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Measured intermodulation distortion �IMD� power at 1.5 GHz in a series of YBa2Y3O7−� stripline resonators
of varying strip widths is compared to the predictions of two qualitatively distinct theories of the nonlinear
Meissner effect. The stripline resonators are patterned from a single wafer to ensure uniformity of the material
properties. According to the first theory �T. Dahm and D. J. Scalapino, Phys. Rev. B 60, 13125 �1999��, the
IMD power is dominated by contributions from the strip edges, while according to the second theory �D.
Agassi and D. E. Oates, Phys. Rev. B 72, 014538 �2005�� it is dominated by contributions from the body of the
strip. The parameter-free comparison of the measured data with the theoretical predictions clearly favors the
latter theory. We conclude that the nonlinear component of the penetration depth must be treated with nonlocal
electrodynamics. The origins of this outcome are discussed briefly in the framework of a Green’s-function
approach.
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I. INTRODUCTION

The nonlinear Meissner effect �NLME�, as manifested for
example in a current �or magnetic field� dependence of the
penetration depth, was first predicted for the cuprate high-
temperature superconductors �HTS� by Yip and Sauls1 and
extended to the intermodulation distortion �IMD� power and
harmonic generation by Dahm and Scalapino �DS�.2 An al-
ternative theoretical approach to the NLME was developed
by Agassi and Oates �AO�,3 based on a perturbative expan-
sion of the constitutive relation between the current and the
vector potential. The NLME has been experimentally con-
firmed by IMD power measurements in high-quality
YBa2Y3O7−� �YBCO� films, specifically, by observation of
the characteristic low-temperature divergence of the IMD
power PIMD�T→0 K��T−2.4–7 This low-temperature IMD
power divergence agrees with the predictions of both DS and
AO theories. Notwithstanding this agreement, the DS and
AO theories are qualitatively distinct. In particular, the DS
theory implies local electrodynamics for the NLME and,
consequently, for thin films �w�d, Fig. 1�a��, PIMD is domi-
nated by contributions from the current crowding at the strip
edges. On the other hand, the AO theory implies a nonlocal
electrodynamics for the NLME, and consequently PIMD is
dominated by contributions from the strip midsection �see
below�. The work reported here tests experimentally which
of these two qualitatively distinct theories applies.

One way to formulate the distinction between the DS and
the AO theories for the NLME is to focus on the correspond-
ing low-power penetration-depth expansions,

� = �0 + �NL = � �0 + �2�AO��I/d�2 + . . . �AO�
�0 + �2�DS�jS

2�y,z� + . . . �DS� � ,

�1.1�

where �0 and �NL denote the linear �London� and the non-
linear terms in the penetration-depth expansion. �2�AO� and

�2�DS� are coefficients �of different dimensionality� that do
not depend on the strip dimensions, d denotes the strip thick-
ness in the notation of Fig. 1�a�, and I denotes the total
microwave current in the strip,

I =� jS�y,z�dydz . �1.2�

In Eq. �1.2� jS�y ,z� is the pair-current density, thereby im-
plicitly assuming that the broken-pair current is negligible in
comparison. For the AO theory, the expansion in Eq. �1.1�
has been derived in Ref. 3. For the DS-theory, the expansion
Eq. �1.1� follows from the standard penetration-depth expres-
sion �2=mc2 / �4�qS

2nS�,8 where m and qS denote the single-
carrier mass and charge �positive or negative�, respectively,
and nS denotes the Cooper-pair single-carrier density. We use
the cgs unit system throughout this paper. Inserting in the
above penetration-depth expression the decomposition �
=�0+�NL, �NL��0 and the corresponding Cooper-pair den-
sity expansion, nS�y�=nS

�0�+nS
�2�jS

2�y ,z�+. . .,2 yields the DS-
theory expansion in Eq. �1.1�. According to Eq. �1.1�, a pos-
sible experimental comparison of the DS and AO theories
would be to measure the dependence of the IMD power on
the strip thickness d, i.e., PIMD�d�. In the AO theory
PIMD�d��d−4,9 while in the DS theory the thickness depen-
dence is considerably weaker. Such an experiment, however,
is impractical due to the considerable difficulties of growing
high-quality, thick YBCO films that maintain good epitaxy.
Consequently, we focus on the measurement of PIMD�w�, the
dependence of the IMD power on the strip width �Fig. 1�a��.
This observable is experimentally accessible, e.g., by mea-
suring PIMD�w� in a series of stripline resonators of varying
widths all of which are patterned from the same wafer to
ensure uniformity. The predictions of the AO and DS theo-
ries for PIMD�w� are significantly different �see below�, and
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the parameter-free comparison of the data with the predic-
tions, Eq. �2.7� below, is based on the distinct structures of
the corresponding penetration-depth expansions in Eq. �1.1�.

