the superconducting
state has long-range order �the 3D case� or only power-law
order �the 2D case�, do not affect the validity of this esti-
mate.

B. Optimal radius grains

If the variance �R is not too small, the susceptibilities of
individual grains �i have an exponentially broad distribution.

As a result, at T=0 the transition point occurs when R̄�Rc
and is determined by relatively rare optimal puddles with
anomalously large values of �Ri−Rc� /Rc and consequently
with exponentially large susceptibilities. However, as we

shall see, if R̄ is too much smaller than Rc, the optimal grains
become so rare that, yet again, a regime occurs in which the
optimal puddle is formed in regions with an anomalously
large concentration of subcritical grains.

Let us focus on those grains with radii, Ri, within �Ropt of

a still to be determined optimal radius, Ropt R̄. �It can be

shown that the relevant range is �Ropt��RR̄.� We will ig-
nore puddles which do not belong to this optimal set since
puddles with much larger Rj are extraordinarily rare and
those with much smaller Rj have much smaller susceptibili-
ties. Under the assumption �to which we will return below�
that the optimal puddles are still small enough that Eq. �1�
applies, the concentration of the optimal puddles is

Nopt � N�R exp�− �Ropt − R̄�2/2�R
2R̄2� , �22�

so according to Eqs. �11�, �16�, and �13�

Xopt � �Noptg�2 exp�Z�g
�Ropt − Rc�

�0
� . �23�

Maximizing Eq. �23� with respect to Ropt gives

Ropt
�max� = R̄ + Z�gR̄2�R

2 /�0 �24�

and max�Nopt��N exp�−�Z�gR̄�R�2 /2�0
2��N �i.e., most

puddles are smaller than Ropt and hence play no direct role in
the transition�. Finally, using the criteria Xopt�1, we find

Nc �
1

R̄D−1�R

exp�Z�g

�0
�Rc − R̄ −

Z�gR̄2�R

2�0
�� at T = 0.

�25�

We note that the critical concentration in Eq. �25� can be
extremely small as a consequence of the fact that rare
puddles larger than average puddles contribute significantly
to the global phase coherence.

Let us now discuss the limits of applicability of Eq. �25�.
It is manifestly necessary that �R be small enough that

NcR̄
D�1, i.e., that

�Rc − R̄�  Z�gR̄2�R
2 /2�0. �26�

Note that the same criterion leads to the inequality �Ropt

� R̄�R� �Ropt− R̄�, which justifies the saddle-point approxi-
mation.

The temperature dependence of Nc can be obtained in
similar ways as in A above. When LT�Nc

1/D, the behavior is
presumably governed by universal properties of the quantum

critical point. However, for Nc
1/DLT� R̄, the temperature

dependence of Nc again derives from the temperature depen-
dence of Jij, i.e., that the Josephson coupling falls rapidly to
zero at distances large compared to LT. Here, the character of
the optimal puddles is still determined by Eqs. �23� and �24�,
but the critical concentration is determined by the condition
that the distance between optimal puddles is typically of or-
der LT, i.e.,

Nc�T� � LT
−D exp��Z�ncR̄�R�2/2�0

2� . �27�

The resulting phase diagram is shown schematically in Fig.
1.

C. Large puddles

The expressions in B were derived under the assumption
that the optimal grains are sufficiently small that the mean-
field order parameter has a magnitude small compared to �0
and consequently that the susceptibility grows exponentially
with the radius of the grain, according to Eqs. �2� and �11�.
However, if �R is sufficiently large, the optimal grains get to
be large enough that Ropt−Rc�A�0 �where A is of order 1�,
and consequently ��i���0. In this limit, the quantum dy-
namics of the order parameter is determined by quantum
fluctuations of the electromagnetic field, and �i is determined
by the normal-state conductance of the metal, Geff, as in Eqs.
�9� and �10�. We can estimate the conditions for this by ex-
trapolating Eq. �24� to the point Ropt−Rc=�0, from which we
deduce that the optimal puddles are “large” when �R

2

 ��0 / R̄�2�1 /Z�g�.
In this limit, since � grows with size of the grain only

relatively weakly �log����RD−2�, while the density of grains
of large size falls exponentially with their volume, the den-
sity of optimal puddles is simply the density of grains with
radius larger than R0�Rc+A�0,
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Nlarge = 

RR0

dRP�R� � N exp�− �R̄ − Rc�2/R̄2�R
2� .

�28�

With Nlarge playing the role of Nopt, and with the expressions
in Eqs. �9� and �10� for the susceptibility, the same analysis
can be applied as in part B to obtain Nc. For instance, in
three dimensions,

Nc � Rc
−3 exp�− ZGeff + �R̄ − Rc�2/2R̄2�R

2� . �29�

We would like to stress that Eq. �29� holds only at exponen-
tially small temperatures for which LT�Nc

−1/D. In the oppo-
site limit, puddles with RiRo are irrelevant, and the Cooper
instability contribution represented by Eq. �11� dominates the
physics of the phase transition, even for relatively large val-
ues of �R.

III. s-WAVE SUPERCONDUCTOR IN A MAGNETIC FIELD

A. Magnetic-field perpendicular to a superconducting
film

A magnetic field, H, applied perpendicular to a metallic
film �D=2� couples primarily to the electron’s orbital mo-
tion. In this case the Zeeman coupling of the magnetic field
to the electron spin can be neglected. To the extent that me-
soscopic fluctuations of the order parameter can be ne-
glected, the problem of s-wave superconductivity in a mag-
netic field was solved by Abrikosov and Gorkov. In this
approximation, at Hc2

�0�=�o /��o
2, the order parameter can be

represented as a superposition of wave functions in the first
Landau level,

��r� =
1

�2�LHd
exp�− r2/LH

2 � , �30�

where �0=hc /2e is the flux quantum and LH=��0 /2�Hc2
�0�

is the magnetic length. �We consider the “dirty limit” �0� l
�kF

−1, where �0=�Dtr /�0�. Roughly speaking, the same form
of the wave function applies even when mesoscopic fluctua-
tions are taken into account. This simplifies the analysis in
that it implies that, near the point of the transition, the
puddles have a typical size, Lj �LH. However, the critical
magnetic field Hi varies randomly as a function of position,
so that, in the notation of Sec. I, we can identify


i − 
 �
�Hi − H�

Hc2
�0� . �31�

We will assume that the distribution of Hi is approxi-
mately Gaussian,

P�Hi� =
1

�2��HH̄c

exp�−
�Hi − H̄c�2

2�H
2 H̄c

2 � , �32�

and is characterizing by the average H̄c and a dimensionless
variance �H. �This ignores the existence of long, but for
present purposes irrelevant, tails of the distribution produced
by mesoscopic effects.40� We assume that �H�1 and thus

that Hc2
�0�� H̄c. Generally, there are two contributions to the

variance �H: one contribution comes from classical fluctua-
tions in the strength of the local scattering potential and one
from nonlocal quantum “interference” effects,

�H = ��int� + ��cl�. �33�

The classical contribution is due to random fluctuations of
the concentration of impurities,

�H
�cl��L� � ��/LH̄� , �34�

where ��LH̄ is the correlation length of the disorder poten-
tial. The electron interference contribution is41

��int� � 1/G2D � 1. �35�

Note that although the interference term is independent of
puddle size and hence is the larger term for big enough
puddles, for large G2D there is a parametrically wide range of
puddle sizes for which the simple statistical variations in
impurity concentrations dominate the variance of local criti-
cal fields.

The configuration dependent �mesoscopic� variations in
the Josephson coupling, Jij are more important here than in
the previous example. One can see this by noticing that at
large �ri−r j� �up to possible logarithmic corrections� the av-
erages

Jij � �LH
2 d

LH
2

�ri − r j�2
exp�−

�ri − r j�
LH

−
�ri − r j�

LT
� ,

J̃ij � Geff
Dtr

�ri − r j�2
exp�−

�ri − r j�
LH

−
�ri − r j�

LT
� �36�

are much smaller than the variances

��Jij�2�1/2 � � LH
2

vFl
�� LH

�ri − r j�
�2

exp�−
�ri − r j�

LT
� .

��J̃ij�2�1/2 �
Dtr

�ri − r j�2
exp�−

�ri − r j�
LT

� , �37�

where Ō indicates the average of O over realizations of the
random scattering potential and vF is the Fermi velocity. As a
consequence, at long distances the Josephson coupling in
Eqs. �1� and �4� is of the form41

Jij � Fij�LH
2 d

LH
2

�ri − r j�2
exp�−

�ri − r j�
LT

� ,

J̃ij � F̃ij
Dtr

�ri − r j�2
exp�−

�ri − r j�
LT

� , �38�

where Fij =Fij�ri ,r j�, and F̃ij = F̃ij�ri ,r j� are dimensionless

functions which vary randomly in phase, and �F̃ij�2��Fij�2
�1.

To find the critical magnetic field Hc, we employ the same
optimization procedure we used in Sec. II. We introduce an
interval in the space of Hi which is centered at Hopt with

width �H��HH̄c. We will see that for sufficiently large val-
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ues of �H, the distance between the optimal puddles is large
enough that the Josephson coupling between puddles is
dominated by the mesoscopic contribution given by Eq. �38�.

Depending on the value of G2D=e2�Dtrd, the quantum
dynamics of the order parameter is determined by either the
Cooper instability or the quantum fluctuations of the electro-
magnetic field. If �Hopt−H� /Hc2

�0��1, and hence �opt��0,
the quantum dynamics of the order parameter is determined
by the Cooper instability, so we can use Eqs. �2� and �5� to
obtain

Xopt � aH exp�Z�g�Hopt − H

H̄c

� −
�Hopt − H̄c�2

�H
2 H̄c

2 � at T = 0.

�39�

Here aH��0 /EF and g=��0�0
2d�G2D. As before, Hopt is the

value which maximizes this expression and the true critical
field is then determined as the value of H=Hc at which
Xopt=1,

Hopt = H̄c�1 + �ZG2D/2��H
2 �, Hc = H̄c�1 + �ZG2D/4��H

2 � .

�40�

These expressions are self-consistent as long as

2
�ZG2D

� �H �
2

ZG2D
, �41�

where the first inequality guarantees that �Hc− H̄c� / H̄c�1
and the second that the optimal puddles are dilute. The ex-
pression for Hc in Eq. �40� has been obtained in Ref. 18 by a
different method.

In any puddle for which �Hi−H� /Hc2
�0��1, the supercon-

ducting order is “fully developed,” �i��0, so the dynamics
of the order parameter is determined by the quantum fluctua-
tions of the electromagnetic field. In this case, the suscepti-
bility of the puddle depends only on G2D as in Eq. �10� and
is independent of Hi. Since the probability of finding such a
puddle decreases with increasing Hi, the optimal puddles of
this sort are those with Hi�Hopt�H. The corresponding di-
mensionless coupling between these puddles is thus

Xopt � exp�2Z��G2D −
�Hopt − H̄c�2

�H
2 H̄c

2 � . �42�

These puddles are always dilute compared to their size as

long as �H− H̄c��HH̄c. The critical value of H, determined
by the condition Xopt�1, is

Hc = H̄c�1 + �2�HG2D
1/4� at T = 0. �43�

The issue of whether the global superconducting proper-
ties are dominated by weakly superconducting or fully de-
veloped puddles is settled by determining which of the ex-
pressions for Xopt in Eqs. �39� and �42� give the largest value.
In particular, the critical field is determined by the larger
values given by Eqs. �40� and �43�.

Since in both these cases, the puddles are dilute, the phase
of the Josephson couplings between optimal puddles is ran-
dom. Thus, the T=0 ordered state is glassy and is an example

of a “gauge glass.” While this phase does not have long-
range order, it supports a nonzero Edwards-Anderson order
and is generally thought to have zero resistance.44,45

In two dimensions, however, there is no ordered state at
nonzero T, so there are only crossovers as a function of H
and T. There is a characteristic field H��T�, such that for H
�H�, the coupling between optimal puddles is large �in
magnitude� compared to the temperature; here, the resistivity
is, presumably, due to some form of variable-range hopping
of vortices and so decreases exponentially with decreasing T.
Clearly, H��T�→Hc as T→0. It is only weakly T dependent
at low T, but in the temperature range such that LT is smaller
than the typical spacing between optimal puddles, but large
compared to the puddle diameter, H� is determined by the
condition that the concentration of superconducting puddles
must exceed LT

−2; this leads to the unusual T dependence,

H��T� � H̄c�1 + 2�H ln1/2�LT/LH�� . �44�

The resulting schematic phase diagram is shown in Fig. 2.
Note that there are a series of additional crossovers that we
have not addressed here, and which are not shown in the
figure, which occur at fields greater than H�. These cross-
overs characterize various energy scales in the anomalous
metallic phase proximate to the superconducting glass. More
of the physics of the anomalous metal will be addressed in
future studies.

B. Case of a parallel magnetic field

We now consider the opposite limit, in which the coupling
of an applied magnetic field to the electron spin �Zeeman
coupling� is significant, and the coupling to the orbital mo-
tion of the electrons can be neglected. To a good approxima-
tion, this can be realized in a thin film of an
s-superconducting metal in which the superconductivity is
destroyed by an in-plane magnetic field H�. The situation in
this case critically depends on the value of the parameter
�0	so �or, in other words, on the atomic weight of the metal�
where 1 /	so is the spin-orbit scattering rate. In the case of
relatively strong spin-orbit coupling, �0	so�1, on mean-
field level and in the absence of mesocopic fluctuations, the
transition is second order. In this case, the effect of mesos-
copic fluctuations on the character of the transition is quali-
tatively similar to the transition in the perpendicular mag-
netic field considered in Sec. III A. In the case �0	so�1,
however, the situation is very different because on the mean-
field level the transition is first order. In this section, we will
consider this case, and to simplify the discussion, we will
consider it in the limit of zero-spin-orbit coupling, �0	so
→�. In this limit, the microscopic physics responsible for
the emergence of a puddle state is quite different, and in
particular the energy associated with the formation of
puddles is larger than in the previous examples. Therefore
the various manifestations of the physics, and especially the
glassy character of the phase at intermediate fields, are more
robust.