Expansions �1.1� expose a qualitative distinction between
the DS and AO theories. In the latter, the nonlinear penetra-
tion depth is spatially constant and depends on 	jS�y ,z�
y,z
= I / �wd�, or equivalently, on the total current I.3 Since in a
thin-film the preponderance of the total current is carried in
its midsection, it follows that the midsection contributions
for �NL are dominant. On the other hand, in the DS theory
�NL tracks the spatial dependence of the local current density
jS�y ,z�. Consequently, since jS�y ,z� is strongly peaked at the
edges of the stripline,10 those edge contributions are domi-
nant for �NL. As shown in the next section, this qualitative
difference between the DS and AO transcribes into signifi-
cantly different predictions.

The paper is organized as follows: In Sec. II we derive the
expressions for PIMD�T , I ;w� of the DS and AO theories in
the low-power regime. Sec. III provides experimental details
and the methodology of extracting the data. Sec. IV is de-
voted to the comparison of the data with the theoretical pre-
dictions. In Sec. V we discuss the comparison between the

DS and AO theories and the corresponding small parameter
that controls the convergence of the expansions Eq. �1.1�.
The last section is a summary. The two Appendices describe
some of the mathematical details.

II. THEORETICAL BACKGROUND

We start by briefly reviewing the relationship between the
measured PIMD and the penetration-depth expansions, Eq.
�1.1�. This relationship is established in two steps. First,
PIMD is connected to the strip inductance, which has a non-
linear term, i.e., a term that depends on current, while the
second step connects the nonlinear inductance to the nonlin-
ear term of the penetration depth �NL in Eq. �1.1�. Explicitly,
the first step states that

PIMD � �ILNL�2, �2.1�

where all constants irrelevant to the considerations below
have been suppressed3 and the nonlinear inductance term
LNL of the total inductance L is defined by

L = L0 + LNL, LNL � L0, �2.2�

with self-explanatory notation. Note that implicit in Eqs.
�2.1� and �2.2� L is the modeling of the physical resonator
with an equivalent circuit. Although the nonlinear resistance
also contributes to the IMD power, we consider only the
contribution of the nonlinear inductance as it has been shown
to be the dominant component.5

To calculate LNL we assume, as Dahm and Scalapino,2

that LNL is associated primarily with the kinetic inductance
through the nonlinear term in the penetration-depth decom-
position �NL��0, Eq. �1.1�. To conform with the stripline
resonator geometry in our experiments,4,5 where d=0.5 �m,
the current density is assumed uniform through the thickness
dimension z and the strip can be considered as of infinite
length. Figure 1�b� is a plot of the calculated jS�y ,z� for the
stripline geometry used in our measurements for a
100-�m-wide line.10 The thickness independence of jS�y ,z�
is evident. Thus, hereinafter we assume a one-dimensional
current density jS= jS�y�. Furthermore, for a stripline long
compared to the penetration depth it is suggestive to intro-
duce the inductance per unit length 	 such that L
= 2�	 / �2 and � denotes the strip’s length.4,5 Combining Eq.
�2.1� with these considerations yields for the nonlinear in-
ductance term the expression,

LNL =
2�

�2	NL, 	NL �
�0

I2� dA�NLjS
2�y� , �2.3�

where 	NL is the nonlinear part of the inductance per unit
length and A denotes integration over the strip cross section.
The proportionality factor in Eq. �2.3� is of no consequence
in the following. Inserting expansions Eq. �1.1� into Eq. �2.3�
yields the key relations,

y

z

x

w

d

FIG. 1. �Color online� �a� The choice of coordinate system and
definition of the width w and thickness d parameter in a generic thin
film strip w�d. �b� An example of a numerically exact calculation
of the pair-current density jS�y ,z� for a typical strip, where w
=100 �m, d=500 nm, and �0=250 nm. The circulating current is
0.026 mA. Note the negligible thickness dependence, which conse-
quently is neglected throughout this work. Note also that the calcu-
lation is made with a linear �current-independent� penetration depth,
and for the circulating currents considered in these experiments, we
assume that the current distribution is independent of the circulating
current because the changes in � are much less than 0.1% �Ref. 5�.
Thus, the current density shown scales linearly with the total circu-
lating current.
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LNL � 	NL � �� dA�2�AO��I/d�2jS
2�y� �AO�

� dA�2�DS�jS
4�y� �DS� � .