If mesoscopic fluctuations are ignored, the zero-
temperature transition is first order, with a discontinuous
jump in the spin-magnetization density from m=0 �in the
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superconducting state� to m=�spH� in the metallic state,
where �sp=���B

2 is the normal-state spin �Pauli� susceptibil-
ity. The critical field is given by the well-known
Chandrasekar-Clogston limit,

Hc�
�0� = �0/�2��B. �45�

�In the disorder free case, there might appear a narrow re-
gime of fields near Hc�

�0� in which a partially polarized Fulde-
Ferrel-Larkin-Ovchinikov �FFLO� state occurs, but this is
not relevant in the case l��0, considered here.�

In disordered systems the critical magnetic field Hc��r�
exhibits spatial fluctuations. In the absence of spin-orbit scat-
tering the value of Hc�

�0� given by Eq. �45� is independent of l,
which means that there is no classical contribution to the
dimensionless variance ��, which is, instead, determined en-
tirely by mesoscopic interference effects. Thus, the dimen-
sionless variance is42

�� �
��Hc� − H̄c��2�1/2

H̄c�

�
1

G2D
�46�

and the correlation length of Hc��r� is of order �0.
According to general theorems,46 in 2D quenched disor-

der destroys first-order transitions. Rather, near a putative
first-order transition, a domain structure occurs with a char-
acteristic domain size Ldom which is exponentially large in
the small disorder limit, Ldom�exp�Z��1 /���2�. In some
cases, the putative first-order transition is simply smeared
and replaced by a crossover which becomes increasingly
sharp as the disorder becomes weaker. However, in the
present case, since there is clearly a superconducting phase
for small enough H� and �as we shall confirm� a nonsuper-
conducting phase for large enough H�, there must still be a
sharp, continuous quantum phase transition at a shifted criti-
cal field, Hc�.

Specifically, in the present case, the superconducting do-
mains are regions with magnetization m near 0, and with the
local magnitude of the order-parameter, ��i���0, while the
metallic regions have m��spH� and miniscule magnitude of
the superconducting order. The volume fraction of the two
phases is a function of H�; it is roughly a 50-50 mixture when
H� �Hc�

�0�, and the superconducting fraction decreases mono-
tonically with increasing H�. However, global phase coher-
ence is not lost at H� �Hc�

�0�, where on the mean-field level
the superconducting fraction first fails to percolate. Rather,
as in the other problems we have examined, it occurs when
the Josephson coupling between superconducting regions be-
comes sufficiently weak, which in turn occurs when the su-
perconducting fraction is small and the superconducting re-
gions far separated.

Because the superconducting regions have a characteristic
size large compared to �0, and the magnitude of the order
parameter is large, the dynamics of phase fluctuations is de-
termined by electric-field fluctuations, and consequently �ac-
cording to Eq. �10�� �i��0 exp�Z��G2D�.

To determine the distribution of Josephson couplings, we
note that in an SNS junction, when the normal part of the
junction is partially spin polarized,43 the Josephson coupling

oscillates in sign as a function the coordinates. Specifically,
at T=0,

J̃�r,r�� �
G2DDtr

�r − r��2
exp�−

�r − r��
LH�

�cos�bf �r − r��
LH�

� ,

��J̃�r,r���2�1/2 �
Dtr

e�r − r��2
,

J̃�r,r�� � F�r,r��
G2DDtr

�r − r��2
cos� r − r�

LH�
� , �47�

where LH� =�Dtr /�H� and F�r ,r�� is a sample specific func-
tion ��F��1� which has random variations both in modulus
and in sign.

The mesoscopic fluctuations of J̃ again dominate the av-
erage at distances large compared to LH�. Thus we can esti-
mate the critical magnetic field Hc� at which the zero-
temperature phase transition to the metallic phase takes

place. For H� H̄c�, the probability of finding a supercon-

ducting puddle is �exp�−�H� − H̄c��2 /2��
2H̄c�

2 �. As a result,
following the same line of reasoning as in Secs. I and II,

Hc� − H̄c�

H̄c�

� �Z���G2D
1/4. �48�

Notice that the average Josephson coupling in Eq. �47�,
itself, oscillates in sign, so even when the superconducting
puddles are closely spaced, the Josephson couplings are ran-
dom in sign. The resulting glassiness of the superconducting
state is more robust than in the case of the perpendicular
magnetic field because of the large size of the superconduct-
ing domains, the fact that the magnitude of the order param-
eter is fully developed within each domain, and due to the
fact that the randomness in sign is not solely a long distance
subtlety. In the absence of spin-orbit coupling, the magnetic
field does not couple directly to any orbital degrees of free-
dom, and hence the glass phase can be precisely character-
ized as in an X-Y spin glass, in which the ordered state sup-
ports spontaneously generated equilibrium orbital currents.

In the presence of spin-orbit coupling, a sharp definition
of the glass phase based on the presence of orbital currents is
not possible; even a normal disordered metal phase will sup-
port small orbital currents under these circumstances. As in
Secs. I and II, the superconducting coherent state near the
critical field is some form of a gauge glass.

IV. DESTRUCTION OF d-WAVE SUPERCONDUCTIVITY
BY DISORDER

We shall now consider the case in which, in the zero
disorder limit, the superconducting state is a BCS state with
d-wave symmetry due to a weak attractive interaction in the
d-wave particle-particle channel. In the d-wave case, it is
necessary to explicitly treat the dependence of the supercon-
ducting order parameter on the relative coordinate. Specifi-
cally, in the absence of disorder and in a bulk sample,
��r ,r��=��d��d

�0��r−r��, where �d
�0��r� changes sign under
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rotation by � /2, and is a short-ranged function, with range,
b��0, determined by the range of the effective attractive
interaction.

Although the “d-wave” notation is inherited from spectro-
scopic notation for an “l=2” irreducible representation of the
rotation group, in a crystal, it refers to an appropriate irre-
ducible representation of the point group. We will treat the
case in which the point group has at least two distinct even-
parity one-dimensional representations—a trivial one and a
nontrivial one. For instance, in a tetragonal crystal, in addi-
tion to the trivial �s-wave� representation, there are three
other even-parity irreducible representations: a dx2−y2 wave, a
dxy wave, and a g wave �which transforms like �x2−y2�xy�.
We consider the case in which in the zero disorder limit,
there is an effective attraction only for one of these represen-
tations, which we will call simply the d wave.

The most clear-cut manifestation of the d-wave nature of
the ground-state order parameter comes from “phase-
sensitive” measurements47,48 of the symmetry of the order
parameter. Specifically, in a corner superconducting quantum
interference device �SQUID� �Ref. 48� of the sort described
in Fig. 4, in which the external circle is a conventional
s-wave superconducting wire, the ground state of the system
will contain a half-flux quantum trapped in the SQUID for
the case in which the sample is a d-wave superconductor and
no flux if it is an s-wave superconductor.

The fact that, in the absence of disorder, ��r ,r�� changes
sign under rotation makes the system much more sensitive to
the strength of the disorder than a conventional s-wave su-
perconductor. We will characterize the disorder strength by
the electron mean-free path l in the normal metal. What hap-
pens to the system when in the presence of relatively strong
disorder depends on the sign of the interaction in s channel.
If the interaction in the s-wave channel is attractive but much
weaker than the attraction in the d-wave channel, then when
the disorder is weak enough �l�0�, the d-wave state domi-
nates, but when the disorder strength increases enough to
destroy the d-wave superconductivity �l��0�, the system un-
dergoes a phase transition to an s-wave state �see, for ex-
ample, Ref. 49�. The s-wave state is destroyed only when
kFl�1. However, in this paper we consider the more inter-
esting case in which the interaction in the s channel is repul-
sive, so when disorder suppresses d-wave superconductivity,

it drives the system to a normal state when the mean-free
path is still relatively large, kFl�1. This case may be rel-
evant, for instance, to the destruction of superconductivity in
the “overdoped” high-temperature superconductors.

In the �conventional� approximation in which spatial fluc-
tuations of the electron mean-free path are neglected, d-wave
superconductivity is destroyed when l� l0=1.78�o. Thus dis-
ordered d-wave superconductors are another example of a
system which may have a quantum superconductor-metal
transition in a situation in which the conductance is large.
This case exhibits both similarities and differences with the
cases we have already considered in Secs. II and III.

In the presence of disorder, a material has no particular
spatial symmetry, and so the order parameter cannot be said
precisely to have any particular symmetry at all. Neverthe-
less, in bulk samples, symmetry is restored upon configura-
tion averaging. It is therefore legitimate to ask questions con-
cerning the global symmetry of the order parameter. Hence,
we can ask whether ��r ,r�� or F�r ,r�� have d-wave or
s-wave symmetry. Here the overline stands for a configura-
tional averaging, and F�r ,r���F�r ,r� , t= t�� is the anoma-
lous Green’s function which is connected to ��r ,r�� by the
interaction constant.

It is important to realize that it is possible �indeed, as we
shall see, inevitable near criticality� to have a situation in
which the local pairing is “d-wave-like” and yet the global
superconductivity has s-wave symmetry. In fact, we will
show that there are at least two quantum phase transitions as
disorder increases: the transition from d-wave to s-wave glo-
bal symmetry and subsequent transition from s-wave super-
conductor to the normal metal. The existence of the second
�d-s� transition is the main difference with the cases consid-
ered in Secs. I and III. �In fact, we consider it likely that
rather than a sharp d to s transition, there is an intermediate
glass phase in which time-reversal symmetry is broken and
s- and d-wave orderings coexist. However, we have not fully
explored this scenario.�

We propose several different definitions of the global
symmetry of the order parameter: �a� The best operational
definition is provided by the result of a phase-sensitive ex-
periment, such as the corner SQUID experiment shown in
Fig. 4. �b� The quantity ��r ,r�� can be characterized as hav-
ing d-wave or s-wave symmetry. It can also provide a defi-
nition of a state with coexisting order if it has mixed sym-
metry. �c� A specific diagnostic for a globally s-wave
component of the order parameter can be defined in terms of
the local component of the anomalous Green’s function
F�r=r���F�s��r�. If we define P� to be the volume fraction
of a sample where F�s��r� has a positive or negative sign,
respectively, then the system has an s-wave component if
�P+− P−��0. These definitions are not equivalent under all
circumstances. However, for the purposes of this paper, we
are not primarily interested in the most general definition of
the global symmetry of the superconducting state. For the
most part, we will deal with the interval of parameters in
which all these definitions are approximately interchange-
able.

A. d-wave to s-wave transition as a function of disorder

This transition takes place in the region of concentrations
where quantum fluctuations of the order parameter can be

FIG. 4. A schematic picture of a phase-sensitive “corner
SQUID” experiment, introduced in Ref. 48. If the square piece of
superconductor has global d-wave superconductor symmetry, then
there is a magnetic flux trapped in the ground state of the system.
Pluses and minuses inside rosettes indicate the sign of ��k� as a
function of the direction of k.
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neglected, and therefore it can be understood on the mean
filed level. As a warm-up exercise, consider a cartoon picture
of a system of superconducting puddles of a size large com-
pared to �0 and of a rectangular shape which are embedded
in a noninteracting diffusive normal metal �see Fig. 5�. The
rectangles are identical, and they are oriented either verti-
cally or horizontally in a random fashion. The order param-
eter inside the rectangles has d-wave symmetry, and the ori-
entation of the gap nodes is assumed to be pinned by the
crystalline anisotropy.

In a d-wave superconductor, in addition to an overall
phase of the order parameter, there is an arbitrary sign asso-
ciated with the internal structure of the pair wave function.
Specifically, we adopt a uniform phase convention such that
when the phase of the order parameter �i=0, this implies
that ��r ,r�� in puddle i is real and has its positive lobes
along the �appropriately defined� y axis and its negative
lobes along the x axis.

It is obvious that at a high concentration of puddles, the
order parameter in the ground state has global d-wave sym-
metry �see Fig. 5�a��. However at small-puddle concentra-
tions, the situation is different. If the distances between
puddles �ri−r j��R are much larger than the characteristic
size of the puddles, R, the Josephson coupling between
puddles inevitably favors globally s-wave superconductivity,
even though the order parameter on each puddle looks lo-
cally d-wave-like. In this case the mean-field superconduct-
ing pairing energy of the system has a form

EJ = �
i�j

�i� jJ̃ij
�S� cos��i − � j� , �49�

where �i= �1 are random numbers such that �i=1 for a
rectangle oriented in the x direction and �i=−1 for a
y-directed rectangle.

Equation �49� represents the Mattis model50 which is well
known in the theory of spin glasses. The ground state of this
model corresponds to

cos��i� = − �i. �50�

Thus the distribution of exp��i� between puddles looks com-
pletely random, as shown in Fig. 5�b�. However the system is
not a glass because its ground state has a hidden symmetry,
which in the present problem corresponds to a global s sym-
metry of the order parameter according to any of our pro-
posed definitions.