�2.4�

The DS-theory expression for LNL in Eq. �2.4� has been de-
rived before.1

Expressions Eq. �2.4� in conjunction with Eq. �2.1� under-
score that according to the DS theory, PIMD in thin-film strips
is dominated by contributions from the edges due to the
strongly peaked jS

4�y� factor in the integrand. On the other
hand, the corresponding factor in the AO theory is jS

2�y�;
hence the edge contributions are of considerably less impor-
tance than those from the midsection of the strip. This quali-
tative observation suggests PIMD�T ,w�, at a fixed tempera-
ture T, as a natural observable for which the DS and AO
theories yield considerably different predictions. The follow-
ing heuristic argument further substantiates this conjecture.
In a thin film, the current densities at its edges, jS�w /2� and
at its midpoint, jS�0�, are approximately related by jS�w /2�
=CjS�0�w, where C is a constant.11 However, jS�0�
� I / �wd�. Therefore I� jS�w /2�w or

js�w/2� �
I

w
. �2.5�

Equation �2.5� implies that for a fixed I, variation of the strip
width w generates a corresponding current-density variation
at the strip edges. In conjunction with Eqs. �2.4� and �2.1�
such a variation implies a width dependence PIMD�T ,w� that
is more pronounced in the DS theory than in the AO theory.
We measure and calculate this signature in this work.

The PIMD data is conventionally expressed in dimension-
less dBm units, defined by

PIMD�dBm� = 10 log10� PIMD

1mW
� . �2.6�

Accordingly, straightforward manipulations with Eqs. �2.1�,
�2.4�, and �2.6� yield

PIMD�dBm;w� − PIMD�dBm;w0�

=�20 log10� � dAjS
2�y ;w�

� dAjS
2�y ;w0�� �AO�

20 log10� � dAjS
4�y ;w�

� dAjS
4�y ;w0�� �DS� ,� �2.7�

where w0 denotes a reference width and the total current I is
kept fixed regardless of the w variable.

The relation Eq. �2.7� is central to this work. Its left-hand
side is measured while its right-hand side is a parameter-free
calculable expression �see below�. Note that Eq. �2.7� hinges

on the structure of the expansions in Eq. �1.1� rather than the
particular values of the pertinent coefficients. Furthermore,
provided experiments are confined to the low-power and
low-temperature domains, for which expansion Eq. �1.1� is
valid, the right-hand side of Eq. �2.7� is independent of the
total current I. While Eq. �2.7� is nominally independent of
temperature, it is experimentally advantageous to measure at
low temperatures in order to minimize effects of inadvertent
vortex motion. For the calculations, the current density
js�y ;w� in Eq. �2.7� must be numerically evaluated for the
configuration at hand.10 As shown below in Eq. �4.2�, there is
also a good, simple analytic approximation to the right-hand
side of Eq. �2.7�.

III. EXPERIMENT

The measurements were carried out on stripline resona-
tors fabricated from a single YBa2Y3O7−� film deposited on a
2-inch-diameter lanthanum aluminate LaAlO3 �LAO� wafer.
The films were deposited by a reactive-evaporation tech-
nique that has been described previously.12 Reference 12 and
references contained therein also present the properties of the
films deposited by this method. The transition temperature is
very close to 90 K and the doping level is close to optimum.
LAO is the preferred substrate for this investigation since
high-quality samples on LAO have been shown to exhibit
intrinsic nonlinearities.4,5 YBCO films deposited on other
substrates, such as sapphire and MgO, do not exhibit intrin-
sic nonlinearity due to induced defects in the YBCO film for
a sapphire substrate9 and due to substrate nonlinearities in
the case of an MgO substrate.13

The films were patterned using standard photolithography
and wet etching. All resonators were patterned simulta-
neously in a single process step to assure uniformity. After
patterning, the wafer was diced and the etched striplines
were assembled with YBCO ground planes to form stripline
resonators. The properties of the patterned line dominate the
performance of the resonator because the current density is
approximately a factor of 100 higher in the line than in the
ground plane. We used linewidths of w=25, 50, 75, 100, 150,
and 300 �m. The corresponding characteristic line imped-
ances are Z0=42, 40, 38, 36, 33, and 26 
, respectively.