A qualitative explanation of this fact is as follows: The
interpuddle Josephson coupling originates from the proxim-
ity effect in the normal metal, which is characterized by the
anomalous Green’s function F�r ,r��. Due to lack of symme-
try at the boundary of a puddle, an s-wave component F�r
=r��=F�s��r��0 of the anomalous Green’s function is gen-
erated in the neighboring metal. Specifically, at a normal-
metal–superconductor boundary, the sign of F�s��r� is deter-
mined by the sign of the d-wave order parameter in the k
direction perpendicular to the boundary �see Fig. 5�. �Thus
the sign of F�s��r� changes along the boundary of a puddle.�
On distances from the boundary larger than l, the anomalous
Green’s function becomes isotropic. In other words, only the
s component F�s��r� survives elastic scattering. It is this com-
ponent which penetrates through the metal and carries the
Josephson current between puddles. At distances larger than
the size of the puddle �but smaller than �ri−r j�� the quantity
Fs�r� has a definite sign which is determined by an integral
around the surface, which sign gives us the value of �i.

On intermediate distances, the situation is more compli-
cated. Areas with different signs of F�s��r� mix in a random
fashion. We argue that the most important aspects of this
complex situation can be modeled by the following effective
Josephson energy:

EJ = �
i�j

��i� jJ̃ij
�s� + J̃ij

�d��cos��i − � j� , �51�

where J̃ij
�d� characterizes the strength of the exchange interac-

tion between the d-wave components of the order parameter.

Typically at small �ri−r j�, J̃ij
�d� J̃ij

�s�, but at large �ri−r j� the

coupling strength J̃ij
�s� decays more slowly than J̃ij

�d�. Thus
between the asymptotic d-wave dominated regime where the
puddles are dense and the s-wave dominated regime where
they are dilute, it is likely that there is an intermediate region
in which the system will exhibit spin-glass features and/or
coexistence of d-wave and s-wave orderings. In this paper,
however, we will not further explore this fascinating but
complex aspect of this problem.

While the above discussion was based on a cartoon model
with regularly shaped puddles, we would like to stress that
our conclusions do not rely on this. In particular, as it is

FIG. 5. A qualitative illustration of the global d-wave to s-wave
transition. The solid lines represent boundaries of d-wave supercon-
ducting puddles embedded into a normal metal. Pluses and minuses
indicate the areas were the s-wave components of the anomalous
Green’s function Fs�r ,r� are positive and negative, respectively. �a�
The “cartoon” case in which the concentration of regular rectangu-
lar d-wave puddles is large, so the system has d-wave global sym-
metry. �b� The case when the concentration of d-wave puddles is
small so that the system has s-wave global symmetry. �c� The case
in which the concentration of d-wave puddles is small and they
have arbitrary shapes. Here, they are shown embedded in a normal
metal, and the system has global s-wave symmetry.
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qualitatively illustrated in Fig. 5�c�, Eq. �49� holds at arbi-
trary shape of the puddles provided that the typical distance
between them is larger than their characteristic size.

To quantify our conclusions, we compute the Josephson
coupling between a pair of far separated puddles in two ex-
treme limits, large puddles and small puddles: If the size of
the puddles is large enough, the Josephson coupling has to be
obtained from the solution of the Usadel equations �see, for
example, Refs. 35 and 36� for the configuration-averaged
anomalous Green’s function F�

�s��r��−i sin  �� ,r� in the
metal,

Dtr

2
�r

2 ��,r� + i� sin  ��,r� = 0. �52�

Here F�
�s��r� is the Fourier transform of F�s��r , t− t�� and the

symbol 0 indicates averaging over the random scattering po-
tential between the puddles at given shape of the puddles.
The boundary conditions for Eq. �52� at the normal-
superconductor surface have been derived in Ref. 51. They
are valid as long as the size of the puddles is large and the
Andreev reflection on the puddles is effective.

Since the relevant energy for computing the Josephson
coupling, ��Dtr / �r−r j�2, is much smaller than the value of
the order parameter in the puddles, the boundary condition
for  �r ,�� is independent of � and depends only on the angle
between the unit vector parallel to the direction of a gap
node, n̂�, and a unit vector, n̂�r�, normal to the boundary at
point r at the surface,

 s��,r� = f���r��, sin���r�� � n̂�r� · n̂�. �53�

Here f��� is a smooth, approximately odd and periodic func-
tion, f����−f�−��, and f���� f��+��, which grows from
f����0 at �=0 to f���� �! for �=� /4. Here !�1.

Solving Eq. �52� with the boundary conditions �Eq. �53��
and using the standard procedure of calculation of the Jo-
sephson energy, we get

�i = sgn	

i

dsf��� , �54�

where the integral is taken over the surface of the ith puddle.

Moreover, the value of J̃ij
�s� in Eq. �49� turns out to be of the

same order as in Eq. �4�. It is this long-range nature of the
decay which ensures the existence of the phase in which the
puddles separate by a large distance and the system has glo-
bal s-wave phase coherence.

In the second case, the Andreev reflection is ineffective
and the interactions between puddles can be computed in
perturbation theory. Thus we can write an analog of Eq. �49�,

EJ = − �
i�j

�i�� j��Jij
�s��i

�� j + c.c.� , �55�

where �i is �up to a sign � j�= �1� the average of the order
parameter over puddle i,

�i � �i

puddle i

��r,r��
drdr�

Vi
2 , �56�

and �i� is a random variable that we have introduced in Eq.
�55� �and then cancelled in the definition of �i�. The strength
of the Josephson interaction between s component of the
order parameter in puddles characterized by J�s� is �up to a
numerical factor smaller than 1� of order of Eq. �16�. Again,
we have neglected in Eq. �55� the interactions between the
d-wave components of the order parameter, since they fall
faster with separation between puddles. Note that in the fine
tuned case of a fully symmetric puddle, �i=0 due to the
d-wave symmetry.

The important point is that, in both the small and large
puddle limits, Eqs. �55� and �49� yield the same qualitative
picture: at large interpuddle distances the Josephson coupling
favors s-wave symmetry. It now remains to show that, near
the point of quantum superconductor-metal transition, the
distance between optimal puddles is indeed much larger than
their size.

B. Globally s-wave superconductor to metal transition

The quantum transition between a globally s-wave super-
conducting state and the metal does not differ in a crucial
way from the transition which has been considered in Sec. II.
For reasons that should by now be familiar, near the critical
value of the disorder the spatial dependence of the order
parameter can be visualized as defining a system of far sepa-
rated superconducting puddles with anomalously large val-
ues of the order parameter separated by large areas of the
normal metal. In particular, this results in a smaller value of
lc �larger critical magnitude of the disorder strength� for the
destruction of superconductivity than lco which is given by
the conventional theory. The difference between the present
problem and that treated in Sec. II is that, to identify a set of
optimal puddles, one has to characterize them by two gener-
ally independent parameters: the size of the puddles and the
value of the s component of the order parameter associated
with an optimal puddle.

As we have seen in Secs. I and III, depending on whether
the Andreev reflection from the superconductor-metal bound-
ary is effective or not, two scenarios are possible. In the first
case the amplitude of the Josephson energy is independent of
the value of the order parameter in the puddles and is given
by Eq. �6�. In the second case the amplitude of Josephson
energy is given by Eq. �16�. The susceptibility of an isolated
puddle does not depend on any essential way on the symme-
try of the superconducting order parameter, and as such, the
analysis follows along identical lines as for the case of
s-wave puddles, discussed in Sec. II. Thus, for small
puddles, the susceptibility is determined by the Cooper insta-
bility �Eq. �11��, while puddles of radius R which is large
compared to the coherence length, the susceptibility is deter-
mined, as in Eq. �9�, by the effective conductance, Geff

�RD−2, where R is the radius of the puddle.
Let us consider a situation where the mean-free path l�r�

is a random quantity which exhibits classical spatial fluctua-
tions with a Gaussian distribution,
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P�l� =
1

�2��ll̄
exp�−

�l − l̄�2

2�l
2l̄2
� , �57�

characterized by the average l̄, a dimensionless variance �l,
and a correlation length �.

To be concrete we consider the 3D case and neglect the
mesoscopic fluctuations of the mean-free path of an interfer-
ence nature. We also assume that the conductance of the
metal is isotropic.

The size of the optimal puddles is readily seen to be of
order the coherence length Ropt��opt����0

�l0 / �lopt− l0�,
and therefore the susceptibility of the puddles is given by the
large puddle result in Eq. �9�. �The self-consistency of this
assumption can be checked starting with the assumption that
the small-puddle expression in Eq. �11� can be used and then
determining the optimal puddle size—this procedure leads to
the inconsistent conclusion that the optimal puddles are arbi-
trarily large.�

The effective conductance that determines the susceptibil-
ity is the conductance of a region of characteristic linear
dimension �opt; this, in turn, depends on the local value of the
mean-free path as Gopt=G�0

�l0 / �lopt− l0�, where G�o
is a con-

ductance of a region of size �0. The probability to find a
puddle of this size is determined by the variance of the
mean-free path averaged over its volume, which is of order
�l�� /��3/2. Thus we have

Xopt � exp�2ZG�0

l0
1/2

�lopt − l0�1/2 −
�lopt − l̄�2

�l
2�lopt − l0�3/2l0

1/2� �0

�
�3� .

�58�

As usual, lopt is the value which maximizes Eq. �58�, and the

critical disorder, l̄= lc, is obtained by equating the result to
unity. Although lc l0, as long as �l is sufficiently small,

�l0− l̄c� / l̄�1. In this limit, the result of this procedure can be
expressed as

�l0 − lc�/l0 � 2ZG�0
�l

2��
�0
�3

. �59�

Near the critical point l̄= lc, the distance between the op-
timal puddles Ropt exp�G�o

1/2��0 /��3/2 /�l��Ropt is exponen-
tially large. The assumption that the distance between opti-
mal puddles is large which we made in Sec. IV A is, thus,

justified for l̄ near lc.
The temperature dependence of the critical value of the

mean-free path, lc�T�, can be obtained from similar consid-
erations to those used to determine Nc�T� in Sec. II. The
resulting phase diagram for a d-wave superconductor in the
presence of quenched disorder is shown schematically in Fig.
3. At large disorder �l� lc� the system is in the normal-metal
phase. At l lc the system in a state with a dominant s-wave
component of the order parameter and a d-wave component,
whose sign is locally slaved to the s-wave component, in a
way varies randomly in space. At still larger values of l
 l0, there is a dominantly d-wave state, in which the
s-component has a sign that is locally slaved to the d com-
ponent and varies randomly in space.

We would like to note that both d-wave and s-wave su-
perconducting phases are expected to exhibit glassy behavior
associated with rare regions where the uniform phased order
is strongly frustrated. We consider the existence of a glass
phase which spontaneously breaks time-reversal symmetry
likely but not proven, so we have not shown it in the phase
diagram in Fig. 3.

V. DISCUSSION

In this paper we have focused attention on several sys-
tems in which, at the point of the quantum superconductor-
metal transition, the conductivity is still large compared to
the quantum of conductance, and hence localization effects
are unimportant. The key general aspects of this transition
are the following: �1� The T=0 transition occurs at a point at
which the superconducting order parameter is small in most
of the sample, other than in a dilute set of locally supercon-
ducting puddles. �2� The transition is triggered by the quan-
tum fluctuations of the phase of the order parameter on these
puddles, whose quantum dynamics can either be governed by
the dynamics of the Cooper instability �when the optimal
puddles are small� or the electric-field fluctuations �when the
optimal puddles are large�. �3� While there is probably a
small quantum critical regime at exceedingly low tempera-
tures and very close to the quantum critical point where the
physics is universal and can be described by a suitable quan-
tum critical scaling theory, there is a much larger regime
where quantum phase fluctuations dominate the physics, but
the long-distance properties are more properly described by
the thermally truncated percolation of phase coherence be-
tween puddles.

We have ignored the fundamental but for our purposes
purely academic question of electron localization in highly
conducting samples. However, there remains the issue of the
ultimate fate of the “metallic phase” in the true T→0 limit.
In three dimensions this is, presumably, not an issue, but in
two dimensions, where all single-particle states are localized,
this is an important point of principle. For G2D�1 the tem-
perature below which interference effects are relevant is ex-
ponentially small, so the issue is not of practical relevance.
Still even the point of principle is interesting, and, in our
opinion, unresolved partially because calculations of weak
localization corrections close to the point of the metal-
superconductor transition, where the conductivity is much
larger than the Drude value, remain a challenge.

A. Previous studies of the problem

There have, of course, been many theoretical studies of
the quantum phase transition from the superconducting to the
nonsuperconducting state in the presence of quenched disor-
der. Many of these studies concerned a scenario in which
there is a direct superconductor to insulator transition. Under
circumstances in which, near criticality, kFl�1, it is conceiv-
able that there is a direct superconductor to insulator transi-
tion. Moreover, in common with the superconductor to metal
transition considered by us, near such a superconductor to
insulator transition the electron wave functions become
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strongly nonuniform and exhibit fractal features.52 Therefore
it is not surprising that the order parameter at the point of the
transition is also nonuniform.53,54 Despite the similarity of
this aspect of the two transitions, the superconductor to in-
sulator transition differs from the superconductor to metal
transition in significant ways and is outside the scope of the
present paper.