The resonators were measured by a technique that has
been described previously,4,5 in which the quality factor Q
and resonant frequency f0 of the resonator are measured as a
function of the microwave power at temperatures between 5
K and Tc. The measurements were carried out at the funda-
mental frequency of 1.5 GHz. The third-order IMD was mea-
sured in the usual way, in which two closely spaced tones of
equal power at frequencies f1 and f2 are combined and ap-
plied to the resonator. The frequencies are centered about the
resonant frequency with a tone separation of approximately
1/32 of the low-power 3-dB bandwidth. The frequencies of
the tones were adjusted at each power level and temperature
to maintain the same relationship to the bandwidth and reso-
nant frequency. The power PIMD of the third-order mixing
products at frequencies 2f1– f2 and 2f2– f1 is then measured
in a spectrum analyzer as a function of the input power to the
resonator. For the analysis of the data, the measured PIMD is
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converted to a normalized IMD power PNORM, which re-
moves the dependence of the IMD on resonator unloaded Q
value and insertion loss.4

PNORM =
PIMD

rv�1 − rv�Qc
. �3.1�

In Eq. �3.1� rv denotes the voltage insertion ratio, which is
related to the insertion loss IL in dB by

rv = 10−IL/20, �3.2�

and Qc is the unloaded Q of the resonator. In addition, the
input power P is converted to microwave current associated
with the standing wave in the resonator at resonance accord-
ing to the expression

I =4QlrvP

�Z0
. �3.3�

In Eq. �3.3� Ql denotes the loaded Q value. The data are then
plotted as normalized IMD power PNORM vs microwave cur-
rent I.

A. Comparison of the calculated and measured Q

Before presenting the data, we compare the calculated Q
values of the resonator with the measured values. This com-
parison serves as a consistency check of the numerically cal-
culated current distribution, since the calculated unloaded Q
value involves an integral of the current distribution squared
as we show now. The Qc is given by

Qc =
�	

R
, �3.4�

where � is the angular frequency and R is its resistance per
unit length. The impedance of the line is

Z =	

C
, �3.5�

where C is the capacitance per unit length. Since �
�1 /	C, Eqs. �3.4� and �3.5� yield

Qc � 1

	C

	

R
�	

C

1

R
�

Z

R
, �3.6�

where R is given by10

R =

2RS�0� jS
2�y,z�dydz

�� jS�y,z�dydz�2 . �3.7�

In Eq. �3.7� RS denotes the surface resistance, and jS�y ,z� is
the current distribution in the coordinate system of Fig. 1�a�.

Figure 2 shows the measured and calculated �from Eq.
�3.6�� Qc values at T=5 K at the fundamental frequency and
low input power as a function of the linewidth for the reso-
nators used in this study. By comparing the calculated and
measured Qc of the 25-�m line, we determine the product

RS�0 in Eq. �3.7�. This product is then assumed to be iden-
tical for all of the resonators under investigation. The agree-
ment between the calculated and measured Qc in Fig. 2 is
very good. This is an independent validation of the current
distribution employed in Eq. �2.7�, which is used to calculate
the PIMD in Sec. IV. This agreement is also a verification that
the actual active linewidth is given by the patterned, photo-
lithographically determined linewidth, and that damage to
the edges resulting from the etching is negligible. It has been
previously shown by this group by comparing surface resis-
tance measurements on the same film, first unpatterned and
then patterned, that patterning of the stripline does not in-
duce damages that alter the microwave properties.14

B. Measurements of intermodulation distortion

Typical IMD power vs I data in the low-power regime for
the 75-�m-wide line is shown in Fig. 3 for several selected
temperatures. More temperatures were measured and ana-
lyzed but are omitted from the figure for clarity. To confirm
that the measured IMD has an intrinsic origin, the inset
shows the characteristic IMD power divergence at low tem-
peratures PIMD�T→0 K;w=75 �m�→T−2 �Refs. 3–5�.