There have also been many previous studies of the super-
conductor to metal transition, starting with the mean-field
studies of Abrikosov and Gorkov of the transition in a mag-
netic field. In this context, we would like to mention the
paper55 where a renormalization-group approach was pro-
posed for disordered 2D s-wave superconductors in the ab-
sence of magnetic field. The conclusion reached in this paper
bears some similarity to ours: The superconductivity is
quenched under conditions such that G2D1. In the frame-
work of the analysis in Ref. 55, the reason is that the dia-
grams responsible for suppression of Tc by fluctuations of the
phase of the order parameter are proportional to ln3�LT / l�,
while the weak localization corrections to the conductivity
are only proportional to ln�kFLT�. The theory presented in
this work was also supported by a comparison between
theory and the experiments of Ref. 56. We suspect that the
corrections of order ln3�LT / l� in Ref. 55 are of the similar
physical origin as the power law in Eq. �7�. However, there
are significance differences in our analysis, the most impor-
tant of which is that in the situations we have considered, the
existence of a superconductor-metal transition is generically
unconnected with interference effects governed by the pa-
rameter kFl. Therefore the quantum superconductor to insu-
lator transition and 2D localization can be treated separately
from each other. As a result, the effects we have considered
are much larger than those considered in Ref. 55.

Pioneering studies of the quantum d-wave superconductor
�or more exotic superconductor� to metal transition were car-
ried out in Refs. 17 and 67, which employed standard dia-
grammatic techniques and the replica trick to implement the
disorder averaging. Our results differ significantly from those
in Refs. 17 and 67, principally due to the fact that these
earlier studies did not account for existence and crucial role
of rare superconducting puddles near the transition.

B. Experiments on quantum superconductor-metal transitions

There have been a vast number of experiments on the
destruction of superconductivity in thin-film systems—too
many for us to comment on here. For example, there are
many experiments �for a review see, for example, Ref. 8� in
which s superconductivity in films is destroyed by disorder
in the absence of a magnetic field, and the transition takes
place at Geff�1. Since our theory is developed in the case
Geff�1, the present theory has no direct relevance to these
experiments. We will only discuss experiments in which
Geff�1, and even here, only a very small subset of them.

Before discussing the relation between our results and ex-
periments we must address a question of terminology. An
unambiguous distinction between metallic and insulating
states can be made only in the limit T→0. The metallic state
has finite resistance in this limit, while the insulating state

has infinite resistance. �The superconducting state, of course,
has zero resistance.� The complication concerns the way in
which finite temperature data are extrapolated to the T→0
limit.

One relatively widely used criterion is to study the sign of
the dimensionless quantity

RT � d log�"�/d log�T� �60�

at the lowest accessible temperatures and to identify the in-
sulating state with RT�0, a superconducting state with RT
0, and a metallic state with RT�0. Clearly, in the ex-
tremes, this is a sensible criterion, since in order for the
resistivity to either vanish or diverge in the T→0 limit, RT
must have the stated sign. The problem comes when RT in
the accessible range of temperatures is relatively small in
magnitude. There are certainly well documented ways for a
metal to exhibit RT�0 �for instance, in the Kondo effect�, so
an observation of RT�0 cannot be safely taken as evidence
that " will diverge as T→0. Of course, it is also common for
metals to have RT0, so this observation, by itself, cannot
be taken as a sure indication of a zero-temperature supercon-
ducting state. It is always also important to pay attention to
the absolute magnitude of the resistance in such discussions.
Metals at low temperatures typically have resistances smaller
than the quantum of resistance, while insulators, at low
enough temperatures, always have resistances large com-
pared to this value.

1. Transition in a perpendicular magnetic field in films with
large G2D

When highly conducting films of a superconducting
metal, such as MoGe, are subjected to a perpendicular field,
two asymptotic behaviors are expected and observed as a
function of H: For small enough H, the resistance tends57 to
arbitrarily small values at low T, which can be interpreted as
a superconducting state. At large enough H, the resistance
tends to a roughly temperature and H independent value, "
="D, which can be interpreted as the normal state �Drude�
value. �"D is expected to be almost field independent as long
as rcl�1, where rc�H� is the cyclotron radius.�

It has been observed in Ref. 57, and latter in Ref. 58, that
at small T there is a large interval of magnetic fields where
the resistance is independent of T and can be up to 4 orders
of magnitude smaller than "D. Although we have not calcu-
lated the conductance, and so cannot propose direct compari-
sons between theory and experiment, we believe that the
significant enhancement of the conductance takes place in
the interval of magnetic fields in which somewhat isolated
puddles of the sample have a local value of Hc2H. �It is
not completely clear, to us, whether the observed behaviors
should be interpreted as the finite T behavior of a system in
the range of fields, Hc2

�0��H�Hc, where the system forms a
gauge-glass phase in the T→0 limit, or whether it should be
interpreted in terms of the anomalous metallic phase for H
�Hc, where even at T=0 there is no global phase coher-
ence.� In any case, to explain the broad range of H over
which significant superconducting fluctuations occur, we
must assume that �H�G2D in Eq. �32�
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In this context we would like to mention an interesting
phenomenological observation made recently by Steiner et
al.59 They focused attention on the critical value of the mag-
netic field, H�, at which RT�H� changes sign: RT�H�0 for
H�H�, RT�H��0 for HH�, and RT�H��0 for H=H�.
This is often identified as the point of a SIT, despite the fact
that, on both side of the “transition,” the T dependence of the
resistance is sometimes sufficiently weak that an unbiased
extrapolation to T=0 would yield a finite result. Steiner et
al.59 found that the behaviors could be sorted into two
classes. In some films, "�H=H���h /4e2, and in these, a
scaling collapse of the data suggestive of universal quantum
critical phenomena can be achieved, and not only is RT�H�
�0 for HH�, but the resistance actually grows large
enough at low T that it is suggestive of a truly insulating
phase. In other films, "�H=H���h /4e2, and in these, resis-
tance appears to approach a finite metallic value for H on
both sides of H�, and correspondingly any attempt to scale
the data breaks down at low T. Moreover, in these low resis-
tance films, the “critical” resistance, "�H=H��, is manifestly
nonuniversal. This analysis suggests that there are two pos-
sible limiting behaviors—the one in low resistance films, to
which the present analysis is applicable, and that in the
higher resistance films, which may, to some level of approxi-
mations, be exhibiting a superconductor to insulator transi-
tion. However, even in the highly conducting films of Ref.
57, experimental indications of glassy behavior have not
been reported for superconducting films in a perpendicular
magnetic field, contrary to our expectations.

2. Transition in a parallel magnetic field in films with large G2D

Most studies of superconducting films involve relatively
heavy elements, such as Mo or even Pb, so that the spin-orbit
scattering rate is substantial and �0	so1. However, in Ref.
60, Wu and Adams studied aluminum films where �0	so�1.
In these experiments, it has been observed that in the vicinity
of H� =Hc�

�0�, the time dependence of the resistance exhibits
long-time relaxations with characteristic times of order
103 s. During this period of time, the resistance changes by
orders of magnitude and exhibits avalanchelike jumps. This
is the characteristic dynamics of a glassy system. We think
that this behavior is compatible with our theory, as discussed
in Sec. III B. We do not know of any experiments reported to
date on the quantum transition between this superconducting
glass state and the normal metal—we believe such experi-
ments could critically test the ideas presented here.

3. Transition in d-wave superconductors as a function of disorder

The cuprate high-temperature superconductors are the
best established example of a d-wave superconductor. Here,
the critical temperature, Tc, is known to vary strongly as a
function of the doped hole concentration, x, producing two
quantum critical points at which Tc vanishes: a lower critical
doping concentration, x1, on the “underdoped” side and an
upper critical concentration, x2, on the “overdoped” side of
the phase diagram. On the underdoped side of the supercon-
ducting dome, the thermally accessible normal state above Tc
is manifestly not a good Fermi liquid. Moreover, with in-

creasing underdoping, these materials frequently appear to
undergo a superconductor to insulator transition with a criti-
cal resistance that is typically large compared to h /4e2.61,62

Thus, the present considerations may not be applicable.
�However, in some instances of very high quality crystals of
YBCO=YBa2Cu3O6+#, the normal state revealed upon
quenching superconductivity by underdoping can be some-
what metallic.63�

It is still unclear to what extent a weak-coupling, Fermi-
liquid based approach is valid, even in the overdoped regime
of these strongly correlated materials. If we assume that, de-
spite the uncertainties inherent in the strong correlation phys-
ics of the cuprates, some of the more robust of our findings
apply to the cuprates as Tc→0 with overdoping, there are a
number of interesting predictions we can make, none of
which �to the best of our knowledge� have so far been ob-
served experimentally.

�1� There should be a transition from a globally d-wave to
a globally s-wave superconducting state at a doping concen-
tration, xd−s, which is less than the critical doping, x2, at
which Tc vanishes. While even for xd−s�x�x2 any local
probe will see a d-wave-like gap structure, global phase-
sensitive measurements should record an s-wave state.
�Some evidence of such a transition may already be present
in the experiments of Ref. 64.�

�2� For x near x2, the superconducting state should consist
of dilute puddles in which the pairing is strong, floating in an
otherwise metallic sea. �Indirect evidence of such a situation
in LSCO=La2−xSrxCuO4O6+# has been presented in Ref. 65.�

�3� In the metallic state with xx2, the conductivity at
low temperature should diverge as x→x2, the Hall resistance
should vanish, and the Wiedemann-Franz law should be in-
creasingly strongly violated in the sense that the conductivity
should be greater than anticipated on the basis of the thermal
conductivity.

Finally we would like to mention that there are various
other candidates for experimental studies of the above dis-
cussed effects. There is a growing consensus that there are
multiple other examples of d-wave superconductors, includ-
ing in the “115” family of heavy fermion superconductors
and some organic superconductors. Moreover, Sr2RuO4 is
known to be a p-wave superconductor. It has already been
demonstrated66 that superconductivity in these materials is
suppressed by disorder when the parameter kFl of the system
is still much larger than unity. Though the present theory was
carried out specifically for the d-wave �i.e., spin singlet�
case, we think that it is qualitatively applicable to the p-wave
�i.e., spin triplet� case as well, at least in the presence of
spin-orbit coupling.
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APPENDIX: DERIVATION OF THE EFFECTIVE ACTION

We now sketch representative calculations required for
the derivation of the effective actions presented in Eq. �1�,
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which describes the quantum dynamics of the local super-
conducting “puddles” in the regime in which the mean-field
solution is highly inhomogeneous. To begin with, we con-
sider the effective Euclidean action, S���, to be a functional
of the pair field, �, obtained by performing a Hubbard-
Stratonovich transformation on an underlying microscopic
Hamiltonian and then integrating out the electronic degrees
of freedom. Approaching the transition from the nonsuper-
conducting side, we assume that the magnitude of � is ev-
erywhere small, so we can expand the action in powers of �,

S =
 drdr�dtdt����r,t�K�r,r�,t − t����r�,t�� + ¯ ,

where K�r ,r� , t− t�� is an appropriate imaginary time-
ordered four-fermion correlation function �which is depen-
dent on the precise configuration of the quenched disorder�
and ¯ represents higher order terms in powers of �. K and
other response functions that enter the higher order terms in
the effective action are evaluated in the normal state, i.e.,
they reflect the physics of disordered metals, not the super-
conducting state.

The time Fourier transform of K generically has the struc-
ture

K̃�r,r�;�� = K0�r,r�� + ���K1�r,r�� + ¯ , �A1�

where ¯ means higher order terms in powers of �. The
presence of the nonanalytic ��� dependence is generic in a
metal and reflects the fact that in real-time, superconducting
fluctuations have an exponential dependence on time; they
decrease exponentially if the normal-metal state is stable and
increase exponentially if the normal metal is unstable.

In disordered systems K̃�r ,r� ;�� is a random function of
the coordinates. Consequently near the point of the quantum
phase transition the distribution of the order parameter can
be visualized as a sequence of superconducting puddles sepa-
rated on by a large distance. More precisely, at the saddle-

point level, a superconducting state occurs whenever K̂0 �by
which we mean the integral operator corresponding to K0�

has at least one negative eigenvalue, K̂0��=$���. In other
words, if min�$�� is the smallest eigenvalue of K0, then the
superconducting state occurs when min�$��=0. Generically,
the smallest eigenvalues �i.e., states deep in the “Lifshitz
tails”� are associated with wave functions that are spatially
localized in regions of the system that are anomalously fa-
vorable for superconductivity. However, the nature of these
localized solutions �i.e., the spatial extent of the localized
state� and the distribution of eigenvalues in the tails of the
distribution depend on the circumstances, as we discussed in
Secs. II and IV of the paper.

The full saddle-point value of �sp, obtained by minimiz-
ing S���, can be expanded in terms of

�sp�r� = �
�

�����r� � �
$��0

�����r� . �A2�

In this expansion, �� can be approximately interpreted as
the superconducting amplitude on puddle �. One trouble
with this, however, is that, like Wannier functions in a crys-
tal, the wave functions �� are not quite as localized as they
should be because they have small admixtures of the wave
function from neighboring puddles which are necessitated by
the orthogonality condition, �dr��

��r�����r�=#�,��.
We thus obtain Eq. �1� when we substitute the approxi-

mate expression in Eq. �A2� into Eq. �A1�. The coefficient �i
reflects the long-time dynamics of the order parameter,

�i =
 drdr��i
��r�K1�r,r���i�r�� . �A3�

The strength of the Josephson couplings between ith and jth
puddles Jij is given by the expression

Jij =
 drdr��i
��r�K0�r,r��� j�r�� . �A4�

By dimensional analysis �as well as explicit calculation� it is
clear that �i and �i are given by Eq. �20�, while Jij is given
by Eq. �5�.
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