To compare the DS and AO theories, the data for the
left-hand side of Eq. �2.7� is obtained as follows. To comply
with the basic weak-power assumption where expansion
�1.1� applies, we focus on the available, very low-current
IMD data. The chosen low-current domain, however, should
be sufficiently high for a good signal-to-noise ratio in the
data. The points in the double logarithmic plot, Fig. 4,
present the normalized IMD data vs I at T=5 K for the
series of the linewidth values quoted in the caption. Note that
for a given current, the normalized IMD increases as the line
becomes narrower. This trend reflects the increased current
density as the line narrows for fixed total current. The low-
current data points in Fig. 4 are fitted with straight lines of
slope 60 dBm per decade of current by a standard least-
squares procedure. The slope of 60 dBm per decade of cur-

0

1x105

2x105

3x105

4x105

0 100 200 300
Linewidth (��m)

R
es
on
at
or
Q

FIG. 2. �Color online� Calculated and measured resonator Q as
a function of linewidth. Points are measured and line is calculated.
The uncertainty of the measurement is estimated to be 10%. The
calculation was normalized to the Q of the 25-�m line. This is
equivalent to determining the RS and � of the film from the mea-
surement of the 25-�m linewidth.
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rent corresponds to slope 3 of the PNORM vs circulating
power on double logarithmic plots that has been discussed
elsewhere,3–5 and the chosen current domain 0.0015� I
�0.003 A is consistent with the low-circulating-power con-
siderations above. From these fitted lines we extract the IMD
power vs linewidth for the left-hand side of Eq. �2.7�. This
procedure has been repeated for each of the measured tem-
peratures up to 60 K. To save space, we show only the data
at T=5 K. The other temperatures produce comparable re-
sults.

IV. RESULTS

A. Comparison with theory

In Figs. 5 and 6 we compare the measured data with the
theoretical predictions of Eq. �2.7�. Figure 5 shows the result
of averaging over the temperatures of 5, 10, 15, 20, 30, 40,
50, and 60 K, while Fig. 6 contains only data at T=5 and 10

K. The error bars on the data in Fig. 5 represent one standard
deviation. The chosen reference width in Eq. �2.7� is w0
=25 �m. The only input parameters in the numerical calcu-
lations of the right-hand side of Eq. �2.7� �involving the nu-
merically calculated current density jS�y ,z� 11� are the pen-
etration depth �0�T� and the stripline thickness. The results
are not very sensitive to either of the parameters. Otherwise,
as emphasized above, the right-hand side of Eq. �2.7�, when
applied in its range of validity, does not depend either on I or
T. The I independence is automatically guaranteed by the
linear fitting in Fig. 4, while the predicted T independence is
used as a consistency check for the data analysis and is vin-
dicated by the relatively small error bars in Fig. 5 and tem-
perature variation in Fig. 6. For the samples in our experi-
ment, the corresponding values are �0�T=0�=250 nm and
d=500 nm. As the data in Figs. 5 and 6 convincingly show,
the difference between the local DS and the nonlocal AO
theoretical predictions is considerably larger than the error
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FIG. 3. �Color online� An example of PIMD�dBm; I ,T� data for a
strip with w=75 �m plotted against the current I. The open circle,
the open squares, the full circles, the open inverted triangles, and
the full triangles correspond to the temperatures T=5, 10, 30, 60,
and 80 K, respectively. The inset is a plot of PIMD�dBm; I
=0.005 A,T� against the temperature to demonstrate the low T
divergence as a signature for intrinsic nonlinearity.
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FIG. 4. �Color online� Data points for PIMD�dBm; I ,T
=5 K,w� at the low-power regime and the corresponding fitted
lines according to the methodology described in Sec. III. The line-
widths are �25 �m, �50 �m, 75 �m, � 100 �m, � 150 �m,
and � 300 �m.

-50

-30

-10

10

0 100 200 300

AO (Nonlocal)

DS (Local)

Linewidth (��m)

N
or
m
al
iz
ed
re
la
tiv
e
IM
D
po
w
er

��d
B
)

FIG. 5. �Color online� Comparison of the PIMD�dBm;w� data
with the theoretical predictions of the DS and AO theories, Eq.
�2.7�. The 25-�m line is used as the reference. The data error bars
represent the spread of the data points with T in the range 5�T
�60 K. The calculations �solid lines� are with the exact numerical
current density, such as in Fig. 1�b� using the method in Ref. 10 �see
text�.
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FIG. 6. �Color online� Comparison of the PIMD�dBm;T ,w� data
at only 5 and 10 K with the theoretical predictions of the DS and
AO theories �Eq. �2.7��. The 25-�m line is used as the reference.
The symbols � and � correspond to the temperatures T=5 and 10
K, respectively.
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bars, and the nonlocal AO theory predictions track the data.
Furthermore, as argued after Eq. �2.5�, the IMD variation
according to the AO theory is indeed smaller than those in
the DS theory.

B. Analytic approximation

Beside the Qc-values comparison in Fig. 2, a second
check on the numerical calculations of the right-hand side of
Eq. �2.7� is an analytical approximation, displayed by the
broken line in Fig. 7. This approximation is based on an
expression of the current density jS�y� for a long, thin strip
�w�d�.11 Specifically, in the coordinate system of Fig. 1�a�
consider the approximate current density,

jS�y� =�
jS�0�

1 − �2y

w
�2 for �y� � �w

2
��1 −

t

w
�

0 for
w

2
� �y� � �w

2
��1 −

t

w
�� ,

�4.1�

where t� �0
2 / d and the strip cross section extends to y

= �w /2. Note the explicit strip-width dependence in Eq.
�4.1� and that the sole penetration-depth dependence enters
through the cutoff parameter t. Since typically for our thin
films t /w�10−3�1, it seems justified to neglect the portion
in Eq. �4.1� that diverges beyond the cutoff point. Although
the contribution of this omitted portion of current density to
PIMD is substantial in the DS theory, we verified numerically
that it is still far too small in comparison to the differences
between the AO and DS theories predictions for PIMD. Insert-
ing Eq. �4.1� into Eq. �2.7� and employing the closed-form
integrals and approximation detailed in Appendix yields the
approximate expressions,

PIMD�dBm;w� − PIMD�dBm;w0� =
20

ln�10�

�� ln� w ln�2w

t
�

w0 ln�2w0

t
�� �AO�

ln� w2 + tw ln�2w

t
�

w0
2 + tw0 ln�2w0

t
�� �DS� .� �4.2�

As Fig. 7 shows, the expression in Eq. �4.2� provides a very
good approximation to full numerical calculations of the
right-hand side of Eq. �2.7�. This provides another validation
of the nontrivial exact numerical calculations.

The PIMD�w� data in Figs. 5 and 6 agree with the nonlocal
AO theory. This agreement adds to previous experimentally
confirmed predictions of the AO theory regarding the tem-
perature dependence of the PIMD�T� data, including the low-
temperature divergence of PIMD�T→0 K��T−2,3–5 the non-
monotonic slope of PIMD�PCIRC�,15 and indications that
PIMD�d��d−4, as in Eq. �1.1�.9 Since these IMD data sets
represent distinct cuts of the PIMD�T , I , .. ;w ,d , ..� function in
its multiple parameter space, the ability to account for them
all in the low-power domain lends credence to validity of the
nonlocal AO theory for intrinsic nonlinearity.

A practical implication of the experimental verification of
the AO theory is that film edges are less important for PIMD
than previously believed. For microwave receive-filter de-
sign, this result indicates that damage to the strip edges dur-
ing the stripline patterning is not a major degrading factor in
their performance.

V. DISCUSSION

The experimental results for PIMD�w� presented here
clearly favor the AO theory over the alternative DS theory.
On the other hand, both theories yield the same prediction
for the low-temperature divergence PIMD�T→0 K��T−2,
which has been experimentally confirmed. As highlighted in
the basic penetration-depth expansions, Eq. �1.1�, a key dis-
tinction between the DS and AO theories is that the former is
local while the latter is nonlocal.3,14 In this section, we dis-
cuss briefly the origin of these results.

Underlying the DS theory is the two-fluid model where
the total current density j� is the sum of pair-current density
j�S=nSqSv�S and the quasiparticle current density j�QP �‘back-
flow’�. The NLME originates from the j�QP component. The
latter is expressed in terms of fQP, the quasiparticle distribu-
tion function,

fQP�j�S;T� =
1

e�e + 1
, e = E + �v�S • k�� . �5.1�

where E=�2+2, �=1 /kBT, T is the temperature, kB is the
Boltzmann constant, k� is the momentum,  is the energy gap,
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FIG. 7. �Color online� Comparison of the exact numerical cal-
culation �solid line� and the analytical approximation derived from
Eq. �4.2� �broken line�. The 25-�m line is used as the reference.
Note the close resemblance of the exact numerical calculations and
the analytical approximation.
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�=��k��−� is the single-particle excitation energy ��k�� with
respect to the chemical potential �, vS is the superfluid ve-
locity, related to j�S and the pair density and charge nS, qS,
respectively.

Bardeen16 derived the distribution function �5.1� in the
context of a quasiparticle Fermi-gas model in the presence of
a spatially uniform, weak current density. The local feature
of the DS theory �e.g., Eq. �1.1�� emanates from applying the
distribution function Eq. �5.1� to the thin-film case of a spa-
tially nonuniform current density j�S�x�. By employing the
Green’s-function approach of Ref. 3, it can be shown that for
a spatially nonuniform current density the quasiparticle dis-
tribution function in Eq. �5.1� must be complemented by
terms that involve higher derivatives of j�S�x� and thus indi-
cates nonlocality.

In conjunction with the NLME, the nonlocality property
is important according to the following plausibility argu-
ment. Since that condensate motion �current� breaks pairs, it
is plausible to expect that the amount of local pair-breaking
and the amount of local current correlate. In thin films,
where w�d��, the overwhelming majority of current is
carried in its broad midsection. This is verified from the Eq.
�A3� by varying t such that w /2� t�0. Accordingly, it fol-
lows that the majority of quasiparticles are generated in the
film midsection. These quasiparticles are accounted for in the
AO nonlocal theory by taking the long-wavelength limit. On
the other hand, the local DS theory overemphasizes the strip
edges. Hence it accounts only for a fraction of the quasipar-
ticles and therefore it does not track the data quantitatively.
This argument may clarify why both the DS and the AO
theories yield the same prediction for the low-temperature
divergence PIMD�T→0 K��T−2. As pointed out elsewhere
this divergence reflects the low-energy quasiparticle excita-
tions along the nodal lines of the d-wave gap of YBCO.1

These are present throughout the strip, regardless of their
spatial distribution, and therefore both theories predict the
same temperature divergence. Also, note that the PIMD�w�
observable probes the current-density distribution across the
entire film, and hence it exposes the qualitative difference
between the DS and AO theories.

In summary, measurements of the width dependence of
the IMD power in a stripline resonator at a constant total
current are analyzed and compared to predictions of two
theories of the nonlinear Meissner effect. The measured
strips were patterned from a single wafer to ensure unifor-

mity of film quality. This data is compared to predictions of
the local theory of Dahm and Scalapino,2 where the nonlin-
ear penetration depth tracks the local current density, and of
the theory of Agassi and Oates,3 where the nonlinear penetra-
tion depth is spatially constant. The parameter-free compari-
son between the data and theoretical predictions at several
temperatures clearly favors the AO predictions. We attribute
this outcome to a key qualitative distinction between the AO
and DS theories, i.e., the locality vs nonlocality as articu-
lated, e.g., in Eq. �1.1�.
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APPENDIX

For the approximate current-density expression Eq. �4.1�,
the integrals underlying Eq. �2.7� in closed form are

�
0

�w/2��1−t/w�

dyjS
2�y ;w� = −

w

2
arctan h� t − w

w
� ,

�
0

�w/2��1−t/w�

dyjS
4�y ;w� = −

w

4t�t − 2w��w�− t + w� + t�2w

+ t�arctan h�1 −
t

w
�� . �A1�

The actual expressions given in Eq. �4.2� are based on ap-
proximating Eq. �A1� by

arctan h�1 − x� =
1

2
ln�2 − x

x
� �

1

2
ln�2

x
�, for x � 1.

�A2�

For the total current considerations, the following integral
is useful to note,

�
0

�w/2��1−t/w�

dyjS�y ;w� = −
w

2
arcsin� t − w

w
� . �A3�
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